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SUMMARY

Taxonomy: Bacteria; Phylum Proteobacteria; Class Gammap-

roteobacteria; Order Xanthomonadales; Family Xanthomonada-

ceae; Genus Xanthomonas; currently classified as X. campestris

pv. musacearum (Xcm). However, fatty acid methyl ester analysis

and genetic and genomic evidence suggest that this pathogen is

X. vasicola and resides in a separate pathovar.

Isolation and Detection: Xcm can be isolated on yeast

extract peptone glucose agar (YPGA), cellobiose cephalexin agar

and yeast extract tryptone sucrose agar (YTSA) complemented

with 5-fluorouracil, cephalexin and cycloheximide to confer semi-

selectivity. Xcm can also be identified using direct antigen coat-

ing enzyme-linked immunosorbent assay (DAC-ELISA), species-

specific polymerase chain reaction (PCR) using GspDm primers

and lateral flow devices that detect latent infections.

Host range: Causes Xanthomonas wilt on plants belonging

to the Musaceae, primarily banana (Musa acuminata), plantain

(M. acuminata 3 balbisiana) and enset (Ensete ventricosum).

Diversity: There is a high level of genetic homogeneity

within Xcm, although genome sequencing has revealed two

major sublineages.

Symptoms: Yellowing and wilting of leaves, premature fruit

ripening and dry rot, bacterial exudate from cut stems.

Distribution: Xcm has only been found in African countries,

namely Burundi, Ethiopia, Democratic Republic of the Congo,

Kenya, Rwanda, Tanzania and Uganda.

Ecology and Epidemiology: Xcm is transmitted by

insects, bats, birds and farming implements. Long-distance dis-

persal of the pathogen is by the transportation of latently

infected plants into new areas.

Management: The management of Xcm has relied on cul-

tural practices that keep the pathogen population at tolerable

levels. Biotechnology programmes have been successful in

producing resistant banana plants. However, the deployment of

such genetic material has not as yet been achieved in farmers’

fields, and the sustainability of transgenic resistance remains to

be addressed.
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INTRODUCTION

In Africa, banana (Musa acuminata) and plantain (M. acuminata

3 balbisiana) are important staple crops grown for both subsist-

ence and income generation by smallholder farmers, and many of

their products are used for medicinal, cultural and industrial pur-

poses (Karamura et al., 2008). Africa contributes close to 16% of

the global banana production, with average annual production

and exports at 17 500 kilotonnes (kt) and 113 983 hg/ha, respec-

tively (FAO, 2015). Ensete (Ensete ventricosum), an important

perennial food crop belonging to the same family as banana (i.e.

Musaceae), and only grown in the southern and south-western

parts of Ethiopia (Bezuneh and Feleke, 1966), is a main food

source for over 12 million people (Belhu, 1991). The edible parts

of enset are the pseudostem and corm, whereas other plant parts

are used for various cultural and industrial activities, such as fibre

production (Almaz and Anke, 2004; Brandt et al., 1997; Endale

et al., 1994).

Banana, plantain and enset are infected by Xanthomonas

campestris pv. musacearum (Xcm), the pathogen that causes

banana Xanthomonas wilt (BXW) (Yirgou and Bradbury, 1968,

1974). Initial reports of Xcm were from Ethiopia on enset and

banana over 40 years ago (Yirgou and Bradbury, 1968, 1974).

This was followed by the sudden emergence and spread of the

pathogen throughout the Great Lakes region (Carter et al., 2010).

In Uganda, it was first reported in Mukono district in 2001

(Tushemereirwe et al., 2004), from where it spread, within 5

years, at an alarming rate of 75 km annually, into 32 districts of

Uganda (Carter et al., 2010) and, subsequently, into the*Correspondence: Email: teresa.coutinho@up.ac.za
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Democratic Republic of the Congo (DRC) (Ndungo et al., 2006),

Rwanda (Reeder et al., 2007), Tanzania, Kenya and Burundi (Car-

ter et al., 2010). In North Kivu, DRC, although the spread of the

pathogen was much slower than in Uganda, because of the physi-

cal barrier of the highlands around Masisi territory, damage and

loss were equally severe (Karamura et al., 2006). At the same

time, outbreaks were reported north of Beni and around Watsa

territories in DRC near the Sudan–Ugandan border. In Tanzania,

Xcm spread from Muleba district in the Kagera region to cover

seven other districts within the same region and to neighbouring

Kigoma and Mara regions. This raised concerns about the possible

spread of Xcm into the major banana-producing regions of Kili-

manjaro and Mbeya (Carter et al., 2010). In many of the affected

areas, Xcm wiped out entire plantations (Karamura et al., 2006).

It was estimated that Uganda lost approximately US$360 million

annually as a result of the outbreak (Kalyebara et al., 2006; Kara-

mura et al., 2006), whereas, in Tanzania, combined costs for loss

of banana and associated costs of purchasing alternative food

were estimated at US$10 million by 2011 (Nkuba et al., 2015).

