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SUMMARY

Genome-scale metabolic models (GEMs) provide a functional

view of the complex network of biochemical reactions in the liv-

ing cell. Initially mainly applied to reconstruct the metabolism of

model organisms, the availability of increasingly sophisticated

reconstruction methods and more extensive biochemical data-

bases now make it possible to reconstruct GEMs for less well-

characterized organisms, and have the potential to unravel the

metabolism in pathogen–host systems. Here, we present a GEM

for the oomycete plant pathogen Phytophthora infestans as a

first step towards an integrative model with its host. We predict

the biochemical reactions in different cellular compartments and

investigate the gene–protein–reaction associations in this model

to obtain an impression of the biochemical capabilities of

P. infestans. Furthermore, we generate life stage-specific models

to place the transcriptomic changes of the genes encoding meta-

bolic enzymes into a functional context. In sporangia and zoo-

spores, there is an overall down-regulation, most strikingly

reflected in the fatty acid biosynthesis pathway. To investigate

the robustness of the GEM, we simulate gene deletions to predict

which enzymes are essential for in vitro growth. This model is an

essential first step towards an understanding of P. infestans and

its interactions with plants as a system, which will help to formu-

late new hypotheses on infection mechanisms and disease

prevention.
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INTRODUCTION

The growth and functioning of any living cell are governed by a

complex interconnected set of biochemical reactions, comprehen-

sively referred to as its metabolism (Nielsen, 2017). It is essential

for cells to consume and break down nutrients taken from the

environment, and to use the resulting basic building blocks to

construct the molecules needed for life (nucleic acids, amino acids,

lipids, etc.) and for survival (secondary metabolites). However, the

many molecules in this system and the many parameters that gov-

ern the biochemical reactions make metabolism difficult to study.

Systems biology was introduced as a method to study a biological

system as a whole by capturing its behaviour in a mathematical

abstraction, i.e. a model (Ideker et al., 2001). A model can provide

insights into the response of a biological system to certain pertur-

bations or stimuli (Bordbar et al., 2014). A widely studied class of

models is that of genome-scale metabolic models (GEMs), which

simulate and predict the metabolic behaviour of a cell (Lewis

et al., 2012), such as the nutrients it can assimilate and the mole-

cules it can synthesize.

The foundation of a GEM is the set of biochemical reactions

that may occur in a cell, often catalysed by enzymes. Hence, the

identification of enzyme encoding genes in the genome of an

organism can help to reconstruct an overview of its biochemical

capabilities (O’Brien et al., 2015; Yilmaz and Walhout, 2016). In a

metabolic model, every reaction is considered as a conversion of

substrate metabolites into product metabolites that takes place at

a specific rate. The stoichiometry represents the balance of metab-

olites within the reaction. In steady state, i.e. a situation in which

the net metabolite concentrations do not change, the reaction

rates are called fluxes. A class of methods called constraint-based

modelling can be used to simulate the distribution of these fluxes

in certain conditions (Orth et al., 2010). A well-known constraint-

based method is flux balance analysis (FBA), which calculates the

optimal set of flux values for the entire GEM to attain a specific

metabolic objective. Typically, this metabolic objective is the maxi-

mization of biomass production, a synonym for growth, but can

also entail different objectives, for instance, the minimization of

energy consumption or redox potential (Garc�ıa S�anchez and Torres

S�aez, 2014).

To date, several semi-automated GEM reconstruction methods

and protocols have been proposed (Agren et al., 2013; Karp et al.,

2009; Schellenberger et al., 2011; Thiele and Palsson, 2010; Thiele

et al., 2014), and the development of central databases for meta-

bolic pathways and models has made biochemical information

widely available (Caspi et al., 2014; Kanehisa et al., 2015; King

et al., 2016). Although, initially, GEM reconstruction was mainly

limited to microbes (prokaryotes and simple eukaryotes), the
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available resources now allow for the reconstruction of GEMs

for complex organisms such as mammals and higher plants

(Dharmawardhana et al., 2013; Thiele et al., 2013; Yuan et al.,

2016). Such models have also already been applied to understand

the metabolic interactions between pathogens and hosts (Duan

et al., 2013; Huthmacher et al., 2010; Peyraud et al., 2016). This

can provide new hypotheses about a pathogen’s infection strategy

and may suggest novel control targets (Chavali et al., 2011;

Sharma et al., 2017).

Phytophthora infestans is the causal agent of the devastating

disease late blight on tomato and potato, posing an important

threat to global food production. It belongs to the oomycetes, a

class in the eukaryotic Stramenopile lineage that comprises many

plant and animal pathogens. Phytophthora infestans is considered

to be one of the model species for oomycetes (Haas et al., 2009).

In the asexual life cycle of P. infestans, different stages can be dis-

tinguished (Judelson, 2017). When the mycelium starts to sporu-

late, it forms sporangia that are dispersed by wind and water.

Sporangia either germinate directly, starting new infections, or

develop into zoosporangia that release zoospores. The latter

encyst on plant contact and germinate, thereby forming an

appressorium at the tip, from which a penetration peg emerges

that mediates entry into the epidermal cells of the host plant. Cell

wall-degrading enzymes are secreted that may facilitate the pene-

tration process (Brouwer et al., 2014; Meijer et al., 2014). After

penetration, hyphae colonize the mesophyll, where they grow

intracellularly and form haustoria inside the host cells (Whisson

et al., 2016). These feeding structures provide a large contact area

with the host cytosol, enabling efficient exchange of molecules, to

mediate further infection. Apart from the pathogen–host interac-

tions at the protein level, it can be anticipated that an unknown

combination of metabolites is taken up from the plant by the

pathogen as nutrients.

