
Review

The enemy within: phloem-limited pathogens

CLA IRE BENDIX 1 AND JENNIFER D . LEWIS 1 , 2 , *
1United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
2Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA

SUMMARY

The growing impact of phloem-limited pathogens on high-value

crops has led to a renewed interest in understanding how they

cause disease. Although these pathogens cause substantial crop

losses, many are poorly characterized. In this review, we present

examples of phloem-limited pathogens that include intracellular

bacteria with and without cell walls, and viruses. Phloem-limited

pathogens have small genomes and lack many genes required

for core metabolic processes, which is, in part, an adaptation to

the unique phloem environment. For each pathogen class, we

present multiple case studies to highlight aspects of disease

caused by phloem-limited pathogens. The pathogens presented

include Candidatus Liberibacter asiaticus (citrus greening), Arsen-

ophonus bacteria, Serratia marcescens (cucurbit yellow vine dis-

ease), Candidatus Phytoplasma asteris (Aster Yellows Witches’

Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tris-

teza virus. We focus on commonalities in the virulence strategies

of these pathogens, and aim to stimulate new discussions in the

hope that widely applicable disease management strategies can

be found.

Keywords: bacteria, insect vector, pathogen, phloem limited,

phytoplasma, spiroplasma, virus.

INTRODUCTION

Phloem-limited agricultural pathogens are spreading at an alarm-

ing rate, enhanced by warming climates and increasingly intercon-

nected agricultural systems. Current treatment methods often do

not specifically target phloem-limited pathogens, and are fre-

quently preventative rather than curative (Table S2, see Support-

ing Information). Phloem-limited pathogens include walled

intracellular bacteria, intracellular bacteria without cell walls (Mol-

licutes) and viruses (Bov�e and Garnier, 2002; Fletcher and Waya-

danda, 2002; Hogenhout et al., 2008).

Phloem-limited pathogens represent a significant research

challenge because they are difficult to detect within plants, and

infected plants exhibit variable symptoms that develop slowly.

Moreover, these pathogens have complex infection cycles involv-

ing both plant hosts and insect vectors (tritrophic interactions).

Most phloem-limited bacteria remain uncultured in vitro, meaning

that Koch’s postulates cannot be fulfilled, and the bacterial spe-

cies are designated by the preface ‘Candidatus’. Nevertheless,

many have been identified as causative disease agents, using

either processes developed for viruses or sequence-based identifi-

cation (Bos, 1981; Fredricks and Relman, 1996).

The plant response to pathogens can be divided into microbe-

associated molecular pattern (MAMP)-triggered immunity (MTI)

and effector-triggered immunity (ETI). MAMPs are slow-evolving

molecules associated with core microbial processes, for example

bacterial flagellin (Monaghan and Zipfel, 2012). Damage-

associated molecular patterns (DAMPs) are endogenous signals

that result from wounding insect damage, and can induce or

amplify immune responses (Wu et al., 2014). Both MAMPs and

DAMPs are recognized by pattern recognition receptors, which are

commonly receptor-like kinases (RLKs). Effectors are fast-evolving

molecules associated with infection processes, for example HopZ,

and are recognized by nucleotide-binding leucine-rich repeat (NB-

LRR) proteins encoded by Resistance (R) genes (Dangl et al.,

2013; Hogenhout et al., 2009; Schreiber et al., 2016). The hyper-

sensitive response (HR) is linked to ETI, and is often characterized

by localized cell death that is thought to limit pathogen spread.

MTI and ETI processes are probably interconnected, and basal dis-

ease resistance has been described as a combination of MTI and

weak ETI minus the susceptibility caused by pathogen effectors

(Bellincampi et al., 2014; Jones and Dangl, 2006; Thomma et al.,

2011). Disease resistance in plants is typically studied in non-

vascular tissues, and it is unclear whether MTI and ETI also occur

in the phloem. In addition, plants use endogenous RNA-

interference (RNAi) processes to specifically target viral patho-

gens, and we refer the reader to several excellent reviews on this

topic (Duan et al., 2012; Wang et al., 2012).

Pathogens use effector molecules to mould the host environ-

ment to suit them; they can (i) block host immune responses, (ii)

promote host processes favourable to the pathogen, and/or (iii)

reprogram host development in ways that benefit the pathogen.

As a result of their intracellular nature, phloem-limited pathogens

probably have different effector delivery methods and use effec-

tors for different purposes than the more widely studied extracel-

lular pathogens.*Correspondence: Email: jdlewis@berkeley.edu
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We first introduce the role of the phloem within the plant,

with a particular focus on phloem-localized transport and defence

processes. We also briefly review the insect vectors of phloem-

limited pathogens before moving on to discuss several well-

characterized phloem-limited pathogens from different classes.

These bacteria, Mollicutes and viruses were chosen for the extent

of their impact on agricultural systems, the breadth of the litera-

ture available or to highlight a particular aspect of disease associ-

ated with phloem-limited pathogens. Throughout, we emphasize

how pathogens interact with their hosts to promote virulence.

THE PHLOEM: TRANSPORTER OF NUTRIENTS
AND COORDINATOR OF DEFENCE

The phloem is a microaerophilic environment rich in sugars and

nutrients, and an environmental niche for plant pathogens (Fig. 1)

(Demmig-Adams et al., 2014; van Dongen et al., 2003; Fatima

and Senthil-Kumar, 2015). Transport through the phloem is direc-

tional from sugar-producing (photosynthetic) source leaves to

growing or storage sink tissues that consume sugars (De Schepper

et al., 2013; Knoblauch and Peters, 2013). Long-distance transport

through the phloem is thought to be driven by osmotically gener-

ated hydrostatic pressure (Schulz et al., 2009; Turgeon, 2010), but

the physical aspects of long-distance phloem transport remain

poorly characterized (Knoblauch and Peters, 2010).

The phloem transports both signalling and defence molecules

long distances, including hormones, RNA and proteins (van Bel

et al., 2013; Dinant and Lemoine, 2010). Phloem transport may

not be selective, and only a few molecules have been shown to

function in sink tissues (Atkins et al., 2011; Haywood et al., 2005;

Paultre et al., 2016). Many of the hormones carried by the phloem

are involved in systemic defence processes, with jasmonates and

salicylic acid being two well-studied examples (Fu and Dong,

2013; Wasternack and Hause, 2013). There are two main systemic

defence processes caused by phloem-transported signals: (i) sys-

temic acquired resistance (SAR); and (ii) systemic wound response

(SWR) (Gao et al., 2015). Multiple signals have been associated

with each of these processes, including hormones, lipid-derived

molecules and reactive oxygen species (ROS) (Gaupels and Vlot,

2012). Electrophysiological changes can occur as a result of many

triggers, including insect herbivory, and are another form of

defence signalling. These signals rapidly propagate throughout

the plant via the phloem and are linked to calcium fluxes (van Bel

et al., 2014; Hedrich et al., 2016). Calcium is also involved in other

defence processes, such as sieve pore occlusion and local defence

signalling cascades, which are not well understood at a mechanis-

tic level (van Bel et al., 2014; Furch et al., 2009; Zhang et al.,

2014).

Phloem-specific defence responses remain poorly characterized

because of the difficulty in studying phloem-specific processes

(Fig. 1) (Gaupels and Vlot, 2012; Knoblauch and Peters, 2010).