Xcm infection radically reduced the food security and income of

communities at the household level, especially for families that

were dependent on banana for most of their wages. The outbreak

also had an impact on the natural resource base, eroding the

banana genetic resource and disrupting the ecological stability of

banana plantations (Kubiriba et al., 2012).

The majority of cultivated bananas are derived from crosses

between wild M. acuminata and M. balbisiana, resulting in

genome constitutions such as AA, AB, AAA, AAB, ABB, AAAA,

AAAB, AABB and ABBB (Pollefeys et al., 2004; Simmonds and

Shepherd, 1955). Although all banana cultivars are susceptible to

Xcm, the most susceptible cultivar is ‘Kayinja’ belonging to the

ABB group. It was further observed that some of the cultivars

within the East African Highland banana (EAHB) group could

escape infection because of the nature of their inflorescences.

Such cultivars, with persistent bracts and flowers, were found to

be less likely to succumb to infection (Biruma et al., 2007). The

ability of Xcm to infect all banana, plantain and enset varieties

grown within the Great Lakes region threatens the livelihood of

millions of people who are dependent on these crops for food and

income generation (Hunduma et al., 2015; Tushemereirwe et al.,

2003).

Reports in Uganda indicated low BXW incidence (<10%), but

high prevalence (30–45%), between 2006 and 2009 (Kubiriba

et al., 2012). This implies that Xcm infection is re-occurring in

many fields, with each field having a few infected plants (Kubiriba

et al., 2012). Such focal points are potential inoculum sources for

the development of new disease epidemics (Nutter, 1997; Zadoks

and van den Bosch, 1994). Kubiriba et al. (2012) further showed

that the proportion of affected fields in threatened areas in

Uganda increased to the same levels as those occurring in

endemic areas. The reasons for the increased levels of infection

were the reduced levels of engagement of the different stakehold-

ers in BXW control as the recommended cultural control practices

still appeared to be effective (Kubiriba et al., 2012). Thus, there is

a need to re-energize stakeholders, review control strategies in

the light of the current situation and organize resources to reduce

the impact of Xcm on banana, plantain and enset production.

In this review, current information and knowledge on the dis-

tribution, virulence factors and detection strategies are reviewed

with an aim to promote the sustainable management of BXW.

TAXONOMY

Xcm is a Gram-negative, aerobic, rod-shaped bacterium meas-

uring 0.7–0.9 mm 3 1.8–2.0 mm, motile by a single polar flagel-

lum (Bradbury, 1986) and belonging to the genus Xanthomonas

in the Gamma subclass of Proteobacteria (Smith et al., 2008).

Optimum growth on nutrient agar is attained at 25–28 8C, produc-

ing distinct yellow, mucoid, circular and convex colonies at 3 days

post-incubation (Ssekiwoko et al., 2006). The yellow coloration is

characteristic of xanthomonads (Holt et al., 1994) and is a result

of the presence of brominated aryl polyenes, called xanthomona-

dins (Bradbury, 1986). Their role, if any, in Xcm infection is

unknown. Xcm does not accumulate poly-b-hydroxybutyric acid,

is negative for oxidase, tyrosinase, nitrate reduction, starch hydro-

lysis and gelatinase tests, and induces a hypersensitive response

(HR) in tobacco leaves (although this response may be weak). Bio-

chemical characteristics, including urease production, hydrolysis of

aesculin, production of hydrogen sulfphide from peptone, catalase

production and utilization of sorbitol, dulcitol and salicin, suggest

that Xcm belongs to X. campestris (Bradbury, 1986).

Further characterization of Xcm using fatty acid methyl ester

(FAME) analysis, gyrB gene sequencing and repetitive element

sequence-based polymerase chain reaction (Rep-PCR) has

revealed that Xcm is more closely related to Xanthomonas vasi-

cola pv. vasculorum (Xvv) and X. vasicola pv. holcicola (Xvh) than

to X. campestris (Aritua et al., 2008; Parkinson et al., 2009). The

renaming of Xcm to X. vasicola pv. musacearum has been pro-

posed. However, because of a lack of sufficient pathogenicity

studies on X. vasicola, the invalidation of the proposed naming of

X. vasicola pathovars, and despite evidence gained from compara-

tive genomics (Wasukira et al., 2012, 2014), renaming of Xcm has

not yet been carried out (Aritua et al., 2008; Garrity, 2005; Kara-

mura et al., 2015).

Amongst the housekeeping genes in Xanthomonas that have

been used in multilocus sequence analyses (MLSAs) (Parkinson

et al., 2009; Young et al., 2008), the gyrB gene has been found to

be useful in determining the genetic relatedness amongst closely

related strains. Using sequences of this gene in phylogenetic anal-

yses, Xcm was found to be closely related to the X. vasicola path-

ovars, Xvh and Xvv (Aritua et al., 2008). Xvv shares an identical
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gyrB gene sequence with Xcm at 100% sequence identity.

Although sequence variations were observed in different Xvh

strains, a sequence identity of 100% was observed between Xcm

and Xvh (NCPPB 2417) (Aritua et al., 2008).