Phytophthora infestans is able to assimilate a wide range of

compounds (Hohl, 1991). For example, in vitro, P. infestans is able

to grow on pea, rye or Henninger medium, which contains an

undetermined mixture of various nutrients, such as amino acids,

organic acids and lipids (Griffiths et al., 2003; Meijer et al., 2014).

Many of the Peronosporales, the lineage that comprises the Phy-

tophthora genus, are sterol and thiamine auxotrophs, which

implies that these compounds must be acquired from the host

(Dahlin et al., 2017; Gaulin et al., 2010; Judelson, 2012). Although

sterols are highly beneficial for mycelial growth, they are not

essential (Hohl, 1991). Conversely, thiamine is essential for

growth. The nutrients that are taken up by the pathogen are con-

verted into biomass and secondary metabolites. Phytophthora

infestans forms various long-chain polyunsaturated fatty acids,

predominantly arachidonic and eicosapentaenoic acid (EPA)

(Griffiths et al., 2003; Sun et al., 2013). The oomycete cell wall is

composed of various sugar polymers, mainly 1,3- and 1,6-b-

glucans and cellulose (Grenville-Briggs et al., 2008). Notably, both

the long-chain polyunsaturated fatty acids and the cell wall glu-

cans can elicit plant immune responses (Robinson and Bostock,

2015), but it is likely that, during infection, such responses are

suppressed by secreted effector proteins.

Large transcriptional changes of genes encoding metabolic

enzymes were observed during the asexual life cycle of

P. infestans (Ah-Fong et al., 2017), suggesting profound changes

at the metabolic level. Notably, metabolic enzymes in general

were down-regulated in the sporangia and zoospores, and many

metabolic processes (e.g. biosynthesis of various amino acids)

were up-regulated in cysts and during mycelial growth (Ah-Fong

et al., 2017; Grenville-Briggs et al., 2005). Moreover, elevated

expression in planta of various nutrient transporter genes sug-

gests a rich influx of nutrients during infection (Abrahamian et al.,

2016). Transcriptome studies have analysed the metabolism of

P. infestans from a regulatory point of view. However, these stud-

ies do not consider post-transcriptional regulation and metabolic

reaction fluxes. A GEM can provide an overview of P. infestans

metabolism and, at the same time, predict the functioning of pri-

mary metabolism as a system. Here, we propose a first GEM for

P. infestans.

RESULTS AND DISCUSSION

Draft model reconstruction

We identified all putative enzymes encoded in the P. infestans

genome (Haas et al., 2009) by matching all predicted protein

sequences to hidden Markov models (HMMs), trained on groups

of orthologous proteins from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) Orthology (KO) database (Agren et al.,

2013; Kanehisa et al., 2015). This is a particularly suitable method

for the detection of distant orthologues, as conserved domains

have a strong influence on the alignment score and thus this

method is sensitive to conserved catalytic domains (Pearson,

2013). Roughly 32% (5856) of the 18140 predicted P. infestans

proteins matched a KO group, but not every KO group represents

a metabolic enzyme catalysing a biochemical reaction. In total,

1408 P. infestans genes were associated with 1569 different

biochemical reactions, involving 1663 different metabolites.

(Table S1, see Supporting Information)

Phytophthora infestans is able to assimilate a range of nitro-

gen compounds, preferably amino acids, but also inorganic forms,

such as nitrate (Hohl, 1991). As a carbon source, P. infestans pre-

fers glucose or sucrose, but can also utilize many mono- and

disaccharides (Judelson, 2017). Early experiments determined that

P. infestans can utilize a range of organic sulfur and phosphorus

compounds, although more optimal growth rates were observed

with inorganic sulfate and phosphate sources (Fothergill and

Child, 1964). We added uptake reactions to the model for the
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minimal synthetic growth medium from the literature (Hohl,

1991), the simplest nutrient combination shown to yield in vitro

growth: glucose, ammonia, phosphate, sulfate and thiamine.

Next, we composed a pool of biomass precursor metabolites that

must be produced to sustain life: all nucleotides, all 20 L-type

amino acids, energy carriers (ATP, GTP) and the cofactors

Coenzyme-A, NADH, NADPH and FADH2, which are generally

essential for a eukaryotic cell (Nielsen, 2017). The exact relative

abundance of biomass components has never been quantified for

P. infestans; therefore, the aforementioned biomass metabolites

were added to the model as substrates of a single artificial bio-

mass reaction with equal stoichiometry. In addition, for the phos-

pholipids and fatty acids detected in P. infestans (Griffiths et al.,

2003), excretion reactions were included. The known cell wall

components 1,3- and 1,6-b-glucan and cellulose are all polysac-

charides for which glucose is the precursor metabolite.

We used FBA to calculate the flux through each reaction, opti-

mizing for biomass production (Orth et al., 2010). To predict quan-

titative fluxes using FBA, it is required to provide an accurate

biomass composition, maintenance ATP requirements, growth

rates and species-specific reaction constraints (Thiele and Palsson,

2010). Although the lack of detailed data on P. infestans metabo-

lism currently impairs reliable quantitative flux predictions, we can

nevertheless deploy FBA to interrogate the model for its connec-

tivity and topology.