Phloem-localized proteins, such as forisomes and P proteins, are

thought to rapidly seal sieve plates after damage (Batailler et al.,

2012; Ernst et al., 2012). Forisomes are only found in legumes,

expand in size in response to increased Ca21 in injured sieve

tubes and are able to partially occlude phloem tubes in a reversi-

ble manner (Hafke et al., 2009; Knoblauch et al., 2012; Peters

et al., 2010). In-depth studies of SEOR (sieve element occlusion-

related) P proteins, however, showed no evidence that sieve tubes

were plugged or that phloem translocation was stopped (Kno-

blauch et al., 2014). The true physiological role of P proteins

therefore remains unclear, and further study is needed. Mobile

peptide signals in the phloem, such as systemin, act to propagate

defence signals and have been implicated in multiple systemic

defence processes (Gaupels and Vlot, 2012). Although the func-

tion of many of these proteins and peptides remains unclear, their

induction or presence is often used in the study of phloem

diseases.

Callose deposition at sieve plates and companion cell plasmo-

desmata (PD) is an important phloem-localized response to wound-

ing and pathogens (Hao et al., 2008; Millet et al., 2010; Zavaliev

et al., 2011). Although the reported timing of callose deposition

varies, it is considered to be a slower process than P protein accu-

mulation at sieve plates (Knoblauch and Peters, 2010; Voigt,

2014). Callose deposits are thought to limit pathogen dispersal,

and are considered to be part of MTI (Hao et al., 2008; Luna et al.,

2011). Deposits do not completely seal openings, and are impor-

tant components of plant viral defence (Brunkard et al., 2013;

Zavaliev et al., 2011). At present, it remains unclear whether cal-

lose deposition in the phloem is a component of MTI. Many studies

of phloem-localized pathogens, however, use callose deposition as

a diagnostic indication of disease (Koh et al., 2012).

Secondary plant metabolites, including glucosinolates and pyr-

rolizidine alkaloids, act to protect plants from herbivores and pests

(De Schepper et al., 2013; Savage et al., 2016). Many of these

metabolites are inducibly synthesized in response to wounding,

and glucosinolates are a particularly well-studied example of this

(Bekaert et al., 2012; Textor and Gershenzon, 2009). Some

phloem-localized pathogens target synthesis or accumulation of

secondary metabolites, because their insect vectors are suscepti-

ble to them.

Global alterations in resource distribution can be triggered

by altered source–sink relationships caused by herbivory and

infection (G�omez et al., 2010; Savage et al., 2016). These alter-

ations also lead to the accumulation of signalling molecules

and defence compounds in phloem sinks (Arnold et al., 2004;

Savage et al., 2016). One example of redistribution is the

growth response, in which infected plants increase photosyn-

thesis in healthy leaves and activate dormant meristems

(J€aremo and Palmqvist, 2001; Lebon et al., 2014). Redistribu-

tion can also be used to compartmentalize portions of the plant

Phloem-limited pathogens 239

PUBL ISHED 2016. THIS ARTICLE IS A U.S . GOVERNMENT WORK AND IS IN THE PUBL IC DOMAIN IN THE USA MOLECULAR PLANT PATHOLOGY

(2018) 19 (1 ) , 238–254



or withdraw resources from affected aerial tissues (sequester-

ing) (Appel et al., 2012; Frost and Hunter, 2008; G�omez et al.,

2010). These strategies make resources unavailable to herbi-

vores, and can allow later regrowth. There is some debate as to

whether large-scale resource reallocations represent energeti-

cally efficient defence strategies, but it is clear that pathogens

can have a significant effect on plant source–sink allocations

(Demmig-Adams et al., 2014; Huot et al., 2014).

INSECT VECTORS: GATEWAY INTO THE PHLOEM

AND ALTERNATIVE HOSTS

The insect vectors of phloem-limited pathogens feed on phloem

sap by inserting their stylets into sieve elements. This allows

pathogens to directly enter the phloem, bypassing numerous bar-

riers and defence mechanisms within the plant. Key aspects of

pathogen transmission are linked to uptake and retention by the

insect. The terms used to describe the characteristics of uptake

Fig. 1 Normal phloem transport

(a) and disruption of transport

during infection or defence (b).

Green cells are mesophyll, teal

cells are companion cells, purple

cells are phloem cells and all gaps

between cells are plasmodesmata,

except for sieve plate pores

between phloem cells. Numbered

generalized processes are shown

in the figure and described in the

processes section for

representative pathogens. The

temporal order of infection and

defence processes in the phloem

remain unclear (see text for

details).

240 C. BENDIX AND J. D. LEWIS

MOLECULAR PLANT PATHOLOGY (2018) 19 (1 ) , 238–254 PUBL ISHED 2016. TH IS ART ICLE IS A U.S . GOVERNMENT WORK AND IS IN THE PUBL IC

DOMAIN IN THE USA



and retention were developed when studying viral pathogens and

are used inconsistently in the literature when discussing non-viral,

insect-transmitted pathogens. For the purposes of this review, we

define the three main terms applied to insect-transmitted patho-

gens as follows: (i) circulative: pathogens can cross insect cell

membranes and be carried internally; (ii) persistent: long feeding

times are required for pathogen uptake and pathogens are main-

tained internally throughout the lifespan of the insect; and (iii)

propagative: pathogens replicate in the insect. Phloem-limited

pathogens, with the exception of some viruses, are often circula-

tive. All phloem-limited pathogens require long feeding times for

uptake by the insect, and are internally maintained by the insect

for at least a few days (semi-persistent) or until the end of its life

(persistent). Some phloem-limited pathogens replicate in the

insect vector (propagative), whereas others are protected from

degradation in insects, but only replicate in plants (non-propaga-

tive) (Gray et al., 2014; Ng and Zhou, 2015; Perilla-Henao and

Casteel, 2016; Rosen et al., 2015). As a result of the difficulties in

studying tritrophic interactions, transmission characteristics remain

unclear for many phloem-limited pathogens.

Plant defence responses to phloem-feeding insects include

local wound responses that block the flow of phloem sap (Will

et al., 2009, 2013). Aphids are used as model phloem-feeding

insects, and their saliva has been shown to contain effectors that

act to repress plant defence responses (Bos et al., 2010; Hogenh-

out and Bos, 2011; Pitino and Hogenhout, 2013). In resistant

plants, aphid effectors are recognized and induce local and sys-

temic defence responses consisting of a combination of MTI, ETI

and SWR. At present, it is unclear which mechanisms are more

important or how they function together in field conditions (Gior-

danengo et al., 2010; Will and van Bel, 2008; Z€ust et al., 2016).

By locally removing sugars from the phloem, phloem-feeding

insects create artificial sinks where they are feeding, which dis-

rupts carbohydrate partitioning in the plant. The presence and

strength of other sinks, either formed by the plant or created by

pathogens, can affect how much of the host’s resources can be

obtained by the phloem-feeding insect (Heard and Buchanan,

1998; Inbar et al., 1995; Larson and Whitham, 1997; Savage

et al., 2016). Disruption of normal sink–source relationships by

insect vectors can contribute to symptom development.