Studholme et al. (2010) used ‘next-generation’ Illumina Solexa

GA technology to generate the draft genome for Xcm (NCPPB

4381), and revealed that the genome size was 5 052 905 base

pairs and different strains have similar genome sizes (Wasukira

et al., 2012). Phylogenetic analysis of the genome sequences of

Xcm and related species using maximum likelihood and Bayesian

analyses grouped Xcm in the X. vasicola clade, together with Xvv

(Rodriguez et al., 2012). When compared with other Xanthomonas

species, Xcm is 99% similar to Xvv and the 1% difference is possi-

bly a result of non-chromosomal elements (Rodriguez et al.,

2012).

ISOLATION OF Xcm

Xcm can be isolated on different culture media, such as cellobiose

cephalexin agar (Tripathi et al., 2007), yeast extract peptone glu-

cose agar (YPGA) (Mwangi et al., 2007) and yeast extract tryptone

sucrose agar (YTSA)–cephalexin–cycloheximide (Tripathi et al.,

2007). A semi-selective culture medium can be produced by add-

ing cephalexin and 5-fluorouracil. 5-Fluorouracil eliminates fluo-

rescent pseudomonads (Sijam et al., 1991), whereas cephalexin

suppresses most Gram-positive bacteria and is reported to inhibit

Erwinia spp. (Schaad et al., 2001). Xcm can be isolated onto

YPGA from all plant parts, insects and soil.

DETECTION OF Xcm

Visual assessment of the symptoms is the most common method

used to determine the presence of BXW in a plantation. The iden-

tification of the causal agent is thereafter based on the isolation

of Xcm using semi-selective media (Mwangi et al., 2007; Tripathi

et al., 2007). In order to reliably identify the causal agent, serolog-

ical and species-specific PCR methods have been developed.

Detection of Xcm using serological methods

Xcm can be identified using enzyme-linked immunosorbent assay

(ELISA) with specific antibodies (Nakato et al., 2013b). A direct

antigen coating (DAC)-ELISA-based method offers a convenient

technique for the rapid diagnosis of Xcm-infected banana plants

(Nakato et al., 2013b). Polyclonal antibodies (pAbs) are used for

Xcm DAC-ELISA owing to their affordability, heterogeneity, ability

to recognize a host of antigenic epitopes, rapid generation of

results, stability over a broad range of pH values and salt concen-

trations, and sensitivity as a result of the amplification of a spe-

cific enzyme–substrate reaction (Clark and Adams, 1977; Neil

et al., 2005; Yokoyama, 1995; Zola, 1999).

Hodgetts et al. (2014) developed a lateral flow device (LFD)

using pAbs to detect Xcm in infected banana plants. This tool can

be used as a preliminary Xcm screening method. LFDs are most

suitable for testing plants in the field when sending samples to a

laboratory is either not feasible or takes a long time. No informa-

tion regarding the target protein was provided.

Detection of Xcm using species-specific and pathovar-

specific PCR

A simple, specific PCR method, targeting the genomic region

encoding the general secretion pathway protein D (GspD), and

amplified with primers GspDm-F2 (50-GCGGTTACAACACCGTT-

CAAT-30) and GspDm-R3 (50-AGGTGGAGTTGATCGGAATG-30),

can be used to detect Xcm in pure culture and from banana plant

samples (Adriko et al., 2012). No bacteria other than Xcm could

be amplified with these primers. They can also be used in a multi-

plex PCR with Xanthomonas-specific primers (Adriko et al., 2012,

2016). The GspDm PCR is able to detect Xcm in asymptomatic

plant tissue at bacterial DNA concentrations as low as 0.01 mg

(Adriko et al., 2012). As DNA was extracted directly from the plant

and a colony PCR was not conducted, the bacterial concentration

that corresponded to the DNA concentration was not determined.

Hodgetts et al. (2015) developed and evaluated a loop-

mediated isothermal amplification (LAMP) assay for Xcm

diagnosis. The LAMP primers target the general secretion pathway

protein D gene and are able to detect Xcm DNA at a concentration

as low as 51 fg, providing a level of sensitivity much greater than

that of an ordinary Xcm PCR assay. This LAMP assay allows for

the in situ detection of Xcm in bacterial cultures and symptomatic

field samples in less than an hour (Hodgetts et al., 2015).

HOST RANGE

Banana, plantain and enset are Xcm’s only known natural hosts

(Thwaites et al., 2000). All banana cultivars, except Musa balbisi-

ana, are susceptible to the pathogen (Fig. 1) (Ssekiwoko et al.,

2006; Tripathi et al., 2009). Cultivated enset in Ethiopia is also

very susceptible. However, Xcm has not been isolated as yet from

wild enset growing in DRC and Rwanda, and no plants have been

observed with symptoms.

Xanthomonas species infect numerous hosts, including, for

example, sweet potato, sugarcane, maize, common beans and

sorghum (De Cleene, 2008; Destefano et al., 2003; Hernandez

and Trujillo, 1990; Leyns et al., 1984; Mkandawire et al., 2004;

Todorović et al., 2008). Artificial inoculation studies have indi-

cated that Musa zebrina, Musa ornata, Canna indica, Canna orch-

oides and maize are possible alternative hosts of Xcm (Aritua

et al., 2008; Ssekiwoko et al., 2006). However, Mwangi et al.