Metabolic enzymes are located in various organelles, causing

specific metabolic processes to take place in different parts of the

cell. For example, the tricarboxylic acid (TCA) cycle typically occurs

in the mitochondria (Zimorski et al., 2017). There is an extensive

exchange of metabolites between subcellular compartments

(Wanders et al., 2016). Obviously, the compartmentalization influ-

ences the connectivity of the reactions and the global behaviour

of the model. Based on localization predictions by LocTree 3

(Goldberg et al., 2014), we expanded the model by dividing

P. infestans proteins over seven subcellular compartments (Fig. 1).

Reactions in the model were assigned to a particular compart-

ment if at least one of the associated enzymes was predicted to

localize there. LocTree has been trained on general eukaryotic

sequences, which could influence the accuracy of our enzyme

localization predictions. However, previous analyses using similar

localization predictors have shown that proteins predicted to co-

localize are often also co-expressed in P. infestans (Seidl et al.,

2013). The cytosol contained 1138 reactions, whereas the mito-

chondria contained 359, which is approximately 15% of the

total number of reactions in the model (Table 1). Of these 359,

160 (45%) were shared with the cytosol (Fig. S1, see Supporting

Information). Notably, these shared reactions are part of various

metabolic pathways, but a relatively large number (42) is linked

to the fatty acid biosynthesis (FAB) pathway. The elongation of

fatty acids can be governed by a single fatty acid synthase

enzyme (EC 2.3.1.86). P. infestans has three gene copies for this

enzyme, one of which is predicted to encode a mitochondrial

isoform (PITG_18025). It has been reported that many eukar-

yotes have a highly conserved, independent mitochondrial FAB

pathway that is crucial for development (Hiltunen et al., 2009;

Kastaniotis et al., 2017). Phytophthora spp. are thought to store

energy in fatty acid molecules to facilitate movement of zoo-

spore flagellae (Judelson, 2017).

In our model, the TCA cycle shares five reactions with the cytosol.

One of these is catalysed by malate dehydrogenase (MDH, EC

1.1.1.37). P. infestans has two genes encoding MDH, one encoding

an isoform of MDH shown to be active in mitochondria in P. infestans

and the other encoding a cytoplasmic isoform (L�opez-Calcagno et al.,

2009). Other mitochondrial reactions are part of various metabolic

pathways, including FAB, fatty acid degradation (b-oxidation) and

even three glycolytic reactions, involving seven enzymes. The mito-

chondrial localization of these latter enzymes is probably a remnant

of a secondary endosymbiosis event (Judelson, 2017).

Fig. 1 Schematic representation of a

Phytophthora infestans cell with the

number of reactions and metabolites

per subcellular compartment and the

number of transport reactions deduced

from the model presented in this

study. In this model, the nucleus (N) is

not included as a separate subcellular

compartment. C, cytosol; ER,

endoplasmic reticulum; EX,

extracellular space; G, Golgi complex;

M, mitochondrion; P, peroxisome; V,

vacuole.
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Model correction enables flux simulations

After initial reconstruction of the model, 153 invalid reactions

(e.g. polymer reactions, see Methods) and 107 associated genes

were removed from the model. The reconstructed metabolic

model of P. infestans was initially unable to simulate growth (flux

towards all biomass components) because of missing reactions or

invalid reaction directionality constraints. This can be the result of

an incomplete genome sequence or misannotations. We therefore

performed a model gap-filling optimization to find the minimal set

of reactions in KEGG that must be added to the model to correct

this (Table S2, see Supporting Information). This method proposed

16 additional reactions, and highlighted three reactions that must

be reversed to allow for the production of all biomass precursors.

Next, eight extra drain reactions were added to the model to sat-

isfy the steady-state constraint. Notably, no gap-filling solutions

were found for the production of the fatty acids EPA and behenic

acid (a.k.a docosanoate), both of which are produced by

P. infestans (Griffiths et al., 2003; Robinson and Bostock, 2015;

Sun et al., 2013). This is caused by the lack of fatty acid reactions

in KEGG, leaving multiple fatty acid reactions unconnected to

other reactions (see KEGG map 01040).

To simulate the metabolite exchange between subcellular com-

partments, the model must also include intracellular transport reac-

tions. Although nutrient transporters in P. infestans have been

studied (Abrahamian et al., 2016; Grenville-Briggs et al., 2010),

hardly anything is known about the metabolites that are exchanged

between the cytosol and subcellular compartments. The annotated

substrates for transporter proteins are not specific, and are therefore

hard to integrate into the metabolic model. Moreover, transporter

substrates, such as those from the Transporter Classification Data-

base (Saier et al., 2016), are not cross-linked with other databases.

To overcome these limitations, we performed an optimization to

identify the most likely set of intracellular transport reactions to be

added to the model to allow the production of all possible metabo-

lites. We determined what metabolites could ultimately be pro-

duced by the model, after which we selected the minimal set of

transport reactions between the cytosol and any compartment to

allow for this (Fig. 1). The extracellular space (regarded as a

subcellular compartment) was excluded from this optimization. The

metabolism in this compartment is largely governed by cell wall-

degrading enzymes. As it is not possible to distinguish the origin of

the metabolites, pathogen or host plant, we had to exclude the

extracellular space in these analyses.

After all correction steps, 928 of the 2394 (39%) reactions in

the model were able to carry flux based on the defined growth

medium, 377 of which carried a non-zero flux when we calculated

the optimal fluxes for maximal biomass production (Table S1, see

Supporting Information). Of the 2685 metabolites in the model,

809 could not be produced based on our defined growth medium,

and may require additional nutrient uptake. By iteratively adding

uptake reactions to the model for each of these metabolites, we

can simulate whether the import of a specific metabolite would

allow the production of additional metabolites (Table S2). This

reveals unresolved gaps in the model that could have a technical

cause, but may also hint at biological properties. For example,

episterol is proposed as a compound that would enable the pro-

duction of four other metabolites. This is striking as Phytophthora

spp. lack sterol biosynthesis enzymes and depend on sterol acqui-

sition from the host plant (Dahlin et al., 2017). Another proposed

metabolite is tyramine, which would, upon import into the model,

enable the production of six other metabolites. Tyramine is a prod-

uct of the decarboxylation of tyrosine and, based on the genome

annotation, P. infestans seems to lack the enzyme that catalyses

this reaction, i.e. tyrosine decarboxylase (EC 4.1.1.25). However, a

more precise examination of the genome sequence revealed an

unannotated open reading frame (on supercontig 1.18, position

2365580–2367055) that probably encodes this enzyme.