Insects are especially important vectors for plant viruses, and

multiple viruses are often transmitted by the same insect species

(Gray et al., 2014; Gray and Banerjee, 1999). For phloem-limited

bacteria, the insect–vector relationship and pathogen niche is a

polyphyletic trait, indicating that it has evolved independently

multiple times (Orlovskis et al., 2015; Perilla-Henao and Casteel,

2016). Many insect vectors also carry endosymbionts (Akman

Gunduz and Douglas, 2009; Łukasik et al., 2013), which provide

them with nutrients and protection, and, in some cases, are

closely related to phloem-limited pathogens. Once within the

plant, many phloem-limited bacteria are able to alter the infected

plant, such that the insect vector is attracted to it, and will move

the bacteria to a new host (Mann et al., 2012; Mas et al., 2014).

WALLED PHLOEM-LIMITED BACTERIA

Walled phloem-limited bacterial pathogens are gammaproteobac-

teria from several different taxa. The insect vector host range

appears to be the limiting factor determining which plant species

can be infected. These pathogens are primarily found in phloem

sieve tubes, but, in some species, they are also present in paren-

chyma. Phloem-limited bacterial pathogens have reduced

genomes, and have often have lost core metabolic pathways in

favour of importers to obtain products made by the plant. Interest-

ingly, these pathogenic bacteria are often closely related to endo-

symbionts. Much of the experimental work has been carried out

in non-host systems, such as Nicotiana spp. and periwinkle, which

have been found to be more tractable than the host plants of

phloem-limited bacteria (Bov�e and Garnier, 2002). We discuss

three examples of these pathogens that illustrate infection

mechanics, as well as different evolutionary paths leading to

pathogenesis by phloem-limited microbes.

Liberibacter bacteria: turning the citrus immune

system against itself

Citrus greening or Huanglongbing (HLB) is a disease that affects

all economically important citrus species, and some close citrus

relatives (Tables 1, S1, see Supporting Information). Candidatus

Liberibacter asiaticus (CLas) is the primary causative agent of HLB,

but Candidatus Liberibacter americanus (CLam) and Candidatus

Liberibacter africanus (CLaf) also cause disease in some areas

(Bov�e, 2006; da Graca et al., 2016; Haapalainen, 2014). The char-

acteristics of CLas insect transmission remain unclear; current

evidence suggests that CLas is propagative in nymphs, but

non-propagative in adults (Canale et al., 2017; Inoue et al., 2009;

Pelz-Stelinski et al., 2010).

Candidatus Liberibacter (CL) genomes are small, and have

microsyntenous orthologous regions with their plant endosym-

biont relatives Sinorhizobium meliloti, Bradyrhizobium japonicum

and Agrobacterium tumefaciens (Kuykendall et al., 2012). CLas is

only able to metabolize a limited set of sugars, and probably uses

exogenous carbon sources from phloem sap to generate energy.

CLas also appears to be adapted to the microaerophilic environ-

ment of the phloem; its genome contains multiple components

necessary for aerobic respiration (Duan et al., 2009; Wang and

Trivedi, 2013). CLas has no restriction-modification system, and

therefore contains multiple prophage regions integrated into its

genome, which are differentially expressed in different CLas hosts

(Fleites et al., 2014; Zhang et al., 2011). These prophage regions

contain peroxidase genes that improve growth in culture and act

as secreted effectors to counter host ROS, when expressed in the
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Table 1 Pathogens and diseases discussed in this review.

Pathogen Disease Host Vector References

Walled phloem-limited
bacteria

Candidatus Liberibacter asiati-
cus, Candidatus Liberibacter
americanus, Candidatus
Liberibacter africanus

Citrus greening, Huanglongb-
ing (HLB)

Citrus L. – all economically
important citrus species, as
well as close citrus relatives

Psyllids: Diaphorina citri, Trioza
eritreae

Haapalainen (2014);
Wang and Trivedi (2013)

Candidatus Phlomobacter
fragariae

Marginal chlorosis of
strawberry

Fragaria 3 ananassa Planthopper: Cixius wagneri Danet et al., (2003);
Nourrisseau et al. (1993)

Candidatus Arsenophonus
phytopathogenicus

Low-sugar syndrome (‘Basses
richesses’) of sugar beet

Beta vulgaris ssp. vulgaris Planthopper: Pentastiridius
leporinus

Bressan et al. (2012);
S�em�etey et al. (2007)

Serratia marcescens Cucurbit yellow vine disease Cucurbitaceae sp. Squash bug: Anasa tristis Bruton et al. (2003);
Rascoe et al. (2003)

Wall-less phloem-limited
bacteria

Candidatus Phytoplasma aste-
ris/Aster Yellows Witches’
Broom (AY-WB), Aster
yellows 16SrI-A subgroup

Aster Yellows (AY) Daucus carota ssp. sativus,
Allium sepa L., Lactuca
sativa L., Apium graveolens,
Asteraceae

Leafhopper: Macrosteles
quadrilineatus

Bai et al. (2006); Bertaccini
et al. (2014)

Candidatus Phytoplasma
asteris/Onion Yellows (OY),
16SrI-B subgroup

Onion Yellows (OY) Allium sepa L., Catharanthus
roseus, Asteraceae

Leafhopper: Macrosteles
striifrons

Bertaccini et al. (2014);
Miyahara et al. (1982)

Candidatus Phytoplasma vitis/
Flavescence dor�ee (FD), Elm
Yellows 16SrV-C and 16SrV-
D subgroup

Grapevine yellows: Flaves-
cence dor�ee (FD)

Vitis vinifera Leafhopper: Scaphoideus titanus Bertaccini et al. (2014)*

Candidatus Phytoplasma solani/
Bois Noir (BN), Stolbur
16SrXII-A subgroup

Grapevine Yellows: Bois Noir
(BN)

Vitis vinifera, wild hosts include
Convolvulus arvensis L.,
Urtica dioica L.

Leafhopper: Hyalesthes obsole-
tus Signoret

Bertaccini et al. (2014)†

Candidatus Phytoplasma mali/
Apple proliferation (AP),
Apple proliferation 16SrX-A
subgroup

Apple proliferation Malus domestica, Prunus
domestica, Prunus avium,
Prunus armeniaca, Corylus
spp.; wild hosts include Cyn-
odon dactylon, Convolvulus
arvensis

Psyllids: Cacopsylla costalis, C.
mali, C. melanoneura; Leaf-
hopper: Fiebierella florii

Bertaccini et al. (2014)‡

Spiroplasma kunkelii Corn stunt Zea genus: Z. maydis, Z. peren-
nis, Z. mays mexicana,
Z. diploperennis, Z. luxurians

Leafhoppers: Dalbulus maidis,
D. eliminatus, Exitianus exi-
tiosus, Graminella nigrifons,
Stirellus bicolor

Whitcomb et al. (1986)§

Spiroplasma citri Citrus stubborn; Brittle root
disease of horseradish

Citrus L., Amoracia rusticana
Brassica spp., wild hosts
include Vinca rosea, Sisym-
brium irio, Raphanus rapha-
nistrum L.