(2006) excluded maize, sorghum, napier grass, common beans,

cassava, taro, sweet potato and tobacco as hosts of Xcm. As a

result of these conflicting results, studies are currently underway

Banana Xanthomonas wilt (BXW) 527

VC 2017 BSPP AND JOHN WILEY & SONS LTD MOLECULAR PLANT PATHOLOGY (2018) 19 (3 ) , 525–536



to further assess plants commonly intercropped with banana and

enset as potential alternative hosts of Xcm. These include sugar-

cane and sorghum, as both are known hosts of Xvv and Xvh,

respectively.

An evolutionary scenario that has been hypothesized is that Xvh

and Xvv jumped on to Musa species from sorghum and sugarcane,

respectively (Aritua et al., 2008). However, Smith et al. (2008) sug-

gested that Xcm shifted from enset to banana. Potted trials con-

ducted by Karamura et al. (2015) concluded that banana can be an

asymptomatic host of Xvv, Xvh and other Xanthomonas spp. They

also noted that sugarcane and maize, occasionally found in banana

plantations, are potential alternative hosts of Xcm. Xcm effectively

caused symptoms typical of Xvv and Xvh when inoculated into sug-

arcane and maize plants. Ongoing studies will attempt to correlate

the results from artificially inoculated experimental plants with natu-

rally infected alternative hosts in farmers’ fields.

DISTRIBUTION

Xcm was initially identified in Ethiopia in the 1960s on E. ventrico-

sum, and then later on banana and plantain (Yirgou and Bradbury,

1968, 1974). The bacterial pathogen was reported in Uganda in

2001 (Tushemereirwe et al., 2003, 2004) and, subsequently, in

the DRC (Ndungo et al., 2004), Tanzania (Mgenzi et al., 2006),

Rwanda, Kenya and Burundi (Carter et al., 2010) (Fig. 2). In

Rwanda, Kenya, Tanzania and Uganda, the spread of Xcm, after it

was first detected, was reduced as a result of the deployment of

effective management strategies and institutional approaches,

such as farmers’ field schools and community actions that effec-

tively mobilized stakeholders (Kubiriba et al., 2012; Nkuba et al.,

2015). However, Blomme et al. (2014) reported new outbreaks in

DRC, in the province of Uvira and Fizi in South Kivu, in the Kale-

mie territory of northern Katanga and in the Tshopo district in the

Oriental province. It is also common to find symptomatic plants in

farmers’ fields and these are potential inoculum reservoirs.

SYMPTOMS

Banana and plantain plants infected with Xcm develop symptoms

that include the progressive yellowing and wilting of leaves (Fig.

3a). The male buds of diseased banana plants rot and the flower

stalks turn yellow–brown (Fig. 3b). Fruits ripen prematurely and

unevenly showing internal browning (Fig. 3c). On cutting open the

stems, pockets of pale yellow bacterial exudate appear within 5–

15 min (Fig. 3d).

Symptoms on enset are slightly different. The inner folds of

the drooping heart leaf are covered with greyish-brown patches

and, when the leaf eventually emerges at the petiole, yellowish

bacterial slime oozes from the vascular bundles (Yirgou and

Bradbury, 1968). All the leaves wilt, bend over and wither, caus-

ing death of the entire enset plant (Yirgou and Bradbury, 1968).

ECOLOGY AND EPIDEMIOLOGY

In the field, Xcm is mainly transmitted through the use of contami-

nated farming implements (Addis et al., 2010; Biruma et al.,

2007; Eden-Green, 2004; Kagezi et al., 2006; Tinzaara et al.,

2006). Experimentally, it has been shown that Xcm can survive on

stainless steel for up to 20 days and on non-stainless steel for up

to 6 days (Buregyeya et al., 2008). Farming tools have been

shown to be responsible for long-distance spread and sporadic

outbreaks of the pathogen (Tushemereirwe et al., 2006). In Tanza-

nia, Shimwela et al. (in press) have observed continued transmis-

sion of Xcm resulting from inconsistent tool sterilization and

exposure of Xcm to rain. Poor farmers’ fields are at a high risk of

infection because they tend to borrow tools from their neighbours

and the recommended management practices are difficult to

enforce. It is thus recommended that there should be limited cut-

ting of BXW-affected plants in dry periods and that farm tools

should be sterilized by placing them in a fire. Intercropping

banana with annual crops, such as groundnuts, beans and maize,

which demand regular weeding, increases the risk of Xcm trans-

mission through injuries to the pseudostem, corm and roots of the

Fig. 1 Map showing the banana production zones in Africa and the

dominant cultivars grown in the banana production zones: A, plantain-

dominated; B, East African Highland banana-dominated; C, Cavendish-

dominated; D, Mshare-dominated. Mshare is a banana accession of AA

species originating from Tanzania. ABB and AAB bananas can be found at all

locations in varying numbers (http://banana.mappr.info/blog/).
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banana plant (Ocimati et al., 2013b). The ability of Xcm to spread

within the corm has also been reported (Ssekiwoko et al., 2006).