The metabolic model connects genomic and

metabolic properties

We compared the properties of the P. infestans GEM (designated

iSR1301; File S1, see Supporting Information) with GEMs of other

eukaryotic microbes (Table 1). The size of our P. infestans model, in

terms of integrated reactions and genes, is on the same order of

magnitude as that of a recent GEM of Phaeodactylum tricornutum,

a closely related diatom (Levering et al., 2016), although our model

Table 1 Statistics of the Phytophthora infestans genome-scale metabolic model (GEM) iSR1301 and GEMs of other eukaryotic microbes.

Phytophthora
infestans

Phaeodactylum
tricornutum

Plasmodium
falciparum

Leishmania
donovani

Saccharomyces
cerevisiae

Reactions 2394 2156 1001 1135 1882
Transport 373 308 233 358 N/A
Cytosolic 1138 942 503 363 N/A
Mitochondrial 359 409 49 197 N/A

Metabolites 2685 1704 616 1135 1454
Genes 1301 1025 366 604 901

% of total 7.17 9.85 6.91 7.30 13.64
Model name iSR1301 iLB1025 iTH366 iMS604 Yeast 7
Reference This study Levering et al. (2016) Plata et al. (2010) Sharma et al. (2017) Aung et al. (2013)
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involves more metabolites. The sizes of the GEMs of the malaria

parasite Plasmodium falciparum (Plata et al., 2010) and the leish-

maniasis parasite Leishmania donovani (Sharma et al., 2017) are

much smaller, but the proportion of genes in the model is similar to

that of the P. infestans model (�7% of the total number of genes).

Although these numbers might be smaller because of the genome

annotation quality and the level of model curation, they might also

be a result of the loss of primary metabolic pathways, for which

these parasites rely on nutrient import from their hosts (Dean et al.,

2014; Gardner et al., 2002). Despite the fact that P. infestans has a

similar parasitic lifestyle, a pattern of pathway loss is not reflected

in the size of our model.

The relation of a gene to an enzyme and its associated reac-

tions is called the gene–protein–reaction (GPR) association

(Machado et al., 2016; Thiele and Palsson, 2010). A reaction can

be associated with multiple enzymes (isozymes) and genes

(paralogues). Conversely, one enzyme may present multiple cata-

lytic domains, or may have a broad substrate specificity, which

associates it with multiple reactions. This ‘many-to-many-to-many’

relationship holds information about the redundancy of enzyme

encoding genes in a genome, but also about gene essentiality,

and the metabolic robustness of an organism to perturbations and

fluctuations in nutrient availability (Belda et al., 2012). In our

model, 40.4% of the genes are associated with just a single reac-

tion, and 44.9% of the reactions in the model are associated with

a single gene, which makes the respective genes essential for spe-

cific metabolic tasks (Fig. S2, see Supporting Information). In com-

parison, for the P. tricornutum GEM, these numbers are higher

(68.6% and 54.5%, respectively). The diatom model is presumably

of higher quality, as most reactions are manually curated. How-

ever, it might also hint at less redundancy of metabolic enzymes.

Stage-specific models reflect reduced metabolic

activity in sporangia and zoospores

It has been demonstrated that the integration of transcriptomics

data into a metabolic model has the potential to unveil condition-

or tissue-specific metabolic activity (Agren et al., 2012; Becker

and Palsson, 2008; Gatto et al., 2014; Huthmacher et al., 2010).

We had access to the transcriptome data of four asexual life

stages, i.e. mycelium, sporangia, zoospores and germinating cysts

(C. Schoina et al., unpublished data), and deployed the iMAT algo-

rithm (Shlomi et al., 2008) to predict stage-specific metabolic

models for these life stages. This algorithm considers binary gene

expression, i.e. a gene can either be expressed or not. Subse-

quently, it finds the fluxes through the model, supported by the

maximum number of expressed genes, independent of defined

medium and biomass composition. This results in sub-models for

which all included reactions can carry flux. However, not all under-

lying genes have to be expressed. In other words, the resulting

stage-specific models are sets of reactions that correlate best with

the expression of the underlying genes. These reactions are there-

fore most likely to be metabolically active. If a reaction is absent

from a stage-specific model, it is either absent because the

expression of the associated genes is low, or because upstream

reactions are absent. Comparing the sets of reactions in each

stage-specific model might reveal highly active life stage-specific

metabolic activity. The distribution of stage-wise expression val-

ues for the genes in the model forms a slimmer distribution (with

slightly higher mean) than that of the total set of genes, indicating

that genes in the model are more uniformly expressed (Fig. S3a,

see Supporting Information). To generate a sufficiently large con-

trast between the stage-specific models, we set the binary gene

expression threshold at 7.04 transcripts per million (TPM), the

median of all expression values. Based on this threshold, genes

were called expressed/not expressed, and life stage-specific mod-

els were calculated. Fewer genes were considered to be expressed

in the sporangium and zoospore stages than in mycelium and ger-

minating cyst stages (Fig. S3b).

The stage-specific models for sporangium and zoospore stages

contain fewer reactions in total (Fig. 2a), concordant with the

observed general down-regulation of many metabolic pathways in

these stages (Ah-Fong et al., 2017). The mycelium and germinating

cyst models contain 1,021 and 1,017 reactions, respectively. Of

Fig. 2 Stage-specific models of Phytophthora infestans mycelium (MY),

sporangia (SP), zoospores (ZO) and germinating cysts (GC). (a) Overlap of

reaction content between the four stage-specific models. The bars at the

bottom left show the total numbers of reactions in each stage-specific model.