Leafhoppers: Circulifer tenellus,
C. haematoceps, Scaphyto-
pius nitridus, S. delongi

Fletcher et al. (1981);
Saglio et al. (1973)

Phloem-limited viruses
Citrus tristeza virus (CTV) Citrus tristeza, Seedling

Yellows
Citrus L. – all economically

important citrus species
Aphids: Toxoptera citricida,

Aphis gossypii, Aphis spirae-
cola, Toxoptera aurantii

Bar-Joseph et al. (1989);
Moreno et al. (2008)

Potato leafroll virus (PLRV) Potato leaf roll Solanaceae including Solanum
tuberosum spp.

Aphids: Myzus persicae Taliansky et al. (2003)¶

Squash leaf curl virus (SLCV) Squash leaf curl Cucurbitaceae, Leguminosae,
Solanaceae, Euphorbiaceae

Whitefly: Bemisia tabaci Cohen et al. (1983)**

This table is not intended to be exhaustive, and further host and vector species, as well as diseases, may be associated with these pathogens.

*CABI ISC datasheet 7642 (http://www.cabi.org/isc/datasheet/7642).
†CABI ISC datasheet 7642 (http://www.cabi.org/isc/datasheet/7642).
‡CABI ISC datasheet 6502 (http://www.cabi.org/isc/datasheet/6502).
§CABI ISC datasheet 50978 (http://www.cabi.org/isc/datasheet/50978).
¶Harrison, B.D. (1984) CMI/AAB Descriptions of Plant Viruses. Potato leafroll virus 291 (no. 36 revised) (http://www.dpvweb.net/dpv/showdpv.php?dpvno 5 291).

**Duffus, J.E. and Stenger, D.C. (1998) CMI/AAB Descriptions of Plant Viruses, Squash leaf curl virus 358 (http://www.dpvweb.net/dpv/showdpv.php?dpvno 5 358).
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non-pathogenic and culturable CLas relative Liberibacter crescens

(Jain et al., 2015). Multiple prophage regions have been observed

in CLas, CLam and Candidatus Liberibacter solanacearum, and it

is thought that these regions allow gene rearrangement in CL spe-

cies (Duan et al., 2009; Lin et al., 2011; Wulff et al., 2014).

Many of the candidate MAMPs identified in the CL genome

are similar to known MAMPs from extracellular bacterial pathoge-

nesis systems (Mott et al., 2014; Segonzac and Zipfel, 2011). On

the basis of these studies, MAMP perception is generally thought

to happen at the cell surface, but there is some evidence that CL

MAMPs are recognized (Hao et al., 2013; Kim et al., 2009). Tran-

scriptional analyses in citrus identified RLKs induced in CLas-

infected plants, suggesting that citrus host cells might traffic CLas

MAMPs to the cell surface or use an intermediate signalling mole-

cule (Aritua et al., 2013; Mafra et al., 2013). CLas encodes known

MAMPs, such as lipopolysaccharides (LPS) and flagellin (source of

flg22). Transgenic expression of the CLas flg22 peptide resulted in

callose deposition, but not cell death, making it a weaker MAMP

than the flg22 of other plant pathogens (Zou et al., 2012). There

is also a fimbrial low-molecular-weight protein (flp) pilus system,

which is probably involved in tight adherence. Interestingly, the

flp pilus is present in CLas, but not in L. crescens (Leonard et al.,

2012).

Examination of the processes required for effector delivery

showed that CLas lacks a type 3 secretion system (T3SS) (Duan

et al., 2009; Gal�an and Wolf-Watz, 2006). Instead, CLas has a

type 1 secretion system (T1SS), which is another one-step secre-

tion system important for pathogenesis (Charkowski et al., 2012;

Kanonenberg et al., 2013). Multiple ABC transporters have been

identified in CLas, and are thought to be involved in outer mem-

brane biogenesis, drug resistance and DNA excision (Li et al.,

2012). One of these is a T1SS that may secrete serralysin, which

has been shown to contribute to pathogenesis in many bacteria,

including Serratia marcescens (Ishii et al., 2014; Li et al., 2012;

Maeda and Morihara, 1995). CLas contains some components of

T2SS and T4SS; type 4 pili are used by Xylella spp. to block xylem

flow (Duan et al., 2009; De La Fuente et al., 2008). T5SS (auto-

transporters) have also been identified in CLas, and have been

shown to localize to the cell surface (Hao et al., 2013). Bacterial

effector candidates are often identified by the presence of a signal

peptide domain, which directs the proteins to the secretory path-

way. As it is unknown what delivery system CLas uses, the pool

of proteins with putative secretion signals was computationally

screened for potential effector candidates; one candidate was

shown to cause cell death in Nicotiana benthamiana (Pitino et al.,

2016).

HLB infection primarily affects source–sink relationships, hor-

mone pathways and nutrient distribution within plants, which are

all processes for which a functional phloem is essential (Martinelli

et al., 2012; Zhao et al., 2013). There are no known resistant

citrus varieties or scion–rootstock combinations, although some

are more susceptible than others (Fan et al., 2013; Folimonova

et al., 2009). Some tested citrus relatives are resistant to HLB, but

it remains unclear whether this is a result of plant processes or

non-colonization by HLB vectors (Ramadugu et al., 2016).

Sieve tube occlusion appears to be a primary means of defence

against HLB. Blocked sieve elements are thought to kill CLas cells

(Trivedi et al., 2009), but this defence mechanism could also be

the cause of the disrupted photoassimilate movement seen in

CLas-infected plants (Fan et al., 2013; Kim et al., 2009; Koh et al.,

2012). The P protein PP2 is induced by HLB, and callose deposi-

tion reduces sieve pore size in infected plants (Kim et al., 2009;

Koh et al., 2012). Phloem transport is less affected in CLas-toler-

ant citrus varieties, even though susceptible and tolerant varieties

have similar signs of HLB infection and defence responses (Fan

et al., 2013). Transcriptome profiling shows increased expression

levels of genes involved in callose deposition and cell wall break-

down in susceptible varieties, but tolerant varieties have increased

expression levels of NBS-LRR, pathogenesis-related (PR) and RLK

genes (Mafra et al., 2013; Wang et al., 2016). These findings

could indicate that susceptible varieties establish callose defences

too slowly to prevent pathogen spread, or that ETI is activated

more rapidly in tolerant varieties. Induced defence processes in

citrus do not appear to be able to restrict HLB spread throughout

the plant, possibly because citrus is unable to effectively employ

both MTI and ETI against CLas (Canales et al., 2016; Kim et al.,

2009; Nwugo et al., 2013; Zou et al., 2012). Another hypothesis is

suggested by the early presence of CLas in roots; this colonization

may lead to a reservoir of pathogens that can no longer be con-

trolled by plant defence processes (Johnson et al., 2014).

Multiple approaches have been attempted in order to grow

CLas cells in the laboratory. For example, the addition of citrus

juice, co-cultivation with insect feeder cells and co-cultivation with

Actinobacteria from citrus have all been reported to improve CLas

cultivation success (Davis et al., 2008; Fontaine-Bodin et al.,

2011; Parker et al., 2014). One group developed Liber A agar

medium, which includes potassium phosphate, citrus vein extract

(CVE) and NADP. The CLas and CLam colonies grown on Liber A

were inoculated into young citrus plants, and caused HLB-like

symptoms (Sechler et al., 2009). Although promising, this method

has many precise requirements that are not yet understood well

enough to enable large-scale culture of CL species.