Vectors such as insects, birds, bats and ruminants are an

important means of spread of Xcm within and across plantations

(Buddenhagen, 2006; Karamura et al., 2008; Tinzaara et al.,

2006). Xcm vector transmission is, however, dependent on the

size and population of the vector (Nakato et al., 2014). For exam-

ple, bees, wasps and birds may be present in small numbers, but

are capable of visiting larger areas and hence can transmit the

pathogen more readily, compared with drosophilids, which are

present in large numbers, but spend most of their lives on fewer

banana plants (Smith et al., 2008). However, vector population

thresholds that favour Xcm spread have not been documented.

The insect vectors pick up the exudate from male bud scars of dis-

eased plants and inoculate the cushions (to which the male flow-

ers were attached) of healthy plants. The distances to which

insect vectors transmit Xcm have not been determined, but could

be relatively close based on the life styles of these insects. For

example, drosophilids could be responsible for within-farm trans-

mission at distances not exceeding 3 m (recommended spacing

between banana mats), whereas bees and wasps are capable of

moving longer distances, and hence could be responsible for

transmission at distances exceeding 3 m.

It has been observed that insect transmission of Xcm only

results in floral symptoms, thus affirming the importance of male

bud bract wounds as entry points (Nakato et al., 2014). Insects

rarely transmit Xcm through the female inflorescence (Fig. 4a);

however, when they do, the bacterial numbers are too few to

induce disease symptoms (Nakato et al., 2014). This is because

fewer female inflorescences open daily and the scars dehydrate

more rapidly compared with the larger number of male inflores-

cences produced that open daily, thus increasing the risk of

Xcm spread by insects. Insect transmission of Xcm is more prev-

alent in cultivars that shed male flowers and bracts (Fig. 4b),

e.g. ‘Pisang Awak’ (ABB), ‘Ney Poovan’ (AB), ‘Bluggoe’ (ABB)

and ‘Gros Michel’ (AAA) (Addis et al., 2004; Blomme et al.,

2005; Karamura et al., 1998). Cultivars with persistent male

flowers escape insect Xcm transmission, but are not grown as

pure stands and thus have no impact as barriers to Xcm spread.

Similarly, insect Xcm transmission is dependent on altitude. In

areas dominated by cultivars with dehiscent bracts, such as

‘Pisang Awak’ (ABB), and at an altitude below 1700 m above

sea level (masl), insect transmission of Xcm is more prevalent.

According to Addis et al (2004) and Blomme et al (2005), there

is limited insect activity above 1700 masl, and hence fewer flo-

ral infections. Similar observations were made by Shimelash

et al. (2008) and Tripathi et al. (2009). Were et al. (2015)

reported that the banana weevil, Cosmopolites sordidus, was a

potential vector of Xcm as a result of the ability of the patho-

gen to survive on and within the insect.

Fig. 2 Distribution of Xanthomonas campestris pv. musacearum, the causal pathogen of banana Xanthomonas wilt (BXW), within the East and Central African

region (Manyong et al. 2008).
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Between distant farms, infected planting material is the main

mode of transmission of Xcm (Karamura et al., 2008). Xcm may

remain latent for 7–14 days within the plant and, because of its

systemic nature, it spreads on planting (Ssekiwoko et al., 2006).

Xcm may also spread latently through the banana bunch, but this

depends entirely on whether the bunch residues are discarded or

used as mulch in banana plantations (Nakato et al., 2013a). Xcm

survival in soil is affected by the soil moisture content. Xcm has

poor competitive ability and therefore succumbs to competition

from other microbes. In the absence of competition, Xcm cannot

persist in moist soils for a period longer than 90 days, and 30

days in dry soils (Mwebaze et al., 2006). However, rainfall plays

an important role in the development and dissemination of Xcm.

Manyong et al. (2008) and Tripathi et al. (2009) reported a posi-

tive correlation between BXW and rainfall. Similarly, recent

studies on the spatiotemporal distribution of Xcm in the Kagera

region of Tanzania further emphasized the role of rainfall in the

short-distance spread of BXW (Shimwela et al., 2016).

MANAGEMENT

Economic losses in the range of $2–8 billion as a result of BXW

have been reported over a decade within East Africa (Nkuba

et al., 2015; Shimwela et al., in press; Tripathi et al., 2009). As a

result of the inconsistent adoption of recommended management

options (Shimwela et al., 2016) and the lack of a resistant source

in Musa germplasm (Tripathi et al., 2017), Xcm is likely to remain

a continued threat within East and Central Africa.

During the initial epidemic phase of Xcm outbreaks, integrated

management approaches are recommended. These include

uprooting, chopping and burying of diseased mats or stools (i.e.