The connected bullets indicate the models that are compared, and the bars in

the graph represent the number of reactions (intersection size, y-axis) that

overlap between the stage-specific models. (b) Principal component analysis

(PCA) of the stage-wise presence/absence (1/0) of a reaction in the stage-

specific models.
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these, 997 are shared, indicating that these models are highly simi-

lar. Although the majority of the reactions, i.e. a core set of 901

reactions, are shared between all four stage-specific models, there

are also obvious differences; 55 reactions are specifically absent

from the zoospore model (hence present in the other three), 21

reactions are only absent from the sporangium model and 20 reac-

tions are absent from the sporangium and zoospore models, but

present in mycelium and germinating cyst models. A principal com-

ponent analysis of stage-wise reaction presence/absence (Fig. 2b)

shows that the mycelium and germinating cyst models cluster rela-

tively closely, whereas the sporangium and zoospore models are

more isolated. In summary, our data reflect the regulatory changes

that reroute the metabolism of P. infestans during each life stage,

especially the transitions between mycelium/germinating cyst and

sporangium/zoospore stages (Ah-Fong et al., 2017).

To further interpret the presence/absence of reactions in the

stage-specific models, we looked at the associated metabolic path-

ways (Fig. S4, see Supporting Information). For instance, the myce-

lium model contains two unique reactions of the ‘Vitamin B6

metabolism’ pathway (KEGG R00173 and R00174), which represent

the interconversion of pyridoxal (vitamin B6) to pyridoxal phosphate,

an important cofactor for a large number of reactions, especially for

the synthesis of amino acids (Percudani and Peracchi, 2003). The

nitrogen metabolism pathway is represented by a core set of nine

reactions, but the zoospore model lacks two reactions compared

with mycelium and sporangia. Interestingly, these are reactions that

contribute to glutamine and glutamate synthesis. Recently, the up-

regulation of nitrate transporters in zoospores has been reported

(Ah-Fong et al., 2017), which suggests an active nitrogen flux dur-

ing this life stage. However, a reduced concentration of all amino

acids was found in zoospores compared with other life stages

(Grenville-Briggs et al., 2005). As pointed out earlier, the expression

of enzymes in the nitrogen metabolism pathway is highly dynamic

and depends on the available nutrients (Abrahamian et al., 2016).

Possibly, the nitrogen imported during the zoospore stage is stored

and converted to amino acids at later life stages.

We observed the largest contrast of stage-wise reaction pres-

ence/absence in the FAB pathway (Fig. 3). A set of 10 reactions is

present in the mycelium and germinating cyst models, and absent

in the sporangium and zoospore models. Eight reactions are spe-

cifically absent in the zoospore model, but three other reactions

are specifically present. The latter are all mediated by two cyto-

solic fatty acid synthases (PITG_10922 and PITG_10926), seem-

ingly down-regulated in other stages. Instead, the mitochondrial

fatty acid synthase (PITG_18025) seems active in the mycelium

and germinating cyst stages. It is likely that fatty acids are synthe-

sized during hyphal stages, as zoospores are thought to use stored

fatty acids as a nutrient source (Grant et al., 1988; Yousef et al.,

2012). These data emphasize that fatty acids probably have an

important role in Phytophthora zoospores. The three fatty acid

synthase enzymes in P. infestans play a major role in the FAB pro-

cess. Intriguingly, there could be a switch between cytosolic and

mitochondrial FAB in zoospores. An unanticipated finding,

reported by Ah-Fong et al. (2017) and based on our model, is that

fatty acid degradation (b-oxidation) is not pronounced in the zoo-

spore stage, despite the predicted role of fatty acids in zoospore

motility (Judelson, 2017).

Gene deletion simulations propose

metabolic vulnerabilities

We investigated what effect gene deletions could have on the pri-

mary metabolism of P. infestans. By removing single genes from

the model, one or more of the associated reactions in the model

may be disabled. If such reactions are essential for the production

of any of the biomass precursors, these deletions disable growth,

i.e. the mathematical solution of the model becomes infeasible

(O’Brien et al., 2015), making such genes interesting candidates

Fig. 3 Fatty acid biosynthesis reactions in the stage-specific models of

Phytophthora infestans mycelium (MY), sporangia (SP), zoospores (ZO) and

germinating cysts (GC). The presence/absence of a KEGG reaction (indicated

by its ID followed by the associated gene IDs) is shown by filled/empty tiles,

respectively, whereas mitochondrial and cytosolic reactions are shown in

orange and purple, respectively.
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for further study. We performed single gene deletion (SGD) simu-

lations of all genes in the model, which suggested that 72 genes

would disable growth by disabling the production of one of the

essential biomass precursors (Table S2, see Supporting Informa-

tion). These genes were associated with 285 reactions in various

metabolic pathways (Fig. 4). The pathways ‘phenylalanine, tyro-

sine and tryptophan biosynthesis’ (17 of 26 reactions vulnerable

to SGD) and ‘valine, leucine and isoleucine’ (11/17) were by far

the most vulnerable pathways. Notably, the fatty acid degradation

pathway was also delicate (17/111). In contrast, the most robust

pathways were ‘tyrosine metabolism’ (1/39) and ‘amino sugar and

nucleotide sugar metabolism’ (1/27).

There are numerous examples of the application of this

method to suggest drug targets in pathogens (Hartman et al.,

2014; Kaltdorf et al., 2016; Plata et al., 2010; Sharma et al., 2017;

Yizhak et al., 2013), thus suggesting that the identified enzymes

in P. infestans represent interesting candidates for further study.