Arsenophonus bacteria: from insect endosymbionts to

plant pathogens

Marginal chlorosis of strawberry and low-sugar syndrome of sugar

beet are both caused by gammaproteobacteria in the Arsenopho-

nus clade (Bressan, 2014; S�em�etey et al., 2007) (Tables 1, S1).

The disease-causing agents are Candidatus Phlomobacter fragar-

iae (CPhfr, marginal chlorosis) and Candidatus Arsenophonus
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phytopathogenicus (CArph, low-sugar syndrome), both of which

are transmitted by ciixid planthoppers (Bressan et al., 2009; Danet

et al., 2003; Zreik et al., 1998). CArph has also been associated

with strawberry marginal chlorosis, and can be transmitted to

sugar beet by the CPhfr insect vector. Both marginal chlorosis of

strawberry and low-sugar syndrome of sugar beet can also be

caused by stolbur phytoplasmas. Co-infection by CPhfr or CArph

and stolbur phytoplasmas has rarely been observed. It remains

unclear what role these phytoplasmas play in natural infection

systems, and whether they contribute host susceptibility to CPhfr

or CArph (Danet et al., 2003; S�em�etey et al., 2007).

Both CArph and CPhfr have low genetic diversity, indicating

that they are recently emerged plant pathogens (Salar et al.,

2010). Other bacteria in the Arsenophonus clade are facultative or

secondary insect endosymbionts, which are thought to help

insects resist parasites and withstand heat stress (Montllor et al.,

2002; Oliver et al., 2003). CArph and CPhfr appear to have inde-

pendently evolved the ability to infect plants (Bressan et al., 2012;

S�em�etey et al., 2007). The evolution of insect-associated bacteria

to insect-vectored plant pathogens is thought to be one way in

which phloem-limited pathogens arise (insect-first evolution)

(Nadarasah and Stavrinides, 2011).

Serratia marcescens: from generalist to specialist

Cucurbit yellow vine disease (CYVD) affects all cucurbits (Tables

1, S1), and is caused by the gammaproteobacterium Serratia

marcescens, a generalist bacterium identified in environmental

samples and as a pathogen of humans and insects (Mahlen,

2011). The causative agents, CYVD-causing strains of S. marces-

cens (CCS), are unable to use the same substrates as other S. mar-

cescens strains, indicating that these strains are distinct and

probably adapted to the phloem environment (Rascoe et al.,

2003). CCS is vectored by the squash bug Anasa tristis, which

feeds on and damages multiple plant organs, including leaves,

xylem and phloem (Beard, 1940; Bonjour et al., 1991; Neal,

1993). These generalist feeding habits and large-scale damage to

plant organs distinguish A. tristis from most phloem-localized

pathogen vectors and, indeed, A. tristis was not known to vector

plant pathogens before CCS was identified (Bruton et al., 2003). It

is unclear where in the vector CCS is maintained, and research

has shown CCS can overwinter in dormant A. tristis (Pair et al.,

2004; Purcell and Finlay, 1979; Wayadande et al., 2005). Other S.

marcescens strains are also plant pathogens, but are not insect

vectored or phloem limited (Gillis et al., 2014; Ovcharenko et al.,

2010; Wang et al., 2014). These strains, and the generalist nature

of A. tristis, raise the intriguing possibility that CCS is an example

in which a pathogen first infected plants before evolving to associ-

ate with an insect vector and becoming phloem limited (plant-first

evolution) (Nadarasah and Stavrinides, 2011).

Genomic analysis of CCS revealed multiple genes contributing

to surface structures that may be involved in pathogenesis. These

include rhamnose synthesis pathway genes, which may play a

role in adhesion, phosphatase AmsI, which is probably involved in

producing extracellular polysaccharide, and surA isomerase, which

is important for Salmonella enterica infection processes (Petersen

and Tisa, 2013; Zhang et al., 2005). In addition, CCS has type 1

fimbrial pilus genes, which appear to be part of a horizontally

transferred genome island (Zhang et al., 2005). Secreted pro-

teases, such as serralysin, have been implicated in S. marcescens

virulence, but have not been characterized in CCS (Ishii et al.,

2014; Petersen and Tisa, 2013). Similarly, biofilm formation using

fimbrial genes and quorum sensing has been shown to be impor-

tant for the pathogenesis of other S. marcescens strains in non-

plant hosts (Labbate et al., 2007; Shanks et al., 2007). It is possi-

ble that CCS uses similar processes to adhere to phloem cells and

block phloem sap flow.

Mobile genetic elements probably contributed to the acquisi-

tion of the aforementioned genes, a hypothesis supported by the

over-representation of a transposase in CCS (Zhang et al., 2005).

In addition, an onion-infecting S. marcescens strain contains a

potentially pathogenesis-promoting mobile genetic element

(Ovcharenko et al., 2010). These findings suggest that the versatil-

ity of S. marcescens strains is a result of mobile genetic elements,

and that CCS could have specialized in this fashion.

WALL-LESS PHLOEM-LIMITED BACTERIA:
CANDIDATUS PHYTOPLASMA AND
SPIROPLASMA SPECIES

Mollicutes are a class of obligate parasitic bacteria distinguished

from other bacteria by their lack of cell walls and small size; they

have small genomes and limited metabolic capacities (Bai et al.,

2004b; Razin et al., 1998; Woese, 1987). Within the Mollicutes,

there are two major clades, referred to as the AAA clade and the

SEM clade. Mollicutes live in and on a variety of animal and plant

hosts, and many are pathogenic; for example, the human patho-

gen Mycoplasma pneumonia is a Mollicute. Many Mollicutes have

a disproportionate number of repetitive elements for their genome

size. These are used to vary cell surface antigens and promote

pathogenesis in animal hosts (Bai et al., 2006; Rocha and Blan-

chard, 2002). There are two groups of insect-transmitted plant-

pathogenic Mollicutes: phytoplasmas and spiroplasmas (Ammar

et al., 2004; Gasparich, 2010; Orlovskis et al., 2015). Phytoplas-

mas are a monophyletic genus (Candidatus Phytoplasma, CPh) in

the AAA clade, whereas spiroplasmas are a genus in the SEM

clade (Bai et al., 2004b).

CPh species cause disease in hundreds of economically impor-

tant plants, have many different shapes and are difficult to culture

in laboratory settings (Bai et al., 2006; Lee et al., 2000). They can

be transmitted by multiple insect species within the leafhopper,
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planthopper and psyllid hemipteran insect groups (Garnier et al.,

2001; Orlovskis et al., 2015). CPh species are grouped by their

16S rDNA sequence, which remains the sole identifier for many

known phytoplasmal pathogens (Bertaccini et al., 2014). CPh

pathogens probably use a phytoplasma-specific pathway to gener-

ate energy that could play a role in pathogenesis (Bai et al., 2006;

Kube et al., 2012; Saigo et al., 2014). They are thought to adhere

to cell surfaces, like other mycoplasmas, and may move through

the phloem passively, like viruses (Christensen et al., 2005; Lefol

et al., 1993; Razin, 1999). Adhesion may involve actin, and

appears to result in the rearrangement of ultrastructures within

the sieve elements (Buxa et al., 2015; Musetti et al., 2016). The

CPh outer membrane is largely composed of immunodominant

membrane proteins (IDPs) of largely unknown function (Kakizawa

et al., 2006), although the IDP antigenic membrane protein (Amp)

appears to be involved in uptake and internalization by the insect

vector (Rashidi et al., 2015). Uniquely, CPh plant pathogens are

able to manipulate plant development to cause distinctive pheno-

types, such as shoot proliferation and flower virescence. They do

this via secreted effector proteins that are able to leave the

phloem and target conserved plant transcription factor proteins

(Bai et al., 2009; Hoshi et al., 2009; MacLean et al., 2011).