Fig. 3 Symptoms caused by Xanthomonas campestris pv. musacearum. (a) Yellowing and wilting of the youngest leaves. (b) Wilting of the malebud and premature

ripening of the fruit. (c) Internal discoloration of the fruits. (d) Pockets of yellow exudate in cut pseudostem.
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clumps of plants formed from the same parent plant), removal of

the male bud with a forked stick on formation of the last cluster

of fruit to limit insect transmission and the cleaning of farming

implements with sodium hypochlorite. This integrated approach is

time consuming and labour intensive for resource-constrained

farmers (Tushemereirwe et al., 2006). These recommendations are

founded on the management principles used to deal with other

banana bacterial wilt diseases, such as Moko disease (Thwaites

et al., 2000). Recent reports have indicated that silicon concentra-

tions above 200 mg/week induce resistance to BXW and thus may

augment existing control measures through integrated Xcm man-

agement options (Mburu et al., 2016).

Over the years, management practices that can contribute sig-

nificantly to the reduction in disease incidence within farmers’

fields have been recommended (Ocimati et al., 2013a,2015). Prac-

tices, such as the continuous monitoring of plantations and

removal of symptomatic plants, referred to as single diseased

stem removal (SDSR), are encouraged. SDSR lowers Xcm inocu-

lum, preventing it from spreading to neighbouring suckers and

thus reducing disease incidence (Kubiriba et al., 2012). However,

according to Shimwela et al. (in press), the impact of SDSR may

be more effective during the dry season, when pathogen transmis-

sion is less, than during the rainy season.

According to Blomme et al. (2017), SDSR is a complementary

practice to complete mat uprooting, applicable when latent infec-

tions and incomplete systemic infections have occurred. They fur-

ther noted that the choice of which method to use, either

complete mat uprooting or SDSR, will depend on the farming

objectives and disease occurrence. Complete mat uprooting is rec-

ommended where the disease is reported for the first time, with

the aim of removing a large portion of the inoculum. This method

appeals to intensive, market-oriented farmers, whereas SDSR is

the more favoured method of subsistence farmers.

Resistance to Xcm in commonly grown banana cultivars has

not been identified; however, M. balbisiana, the wild relative of

banana, has shown some resistance (Ssekiwoko et al., 2006,

2015; Tripathi et al., 2008, 2009). For example, in vitro screening

studies identified ‘Pisang Awak’ as highly susceptible, ‘Nakitembe’

as moderately resistant and M. balbisiana as resistant (Tripathi

et al., 2008). Subsequent studies evaluating banana cultivars for

resistance to Xcm consistently identified M. balbisiana as resist-

ant. The resistance observed in this Musa species is probably

quantitative and associated with the limited spread of Xcm into

the plant tissue. The HR-like symptoms observed in M. balbisiana

are probably an indication of a reaction by the plant to the patho-

gen stimulated by specific elicitors, as Xcm multiplication is par-

tial, only occurring in a single leaf and not spreading into other

tissues of the plant (Ssekiwoko et al., 2015). Although the cultivar

‘Nakitembe’ may not possess cell-mediated resistance, it is likely

to escape insect-mediated infections in the field because of its

persistent male flowers and bracts that prevent exposure of cush-

ions on which insects can land (Tripathi and Tripathi, 2009). These

results have prompted studies to explore the mechanisms used by

M. balbisiana to limit disease expression.

Attempts to understand the mechanisms that play a role in

conferring resistance to Xcm within M. balbisiana have revealed

that resistance is not conferred by commonly known pathways,

such as HR, systemic acquired resistance (SAR) or induced sys-

temic resistance (ISR) (Ssekiwoko et al., 2015). Defence-related

gene expression in M. balbisiana, such as proteinase 3 antigen

(PR3), nonexpressor of pathogenesis-related 1 protein (NPR1) and

MbNBS, declined within the first 6 h post-inoculation, but recov-

ered much later in the infection process. This may explain why

BXW symptoms and death occurred only in the inoculated leaf of

M. balbisiana and not in the rest of the plant (Ssekiwoko et al.,

2015). There is thus a need to further explore the role of the entire

gene profile expressed at the point of infection and during the

infection process. Similarly, no resistance has been identified in

enset. However, some clones have shown a high level of tolerance

to Xcm infection. For example, the evaluation of 20 enset clones

has shown that ‘Mezya’, ‘Hiniba’, ‘Bedadet’, ‘Sorpie’ and

Fig. 4 Banana inflorescences. (a) The bract lifts to expose the female flowers

that develop into the fruit arranged in clusters. (b) Male flowers subtended by

a bract are always the last to appear.
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‘Sigezasarum’ are tolerant because of the long disease incubation

time and low (below 30%) disease incidence levels, whereas

‘Warke Bidu’, ‘Awenyi’, ‘Kekar’, ‘Astara’, ‘Bufare’, ‘Geziwet 2’,

‘Gulumo’ and ‘Kulo’ are susceptible because of the short disease

incubation time and 100% incidence (Hunduma et al., 2015;

Welde-Michael et al., 2008).

The use of genetic engineering to develop bananas with resist-

ance to Xcm, employing the plant ferrodoxin-like gene (Pflp) and

hypersensitive resistance-assisting gene (Hrap) from sweet pepper

(Capsicum annum), have revealed promising results (Chen et al.,

2000; Lin et al., 1997). Banana lines carrying the two genes were

evaluated using in vitro and in vivo conditions and later in con-

fined field trials. The results demonstrated that the transgenes can

provide resistance to Xcm (Namukwaya et al., 2012; Nordling,

2010; Tripathi et al., 2010), without altering the plant physiology.