To confirm that these enzymes are essential for viability, ideally

the encoding genes must be deleted or targeted by site-directed

mutagenesis. However, P. infestans is a diploid or polyploid orga-

nism, and making gene knock-outs is not (yet) a straightforward

procedure. However, gene silencing is feasible and has been

applied to study the function of several genes involved in patho-

genesis or signal transduction. The first functional study dealing

with genes involved in primary metabolism was published only

recently. Abrahamian et al. (2016) silenced the genes encoding

nitrate and nitrite reductase, and their results suggested a role of

these genes in virulence. Although both genes are included in our

Fig. 4 Gene deletion

simulations in the Phytophthora

infestans model. Percentage of

reactions in each KEGG

pathway that can be knocked

out by a single gene deletion

(SGD), disabling the production

of at least one biomass

precursor. The colours of the

bars scale with the absolute

numbers of reactions found in

our model in a particular KEGG

pathway (inset top right).
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model, they were not marked as essential based on the SGD simu-

lations, suggesting alternative routes for nitrogen metabolism.

Our simulations are of course based on in vitro growth conditions,

whereas, in its natural habitat, P. infestans mainly resides

in planta. It is thought that P. infestans imports larger, organic

nutrients, such as amino acids, during infection (Abrahamian

et al., 2016).

CONCLUDING REMARKS

Here, we present, to our knowledge, the first GEM for the oomy-

cete P. infestans, reconstructed mostly in silico, based on reactions

found in KEGG. The aim of this study was not to provide a fully

quantitative model, but rather to provide a broad overview of cel-

lular metabolism, related to its genome. We optimized the model

to be able to convert a minimal pool of nutrients into a set of min-

imal biomass precursors established from the literature. Our

model contributes to an understanding of the metabolism of

P. infestans. However, even after gap-filling, the fatty acids EPA

and behenic acid could not be generated from the model, because

of missing reactions in KEGG. This underscores the limitations of

using KEGG solely as a resource, which may be overcome by man-

ual refinement of the FAB pathways from different databases,

such as MetaCyc or BRENDA (Caspi et al., 2014; Placzek et al.,

2017). In fact, the BRENDA database holds information on an

omega-3 desaturase able to convert arachidonic acid into EPA (EC

1.14.19.25). This exact enzyme of P. infestans has recently been

proven to be capable of catalysing this reaction in yeast (Yilmaz

et al., 2017). We also revealed one unannotated tyrosine decar-

boxylase gene in the P. infestans genome, emphasizing the fact

that the genome annotation of the reference genome published

by Haas et al. (2009) needs to be revisited. On the other hand, it

demonstrates that this model can be used to aid the discovery of

unannotated genes. Obviously, the model will improve when a

more accurate genome annotation becomes available, and future

versions of the model should help us to address the shortcomings

encountered in this study. In addition, an experimentally assessed

biomass composition, transporter integration, inclusion of species-

specific reaction constraints and growth rates may be used to

improve the accuracy of this model. The absence of these data

restrains us from making quantitative predictions, such as growth

rates or the influences of different nutrients.

Life stage-specific models provide a direct functional context

for transcriptome data by predicting the behaviour of P. infestans

metabolism under the influence of stage-wise gene expression,

and are an alternative for the enrichment methods typically

employed in metabolic pathway analyses. Approaching transcrip-

tomic data from a functional point of view may emphasize certain

features that are otherwise easily overlooked (e.g. FAB). By build-

ing this model, we can identify genes that have an essential role

when converting simple nutrients to the building blocks of life.

The metabolic model reconstructed here provides a scaffold for

future genome-wide systems biology approaches to characterize

the metabolism of P. infestans, and is an essential first step

towards an integrative model of P. infestans–host interactions.

METHODS

Draft reconstruction

We re-implemented the getKEGGModelForOrganism method from the

RAVEN Toolbox (Agren et al., 2013) to improve performance and to incor-

porate minor adaptations. Briefly, HMMs were trained on orthologous

enzyme sequences derived from the KO database, Release 2015-11-23.

We constructed multiple sequence alignments (MSAs) of all eukaryotic

protein sequences in every KEGG orthologous group using MAFFT version

7.273 (Katoh and Standley, 2013), using the ‘localpair’ mode for local

alignments. For performance reasons, the number of sequences used in

an MSA was capped at 100, in which case we selected a random subset

of sequences in the KO group. If fewer than 20 eukaryotic sequences

were included in a KO group, we constructed MSAs for prokaryotic

sequences in the respective KO group, maintaining the same rules. We

used hmmbuild from the HMMER package version 3.1b (Eddy, 1998) to

train HMMs on the MSAs. By using hmmsearch, we matched the HMMs

to the protein sequences of P. infestans strain T30-4 (Haas et al., 2009),

downloaded on 25 July 2015 from the BROAD Institute website (https://

www.broadinstitute.org), currently hosted at the National Center for Bio-

technology Information (NCBI, bioproject 17665). Default parameters

were maintained for hmmbuild and hmmsearch, and an E-value threshold

of 10220 was applied for hmmsearch. Similar to the getKEGGModelForOr-

ganism function of the RAVEN Toolbox (Agren et al., 2013), we performed

two pruning steps, but we applied slightly stricter thresholds. First, any

protein match to a KO group was removed if log Eð Þ
log EbestKOð Þ < 0:9, where E

represents the E-value of the respective protein to a KO group, and EbestKO

represents the E-value of the best-matching KO group for that protein. In

other words, protein hits are often removed if they have a better match to

another KO group. Second, any protein match to a KO group was removed

if log Eð Þ
log EbestProtð Þ < 0:5, where E again represents the E-value of the respective

protein match to a KO group, and EbestProt represents the lowest E-value

of any protein to this KO group. This reduces the number of matches per

KO group to reduce the number of false positives, as there is clearly a bet-

ter matching protein. Subsequently, we retrieved all KO annotations of

P. infestans from KEGG (organism ID ‘pif’). The combined set of matched

KO groups was used to retrieve all associated reactions and metabolites

from KEGG. Consequently, each reaction in the model was associated

with a number of P. infestans genes. We hypothesized that each of the

genes associated with a reaction is able to catalyse it. We did not consider

enzyme complexes, which together would fulfil a single enzymatic task.