Spiroplasma species are one of the most widespread insect

endosymbionts (Shokal et al., 2016). There are over 50 spiro-

plasma species, all of which have the characteristic spiral shape

and are motile (Bov�e, 1997; Zhao et al., 2004). Endosymbiotic spi-

roplasmas alter insect immune responses, affect pathogen and

endosymbiont titres and selectively kill male insects (Hayashi

et al., 2016; Herren and Lemaitre, 2011; Shokal et al., 2016).

There are only three known phytopathogenic spiroplasmas, all of

which are vectored by leafhoppers (Davis et al., 1979; Orlovskis

et al., 2015). Spiroplasmal genomes are less reduced than phyto-

plasmal genomes: they have more biosynthesis, transcriptional

regulation, cell envelope and DNA-binding genes (Bai and

Hogenhout, 2002). Although their genomes are less reduced, spi-

roplasmas are auxotrophs for sterols, fatty acids and phospholi-

pids, and use a phosphotransferase system to import sugars (Bai

et al., 2006; Razin et al., 1998).

We discuss two Mollicutes: a CPh species with well-

characterized effectors, and one spiroplasma that remains an

agricultural problem.

Candidatus Phytoplasma asteris strains: pathogens

that mould their hosts

The phytoplasma strain Aster Yellows Witches’ Broom (AY-WB) is

a member of the 16SrI-A subgroup of Candidatus Phytoplasma

asteris (CPhas) (Tables 1, S1) (Bai et al., 2006; Lee et al., 2000;

Zhang et al., 2004). Within CPhas, genome sizes vary widely, indi-

cating a high degree of genome plasticity. AY-WB has a small

genome without many metabolic processes, but with high

repetitive DNA content (Bai et al., 2006). These repetitive regions

contain membrane-targeted sequences involved in membrane-

linked processes, and are probably used to vary the AY-WB cell

surface in different hosts and environments (Bai et al., 2006). AY-

WB has been shown to lengthen the lifespan and improve the fer-

tility of its leafhopper vector (Beanland et al., 2000; Murral et al.,

1996).

AY-WB secretes effectors, such as SAP11 and SAP54, into

plant tissues beyond the phloem. SAP11 has a nuclear localization

signal, and is found in the nuclei of non-phloem cells (Bai et al.,

2009; Lu et al., 2014). In AY-WB-infected Arabidopsis thaliana,

SAP11 binds to and destabilizes multiple class II TCP transcription

factors, which affects the jasmonic acid (JA) synthesis pathway,

weakening plant defences against the insect vector (Sugio et al.,

2011, 2014). Destabilizing this set of transcription factors also

affects leaf morphogenesis, causing some of the phytoplasma-

induced developmental phenotypes (Lu et al., 2014; Sugio et al.,

2011). SAP11 also appears to induce phosphate starvation path-

ways (Lu et al., 2014).

SAP54 is the AY-WB effector responsible for the altered flower

morphology (virescence and phyllody) seen in infected Arabidopsis

(MacLean et al., 2011). It degrades MADS-domain transcription

factor family proteins, such as APETALA1, which are essential flo-

ral development regulators (Sugio et al., 2014). Plants with these

leaf-flowers are more attractive to the AY-WB leafhopper vector,

and improve phytoplasmal transmission (MacLean et al., 2014;

Orlovskis and Hogenhout, 2016).

In plants infected by the CPhas strain Onion Yellows (OY),

TENGU protein was found in apical buds, indicating that it is

transported out of the phloem, like the SAPs. It acts to down-

regulate auxin-responsive genes, including AUXIN RESPONSE

FACTOR 6 (ARF6) and ARF8, which regulate floral development

and are linked to JA (Hoshi et al., 2009). This indicates that

TENGU could regulate both auxin and JA, as well as play a role in

the disease-related altered growth and floral development pheno-

types (Minato et al., 2014). Phytoplasma-infected plants have

been termed ‘zombie plants’, because extensive developmental

and morphological changes render them sterile (MacLean et al.,

2014).

A recent study used multiple complex media to grow phyto-

plasma strains, including a CPhas strain, from infected grapevine

tissue. The strains were found to have highly specific growth

requirements, including microaerophilic conditions, high salt con-

centration and a sterol-binding antifungal (Contaldo et al., 2016).

As with the methods used to culture CL species, the growth

requirements for CPh species are not yet well understood. Further

study on phloem-limited bacteria and Mollicutes might benefit

from a simulated phloem environment, an approach which has

been proven to be successful with uncultivatable environmental

bacteria (Kaeberlein et al., 2002; Zengler et al., 2002).The ability
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to culture these microbes would facilitate advances in genomics,

species classification and molecular manipulation of these

pathogens.

Spiroplasma kunkelii: a Mollicute with high virulence

and low genetic diversity

Spiroplasma kunkelii causes corn stunt disease, and is transmitted

by leafhopper insects (Tables 1, S1) (Carloni et al., 2011; Davis

et al., 1972; Whitcomb et al., 1986). Extended maize growth peri-

ods and the ability of these vectors to overwinter mean that the

pathogen can remain present throughout the year (Hruska et al.,

1996; Summers et al., 2004). Maize varieties resistant to corn

stunt have been bred, but this resistance is short lived. It is

unclear why maize resistance is quickly overcome, as genomic

analysis has shown that S. kunkelii isolates have low genetic

diversity (Carpane et al., 2013). Corn stunt is linked to magnesium

metabolism: the symptoms are similar to magnesium deficiency,

magnesium is involved in S. kunkelii localization and infected

plants seem to be unable to process high magnesium concentra-

tions (Nome et al., 2009).

Two S. kunkelii genes probably involved in insect transmission

or plant pathogenicity were identified in a comparative study

using AY-WB: (i) PNPase, a virulence factor regulator in S. enter-

ica; and (ii) CBF, a plasmid replication enhancer (Bai et al.,

2004b). The PNPase could be involved in the alteration of gene

expression depending on the host environment, whereas CBF

could regulate plasmids that may contain virulence factors (Osh-

ima et al., 2002; Razin et al., 1998). One such plasmid (pSKU146)

in S. kunkelii carries an adhesin (SARP1), parts of a T4SS and may

be involved in genetic exchange (Davis et al., 2005). In Spiro-

plasma citri, SARP1 acts to attach the pathogen to the insect gut,

and contains a conserved Mollicute adhesion motif important in

CPhas strain adhesion (Berg et al., 2001; Neriya et al., 2014). Spi-

roplasma citri probably uses membrane proteins to adhere to

insect cells, and has undergone large-scale genome rearrange-

ment that allows it to be transmissible (Fletcher et al., 1998). Four

traE genes are present in S. kunkelii, and their protein sequences

are highly similar to the VirB4 domain involved in T4SS pathways

(Bai et al., 2004a; Censini et al., 1996; Zatyka and Thomas, 1998).