Similarly, the rice pattern recognition receptor (PRR), Xa21 gene,

was considered as a good candidate for the engineering of trans-

genic resistance to Xcm because of its broad-spectrum resistance

against the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo)

(Song et al., 1995; Wang et al., 1996). According to Tripathi et al.

(2014), the Xa21 gene confers resistance to Xcm because the Xoo

raxSTAB operon, required for the activation of Xa21-mediated

immunity, is highly conserved in diverse Xanthomonas species,

including Xcm. The analysis of transgenes with the Xa21 gene

resulted in enhanced resistance to Xcm with no observable visible

physiological effects and no measurable morphological differences

between the transgenes and the control plants (Tripathi et al.,

2014). However, as PRR-mediated immunity can be overcome

through the suppression of the immune response by bacterial

effectors (Dodds and Rathjen, 2010), it was suggested that Xa21

could be used in combination with Hrap and/or Pflp, which

showed enhanced resistance against Xcm in previous reports

(Namukwaya et al., 2012; Tripathi et al., 2010, 2013). Nimusiima

et al. (2015) observed no detectable effect of the transgenes on

the inhabiting bacterial community resulting from genetic modifi-

cation. Such transgenic banana material will greatly contribute to

the control and containment of Xcm epidemics.

Xanthomonas wilt is now endemic to most of the countries in

which the disease occurs. However, the situation in the eastern

region of DRC is severe and it is possible that the pathogen could

spread into the Congo basin from where it may progress into the

Oriental province (W. Ocimati, personal communication). Results

from a survey conducted between September 2015 and March

2016, by members of the Research Program on Roots, Tubers and

Bananas (RTB-RBM) in South Kivu province in eastern DRC, noted

that the average number of banana fields affected by BXW was

initially 286 (37.6%), which increased significantly to 514

(67.5%). The overall number of BXW-affected fields was approxi-

mately 380, representing 79.7% of the current number of banana

fields in the area. Kalehe territory had the highest number of

affected banana fields initially, with an average number of farms

abandoned because of BXW infestations across the study area

ranging from 108 in Kabare to 418 in Idjwi (Bioversity Interna-

tional, 2017).

PATHOGENICITY AND VIRULENCE FACTORS
PRESENT IN Xcm

Several candidate genes that probably play a role in the adapta-

tion of Xcm to banana and disease resistance have been identi-

fied. Amongst these genes are homologues of the Type III effector

proteins (T3Es) secreted and translocated by the Type III secretion

system (T3SS) (Jacques et al., 2016; Studholme et al., 2010;

Wasukira et al., 2012). T3Es are important for pathogenicity and

virulence in Xanthomonas, and induce effector-triggered immunity

(ETI) (Jacques et al., 2016; Potnis et al., 2011). As with other

Xanthomonas species, Xcm encodes T3E homologues, such as

AvrBs2, AvrGfl, XopF, XopK, XopL, XopN, XopP, XopQ, XopR,

XopX and XopZ. Similarly, Xcm encodes homologues of XopA,

XopB, XopG, XopH, XopI, XopY, XopAA, XopAD, XopAE and

XopAK (Ryan et al., 2011; Studholme et al., 2010), as well as

homologues of Pseudomonas syringae effectors HopW1 and

HopAF1 and Ralstonia solanacearum putative effector RipT

(Studholme et al., 2010). These proteins probably function in the

suppression of innate immune responses induced by either

pathogen-associated molecular patterns (PAMPs) (Boller and

Felix, 2009) or damage-associated molecular patterns (DAMPs)

(Huffaker et al., 2006). However, there is a possibility that they

may encode functions that act together (as a protein complex) in

the host cell to suppress innate immunity (Sinha et al., 2013).

As T3Es are involved in host defence suppression used by

many plant-pathogenic bacteria and promote pathogen prolifera-

tion and dispersion, it has been suggested that the complete rep-

ertoire of T3Es is variable and may reflect the adaptation of

Xanthomonas pathovars to different hosts (Jacques et al., 2016;

Studholme et al., 2010). For example, Xcm encodes two predicted

YopJ-like C55 cysteine proteases (GI: 289670655 and GI:

289671144), which are absent in Xvv (Studholme et al., 2010). In

addition, Xcm lacks a protein (GI: 289661936) which shares 87%

amino acid sequence identity with Xanthomonas euvesticatoria

XopAF (AvrXv3) that is present in Xvv (Astua-Monge et al., 2000).

Differences in effector repertoires may determine host adaptation

(Kvitko et al., 2009; Lindeberg et al., 2009; Wei et al., 2007).

However, the function of YopJ and HopR-like proteins in Xcm or

AvrXv3 in Xvv is still unknown. The lipopolysaccharide loci that

are presumed to be important factors for virulence in phytobacte-

rial pathogens (Dow et al., 1995; Kao and Sequeira, 1991;

Kingsley et al., 1993; Titarenko et al., 1997) differ in Xcm and Xvv

(Studholme et al., 2010). These lipopolysaccharides may also act

as PAMPs recognized by plants and could trigger specific defen-

ces, such as the modification of the plant cell wall and increased
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levels of intracellular calcium (Dow et al., 2000; Meyer et al.,

2001). Apart from acting as defence suppressors, T3Es can also be

specifically recognized by plant receptors coded by resistance (R)

genes for avirulence function. The actual secretion of T3Es, stage

of pathogenesis in which they are secreted and actual contribution

to the pathogenicity and virulence on banana and enset still

remain to be determined. Similarly, the type IV pili (TFP), which

play an important role in pathogen virulence, survival and epi-

phytic fitness, differ in Xcm and Xvv (Studholme et al., 2010). A

unique 8-kb gene cluster in Xcm encodes TFP components FimT,

PilV, PilW, PilX, PilY1 and PilE, whereas a different gene cluster in

Xvv encodes homologues of TFP components FimT, PilE, PilY1,

PilW and PilV (Studholme et al., 2010). The contribution of these

effectors to the pathogenicity and host specificity of Xcm on

banana, plantain and enset remains to be determined.

The role of R genes, pathogenesis-related (PR) genes and

NPR1 in BXW development and cultivar resistance to Xcm has

been investigated recently (Ssekiwoko et al., 2015). The results

showed that Xcm deactivates the plant detection system and

related downstream reactions, thereby preventing the plants from

defending themselves against pathogen attack, leading to disease

development. Although Xcm successfully established itself in the

resistant cultivar, leading to the death of a single leaf, migration

within the resistant cultivar did not proceed to other plant tissues

(Ssekiwoko et al., 2015). Similar responses have been observed in

other Musa species artificially inoculated with Xcm, resulting in

slowed disease progression. Next-generation sequencing

approaches exploring the in planta transcriptomics of both the

host and the pathogen may provide clues on the specific genes

involved in pathogenicity and defence responses, thus assisting in

the development of resistant varieties.

GENETIC DIVERSITY OF Xcm

Several molecular markers, such as Rep-PCR (Aritua et al., 2008),

random amplification of polymorphic DNAs (RAPDs) (Odipio et al.,

2009), enterobacterial repetitive intergenic consensus-PCR (ERIC-

PCR) (Lewis-Ivey et al., 2010) and single-nucleotide polymor-

phisms (SNPs) (Wasukira et al., 2012), have been developed to

study Xcm populations. These molecular fingerprinting methods

concluded that Xcm strains are monomorphic. The SNPs, however,

revealed two major sublineages, thus suggesting more than a sin-

gle introductory event.

It has been shown that Xcm is a genetically highly monomor-

phic pathogen on perennial banana and enset crops, with no

known diversity between currently studied isolates. Studies by

Aritua et al. (2008), using Rep-PCR, revealed that Xcm strains

have identical profiles and are thus homogeneous in Uganda,

DRC, Rwanda and Ethiopia, and hence clonal. However, whole-

genome sequencing revealed 272 SNPs amongst a small collection

of 13 Xcm isolates from seven East and Central African countries

(Wasukira et al., 2012). According to Wasukira et al. (2012), Xcm

from enset and banana differ at 67 SNP positions that include

non-silent polymorphisms in several potential virulence genes.

Wasukira et al. (2012) also separated Xcm, at 86 SNP positions,

into two distinct sublineages, with isolates from Ethiopia, DRC

and Rwanda in sublineage I and isolates from Burundi, Kenya,

Tanzania and Uganda in sublineage II. As Xcm is able to infect

both banana and enset, it is not clear whether these differences

have any biological significance.

FUTURE PROSPECTS

Unlike previous investigations that identified Xcm as a monomor-

phic pathogen, the study by Wasukira et al. (2012) indicated that

Xcm falls into two sublineages. However, in that study, a limited

number of isolates was used. Thus, there is a need for comprehen-

sive population studies to better understand the patterns of

genetic variation of the pathogen over a broader range of geo-

graphical locations in the banana, plantain and enset-growing

regions, thus providing an understanding of their diversity. This

requires the use of different molecular epidemiological tools, such

as SNPs and/or multiple locus variable number tandem repeat

analysis (MLVA), to better understand the patterns of long-

distance dissemination of Xcm. There is also a need to explore

whether there are differences in the biological significance

amongst Xcm isolates from banana, plantain and enset using the

developed MLVA markers and to thoroughly investigate the

molecular bases of banana–Xcm and enset–Xcm interactions lead-

ing to disease resistance.

The management of BXW requires concerted efforts involving

several strategies, including the production of transgenic banana

plants. In order to complement ongoing efforts towards the pro-

duction of transgenic material, there is a need to screen all avail-

able germplasm for possible resistance to Xcm. The screening of

germplasm for resistance to Xcm justifies earlier efforts geared

towards genetic improvement by cross-breeding. Further analysis

of the transcriptional response of germplasm with varying reac-

tions to Xcm infection will facilitate the exploration of the regula-

tion circuits of such genes and increase our understanding of the

mechanisms of resistance to this pathogen.
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