Spiroplasma kunkelii also has fimbriae and pili, and may have

morphologically distinct tips that could also be involved in orienta-

tion and attachment to host surfaces (Ammar et al., 2004; €Ozbek

et al., 2003). Furthermore, analysis of the S. kunkelii genome

sequence found multiple ABC systems, which contribute to viru-

lence in bacterial and fungal pathosystems (Zhao et al., 2004).

PHLOEM-LIMITED VIRUSES

Viruses use the vasculature to systematically infect the plant, and

PD to move between cells. Viral movement is promoted by move-

ment proteins (MPs) and coat proteins (CPs) (Hipper et al., 2013).

MPs have several functions within the host plant, including the

modification of PD to permit viral genomes and proteins to move

between cells. Viruses can move as encapsidated particles or ribo-

nucleoprotein complexes, and many viruses move in multiple

forms (Oparka and Cruz, 2000; Solovyev et al., 2012; Verchot-

Lubicz et al., 2010). Although viral replication is tightly linked with

movement of the virus (Heinlein, 2015), we focus on viral move-

ment because it appears to play a more important role in restrict-

ing viruses to the phloem.

Viral cell-to-cell movement through the PD allows the virus to

move from the initial site of infection to adjacent cells, and then

eventually to the vasculature (long distance) (Heinlein, 2015;

Hipper et al., 2013; Oparka and Cruz, 2000). Long-distance move-

ment through the phloem follows the normal source-to-sink

movement of sugars, and allows viruses to be trafficked in all

directions from the point of entry. Virus loading appears to be

possible in all vein classes, whereas virus unloading seems to be

limited to major veins in sink tissues (Hipper et al., 2013). Host

factors can facilitate or block viral movement, but the mechanism

of these processes is not well understood (Ueki and Citovsky,

2007; Wang, 2015). The difficulty of studying phloem-specific

processes has meant that long-distance viral movement remains

poorly characterized. Indeed, many aspects of viral movement are

not fully elucidated, and much of what is known only applies to

specific systems.

Viral defence processes in plants include RNAi and HR, both of

which limit viral movement. Many viral proteins first thought to

be involved in systemic spread, including the potyviral HC-Pro,

are, in fact, RNAi suppressors (Taliansky et al., 2008; Ueki and Cit-

ovsky, 2007). These suppressors have also been shown to disrupt

plant signalling systems, perhaps preventing the activation of sys-

temic viral defences (Alvarado and Scholthof, 2012; Melnyk et al.,

2011).

Phloem-restricted viruses are able to move long distances, but

appear to be unable to leave the vasculature and to move cell to

cell. The mechanism of this limitation remains unclear, although it

is probably a result of a combination of host and viral factors.

Plants can be fully resistant to some phloem-limited viruses, indi-

cating that these pathogens are more readily perceived or con-

trolled than other phloem-limited pathogens.

We discuss Potato leafroll virus, which has been developed as

a model system to study the movement processes of phloem-

restricted viruses. We also discuss Citrus tristeza virus, a phloem-

limited pathogen that citrus is able to resist.

Potato leafroll virus: limiting its own movement

Potato leafroll virus (PLRV) is a positive-sense RNA Polerovirus

(family Luteoviridae) that forms icosahedral virids (Tables 1, S1).

Luteovirids are all transmitted by aphids and retained in the

phloem. They can move locally and long distance in the phloem,
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but not between non-vascular cells or from non-vascular cells into

vascular cells (Taliansky et al., 2003).

PLRV encodes a 17-kDa MP (MP17/P4) that can localize to PD

in some cell types, suggesting that it assists in the movement of

PLRV through PD (Link et al., 2011; Vogel et al., 2007). Without

MP17, PLRV is either unable to systemically infect or has severely

reduced systemic infection ability, confirming that MP17 contrib-

utes to viral movement (Lee et al., 2002). The constitutive expres-

sion of MP17 at low levels in Arabidopsis increases sucrose efflux

from source leaves, as well as overall biomass production, but the

expression of MP17 at high levels impairs sucrose efflux, leading

to high accumulation in source leaves and reduced vegetative

growth (Hofius et al., 2001; Kronberg et al., 2007). These results

indicate that MP17 interferes with PD transport, although its

effects could be caused by defence processes in response to the

presence of MP17 at PD rather than a direct effect on the source–

sink system (Rinne et al., 2005).

Two hypotheses for the phloem limitation of viruses have

been proposed: (i) host silencing machinery outside the vascula-

ture prevents the virus from leaving; or (ii) the virus does not

encode MPs that allow the virus to leave. The first hypothesis was

tested using plants expressing the strong RNAi suppressor HC-

Pro. In these plants, the number of PLRV-infected cells increases,

but PLRV is still physically restricted to the phloem (Savenkov and

Valkonen, 2001). This suggests that phloem limitation of PLRV is

not caused by host silencing. The second hypothesis is supported

by co-infection experiments with PLRV and the potyvirus Potato

virus A (PVA), which is not restricted to the vasculature. Co-

infection allows PLRV to exit the phloem and infect all leaf types,

indicating that MPs in PVA can complement the movement defi-

ciencies of PLRV. Moreover, these findings indicate that certain

co-infections can remove phloem limitation, a process not seen

with other phloem-limited pathogens (Savenkov and Valkonen,

2001).

Recent work has conclusively established that the phloem-

limiting factor in PLRV is a result of the features of another PLRV

MP. PLRV is able to move through the phloem without MP17,

instead using its CP and a translational readthrough product (RTP

or P3/P5) (Kaplan et al., 2007; Peter et al., 2008). The RTP pro-

duces a protein fusion of CP with ORF5, one portion of which is

necessary for aphid transmission, and another portion of which is

necessary for phloem retention (DeBlasio et al., 2015; Peter et al.,

2009). Deletion or mutation of key sections of the RTP portion

required for phloem retention allows PLRV to exit the phloem and

establish infection in mesophyll tissues (Chavez et al., 2012; Kelley

et al., 2009; Peter et al., 2009). Mutated RTPs in the related luteo-

viruses Beet western yellows virus (BWYV) and Barley yellow

dwarf virus (BYDV-PAV) have reduced viral movement, reduced

systemic infection efficiency and accumulate to lower titres (Brault

et al., 1995; Chay et al., 1996; Mutterer et al., 1999). RTP has two

forms: (i) a non-incorporated form, which seems to restrict PLRV

to the phloem; and (ii) an incorporated form, which replaces CP

subunits, protrudes from virions and appears to be necessary for

movement into mature tissues (DeBlasio et al., 2015; Peter et al.,

2009).

The pathogenic processes of PLRV are less well characterized.

Comparison of wild-type and mutant PLRV strains in N. benthami-

ana plants did not show altered host protein stability or expres-

sion level, indicating that PLRV proteins do not significantly

modulate host protein processes during infection (DeBlasio et al.,

2015). Multiple wild potato relatives have PLRV resistance loci,

for example Solanum tuberosum (Kelley et al., 2009; Marczewski

et al., 2004; Novy et al., 2007). In Solanum tuberosum ssp. andi-

gena, resistance was mapped to the upper arm of chromosome V,

which contains a known cluster of disease resistance genes

(Vel�asquez et al., 2007). This resistance locus was subsequently

identified in other potato varieties (Mihovilovich et al., 2014).

Citrus tristeza virus: recognized by the citrus immune

system

Citrus tristeza virus (CTV) is a filamentous, single-stranded, posi-

tive-sense RNA virus (Moreno et al., 2008) (Tables 1, S1). CTV

encodes 12 open reading frames (ORFs) with poorly defined func-

tions. Genetic approaches deleting one or several of these ORFs

have demonstrated that full CTV virulence requires proteins for

replication, movement and suppression of the host RNAi machin-

ery (Albiach-Marti, 2013; P�erez-Clemente et al., 2015). The gene

p33 may be an MP, and is required for systemic infection in some

citrus species, together with p18 and p13 (Bak and Folimonova,

2015). These three genes appear to be unique to CTV, and may

have played a role in increasing the CTV host range (Bak and Foli-

monova, 2015; Tatineni et al., 2008). The p33 protein is also

required for superinfection exclusion (SIE), in which an established

viral infection interferes with later infection by closely related

viruses (Folimonova, 2012). This process leads to complex spatial

and temporal viral infection patterns, which could be important in

field infection systems. The p33 protein is involved in systemic

SIE, but not cellular SIE (Bergua et al., 2014), and this distinction

between cellular and systemic SIE has been seen with human

immunodeficiency virus (HIV) in animals (Nethe et al., 2005).

These results provide evidence that SIE is a virus-controlled pro-

cess, and could be used in the development of viral management

strategies. Other genes potentially involved in CTV movement

include p6, p20 and the protein components of CTV particle coats

(Dolja et al., 2006; Tatineni et al., 2008).

CTV pathogenesis varies depending on the genotype of the

host (Dawson et al., 2013). Some citrus species are fully resistant

to CTV, unlike CLas, and may achieve resistance by specifically

inhibiting viral movement (Albiach-Marti et al., 2004). One region

conferring resistance has been characterized, and found to contain
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R genes and many retrotransposons, indicating that CTV resist-

ance could function using canonical ETI processes (Bernet et al.,

2004; Rai, 2006). Citrus resistance to CTV has been shown to

involve both salicylic acid signalling and RNAi, both of which are

suppressed by the CTV genes p20 and p23 (G�omez-Mu~noz et al.,

2016).

CONCLUSIONS/EMERGING THEMES

The unique environment they inhabit shapes phloem-limited

pathogens. Within the phloem, pathogens have access to the

entirety of the plant, including its metabolic output and its means

of limiting damage. Insect vectors are key to the access of this

central hub, because they directly transmit phloem-limited patho-

gens into it. Pathogen, plant and vector form a complex tritrophic

system that is difficult to study in its entirety.

Although each phloem-limited pathogen is unique, the symp-

toms caused by phloem-limited pathogens are similar (Table S1).

As the diseases caused by phloem-limited pathogens progress,

characteristic symptoms, such as chlorotic leaves and small, bitter

fruits, become evident. In most cases, the causal links between

the virulence strategies of phloem-limited pathogens and disease

symptoms are not well understood.

Plant hosts of phloem-limited pathogens can become aware of

their presence from the moment the insect vector begins to feed.

Insect saliva and wounding can result in phloem blocks and SWR,

which the insect will attempt to counter with its own effectors.

Phloem-limited pathogens can also elicit plant defence responses,

including MTI, ETI and SAR. Although the phloem is the conduit

for many defence-related compounds, it is unclear how pathogen

recognition within the phloem would occur; some studies indicate

that Ca21 signalling could play an important role. Similarly, intra-

cellular pathogen recognition remains poorly characterized in

plants. It is possible that phloem-localized pathogens are able to

evade most plant defences merely by being delivered intracellu-

larly. Some of these aspects could be the cause of the slow pro-

gression of disease for most phloem-limited pathogens.

The interaction between phytoplasmas and host defences is of

particular interest, because multiple plant species are able to

spontaneously recover from phytoplasmal infection. The phyto-

plasma bois noir (BN) in grapevine (Tables 1, S1) establishes a

carbohydrate sink at its infection site, potentially by co-regulating

sucrose transport and cleavage (Santi et al., 2013a). Spontane-

ously recovered grapevines appear to have restored carbohydrate

allocation and increased capacity for both sucrose transport and

defence signalling (Santi et al., 2013b). A system using Flaves-

cence dor�ee phytoplasma (FD) in beans (Vicia faba) showed that

phytoplasmas trigger Ca21 signalling, which, in turn, leads to

sieve tube occlusion via forisomes (Musetti et al., 2013). When

apple trees spontaneously recover from apple proliferation (Tables

1, S1), symptoms are no longer seen in the crown, but the

pathogen is still present in the roots. These recovered trees have

higher levels of Ca21 and H2O2 in the phloem, as well as

increased callose and phloem protein accumulation, which could

inhibit re-colonization of the aerial tissues (Musetti et al., 2004,

2010). These studies indicate that spontaneous recovery involves

both the re-establishment of the sink–source system and the use

of plant defence mechanisms effectively.

In field settings, many phloem-limited pathogens can co-infect

plants, which can produce complex infection dynamics and result

in genetic exchange. Genomic analysis of phloem-limited patho-

gens consistently shows hallmarks of gene transfer and rearrange-

ment, which are facilitated by repetitive regions and plasmids (Bai

et al., 2006; Saillard et al., 2008). Phytoplasmas and spiroplasmas

can co-infect both insect and plant hosts, and it has been sug-

gested that they horizontally transfer virulence genes (Bai et al.,

2004b; Davis et al., 2005). In viruses, genetic exchange can lead

to the production of infectious viral reassortants, such as in the

case of the geminiviruses Cucurbit leaf curl virus and Squash leaf

curl virus (Brown et al., 2002). Phloem-limited pathogens can also

interact with non-pathogenic species in their insect vectors; for

example, CL species have been shown to acquire genes from

Profftella endosymbionts in the psyllid Diaphorina citri (Nakabachi

et al., 2013). Genetic exchange has the potential to alter infectiv-

ity, increase host and vector range, and could be an important

driver of pathogenesis for phloem-limited pathogens.

Continually improving techniques and analyses have given us

more information on these pathogens than ever before. By focus-

ing on commonalities between these pathogens, and on the

unique environment that these pathogens share, we will be able

to make more progress in the management of these diseases. For

example, the development of methods to maintain high rates of

phloem transport in infected plants, by disrupting host defences

that have evolved to restrict phloem transport around infections,

could help to combat many of the phloem-limited pathogens

described in this review. Another useful approach would be to

develop tractable systems for each of these pathogen categories.

Although some progress on this has been made, well-understood

models would enable more rapid progress to be made with newly

emergent pathogens. With these diseases becoming more preva-

lent worldwide, disease containment focusing on population man-

agement is no longer sufficient. New research approaches across

traditional boundaries will be needed to develop disease treat-

ments for the modern era.
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Table S2 Management strategies for the diseases discussed in

this review.
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