Reactions were removed automatically if their stoichiometry was unde-

fined (e.g. ‘1,3-beta-D-glucan(n) 1 UDP-D-glucose <5> 1,3-beta-D-

glucan(n 1 1) 1 UDP’), and if the same metabolite ID occurred at both

sides of the reaction arrow, which implies a polymer reaction (e.g.

‘UTP 1 RNA <5> diphosphate 1 RNA’). In addition, reactions that

were associated with metabolites containing the substrings ‘acceptor’,

‘donor’, ‘tRNA’, ‘enzyme’, ‘aglycon’ and ‘fatty acid’ were removed.
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Model correction

We predicted the subcellular location of P. infestans proteins using Loc-

Tree 3 (Goldberg et al., 2014), and subsequently distributed the associ-

ated reactions of the model over the cellular compartments. We selected

seven compartments for our model: cytosol, extracellular space, mitochon-

dria, endoplasmic reticulum, Golgi complex, peroxisome and vacuole.

Reactions associated with enzymes with transmembrane predictions

(plasma or intracellular membranes) were assigned to respective compart-

ments on both sides of the membrane, as it is unclear where the catalytic

domain is localized. Proteins assigned to any other than our seven com-

partments were assigned to the cytosol. Next, all proteins that were pre-

dicted to be secreted by Raffaele et al. (2010) were assigned to the

extracellular space compartment.

The initially reconstructed model was exported to SBML and Microsoft

Excel format using CobraPy v0.4.1 (Ebrahim et al., 2013). For the next

steps, we imported the model into MATLAB (R2015b) using the RAVEN

Toolbox v1.8 (Agren et al., 2013). We used Gurobi v7.0.1 (http://www.

gurobi.com/) to solve the (mixed-integer) linear programs.

Nutrient uptake and biomass reactions were added to the model by

applying the fillGaps function from the RAVEN Toolbox to propose gap

solutions from KEGG, by constraining biomass production to a positive

flux. This method implements the SMILEY algorithm (Rolfsson et al.,

2011), including all reactions from a universal set of reactions (in this case

KEGG), and subsequently minimizing the flux through these. Prior to this,

we temporarily removed the extracellular space compartment to prevent

gap solutions here, and added all possible transport and excretion reac-

tions to the model. During gapfilling, we allowed the net production of

metabolites, whereafter we added drain reactions (allowing excretion) for

unbalanced metabolites to enable steady-state solutions of the model at

this point. To predict the set of transport reactions between compart-

ments, we assessed which metabolites can ultimately be produced by the

model. Then, we constrained a positive flux for the production of these

metabolites, and we removed the transport reactions that did not carry

flux.

After these correction steps, we used the function solveLP from the

RAVEN Toolbox to solve the linear programs of FBA, and to obtain the

flux distribution for maximal biomass production. We applied the function

checkProduction to detect metabolite gaps in the model. This method

checks which metabolites are not producible (blocked) from the model,

and then iteratively adds uptake reactions for these metabolites, to see

whether the uptake of these metabolites unblocks metabolites elsewhere

in the model.

Stage-specific models

We used RNA sequencing data (C. Schoina et al., unpublished data) to

quantify gene expression in four in vitro life stages of P. infestans, i.e.

mycelium, sporangia, zoospores and germinating cysts. Gene expression

of P. infestans strain T30-4 (Haas et al., 2009) was quantified using

Kallisto v0.42.4 (Bray et al., 2016), which expresses mRNA abundance in

TPM. This unit represents the number of reads aligned to transcript

sequences, normalized for transcript length and sequencing depth, scaled

by a million. We determined a binary expression threshold to define

whether or not a gene is expressed, for which we used the median of all

expression values over the four life stages. We decomposed the biomass

and other excreted compounds (lipids, etc.) into separate excretion reac-

tions, and used the iMAT algorithm (implemented in the function create-

TissueSpecificModel) incorporated in the COBRA Toolbox (Schellenberger

et al., 2011; Shlomi et al., 2008) to derive stage-specific models.

Gene knockout simulations

We used the function findGeneDeletions from the RAVEN Toolbox to pre-

dict the genes that would, upon deletion, disable biomass flux. This

method first selects reactions that are supported by a single gene, and

then iteratively constrains the flux of these reactions to zero. A gene is

marked as essential if the linear program of FBA becomes infeasible after

deletion, i.e. when no flux through the biomass reaction is possible.
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Machado, D., Herrgård, M.J. and Rocha, I. (2016) Stoichiometric representation of

gene–protein–reaction associations leverages constraint-based analysis from reac-

tion to gene-level phenotype prediction. PLoS Comput. Biol. 12, e1005140.

Meijer, H.J., Mancuso, F.M., Espadas, G., Seidl, M.F., Chiva, C., Govers, F. and

Sabido, E. (2014) Profiling the secretome and extracellular proteome of the potato

late blight pathogen Phytophthora infestans. Mol. Cell Proteomics, 13, 2101–2113.

Nielsen, J. (2017) Systems biology of metabolism. Annu. Rev. Biochem. 86, 245–275.

O’Brien, E.J., Monk, J.M. and Palsson, B.O. (2015) Using genome-scale models to

predict biological capabilities. Cell, 161, 971–987.

Orth, J.D., Thiele, I. and Palsson, B.O. (2010) What is flux balance analysis? Nat.

Biotechnol. 28, 245–248.

Pearson, W.R. (2013) An introduction to sequence similarity (“homology”) search-

ing. Curr. Protoc. Bioinformatics, Chapter 3, Unit3.1.

1412 S. Y. A. RODENBURG et al .

MOLECULAR PLANT PATHOLOGY (2018) 19 (6 ) , 1403–1413 VC 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBL ISHED BY BRIT ISH

SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD



Percudani, R. and Peracchi, A. (2003) A genomic overview of pyridoxal-phosphate-

dependent enzymes. EMBO Rep. 4, 850–854.

Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J. and Genin, S. (2016) A resource

allocation trade-off between virulence and proliferation drives metabolic versatility

in the plant pathogen Ralstonia solanacearum. PLoS Pathog. 12, e1005939.

Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J. and

Schomburg, D. (2017) BRENDA in 2017: new perspectives and new tools in

BRENDA. Nucleic Acids Res. 45, D380–D388.

Plata, G., Hsiao, T.-L., Olszewski, K.L., Llin�as, M. and Vitkup, D. (2010) Recon-

struction and flux-balance analysis of the Plasmodium falciparum metabolic net-

work. Mol. Syst. Biol. 6, 408.

Raffaele, S., Win, J., Cano, L.M. and Kamoun, S. (2010) Analyses of genome archi-

tecture and gene expression reveal novel candidate virulence factors in the secre-

tome of Phytophthora infestans. BMC Genomics, 11, 637.

Robinson, S.M. and Bostock, R.M. (2015) b-glucans and eicosapolyenoic acids as

MAMPs in plant–oomycete interactions: past and present. Front. Plant Sci. 5, 797.

Rolfsson, O., Palsson, B.O. and Thiele, I. (2011) The human metabolic reconstruction

Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst. Biol. 5, 155.

Saier, M.H., Reddy, V.S., Tsu, B.V., Ahmed, M.S., Li, C. and Moreno-Hagelsieb,

G. (2016) The Transporter Classification Database (TCDB): recent advances.

Nucleic Acids Res. 44, D372–D379.

Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M.,

Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., Kang, J., Hyduke,

D.R. and Palsson, B.Ø. (2011) Quantitative prediction of cellular metabolism with

constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307.

Seidl, M.F., Schneider, A., Govers, F. and Snel, B. (2013) A predicted functional

gene network for the plant pathogen Phytophthora infestans as a framework for

genomic biology. BMC Genomics, 14, 483.

Sharma, M., Shaikh, N., Yadav, S., Singh, S., Garg, P., Nowicki, C., Zilberstein, D.,

Pereira, C.A., Cunha, F. and Sereno, D. (2017) A systematic reconstruction and

constraint-based analysis of Leishmania donovani metabolic network: identification of

potential antileishmanial drug targets. Mol. Biosyst. 277, 38 245–38 253.

Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.O. and Ruppin, E. (2008)

Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol.

26, 1003–1010.

Sun, Q., Liu, J., Zhang, Q., Qing, X., Dobson, G., Li, X. and Qi, B. (2013) Charac-

terization of three novel desaturases involved in the delta-6 desaturation pathways

for polyunsaturated fatty acid biosynthesis from Phytophthora infestans. Appl.

Microbiol. Biotechnol. 97, 7689–7697.

Thiele, I. and Palsson, B.O. (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121.

Thiele, I., Swainston, N., Fleming, R.M.T., Hoppe, A., Sahoo, S., Aurich, M.K.,

Haraldsdottir, H., Mo, M.L., Rolfsson, O., Stobbe, M.D., Thorleifsson, S.G.,

Agren, R., B€olling, C., Bordel, S., Chavali, A.K., Dobson, P., Dunn, W.B.,

Endler, L., Hala, D., Hucka, M., Hull, D., Jameson, D., Jamshidi, N., Jonsson, J.J.,

Juty, N., Keating, S., Nookaew, I., Le Novère, N., Malys, N., Mazein, A.,

Papin, J.A., Price, N.D., Selkov, E., Sigurdsson, M.I., Simeonidis, E.,

Sonnenschein, N., Smallbone, K., Sorokin, A., van Beek, J.H.G.M., Weichart, D.,

Goryanin, I., Nielsen, J., Westerhoff, H.V., Kell, D.B., Mendes, P. and

Palsson, B.Ø. (2013) A community-driven global reconstruction of human metabolism.

Nat. Biotechnol. 31, 419–425.

Thiele, I., Vlassis, N. and Fleming, R.M.T. (2014) fastGapFill: efficient gap filling in

metabolic networks. Bioinformatics, 30, 2529–2531.

Wanders, R.J.A., Waterham, H.R. and Ferdinandusse, S. (2016) Metabolic inter-

play between peroxisomes and other subcellular organelles including mitochondria

and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83.

Whisson, S.C., Boevink, P.C., Wang, S. and Birch, P.R. (2016) The cell biology of

late blight disease. Curr. Opin. Microbiol. 34, 127–135.

Yilmaz, J.L., Lim, Z.L., Beganovic, M., Breazeale, S., Andre, C., Stymne, S.,

Vrinten, P. and Senger, T. (2017) Determination of substrate preferences for

desaturases and elongases for production of docosahexaenoic acid from oleic acid

in engineered canola. Lipids, 52, 207–222.

Yilmaz, L.S. and Walhout, A.J.M. (2016) A Caenorhabditis elegans genome-scale

metabolic network model. Cell Syst. 2, 297–311.

Yizhak, K., Gabay, O., Cohen, H., Ruppin, E. and Zarkovic, N. (2013) Model-

based identification of drug targets that revert disrupted metabolism and its appli-

cation to ageing. Nat. Commun. 4, 513–519.

Yousef, L.F., Wojno, M., Dick, W.A. and Dick, R.P. (2012) Lipid profiling of the

soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).

Fungal Biol. 116, 613–619.

Yuan, H., Cheung, C.Y.M., Poolman, M.G., Hilbers, P.A.J. and Riel, NAW. V.

(2016) A genome-scale metabolic network reconstruction of tomato (Solanum

lycopersicum L.) and its application to photorespiratory metabolism. Plant J. 85,

289–304.

Zimorski, V., Rauch, C., Hellemond, JJ.V., Tielens, A.G.M. and Martin, W.F.

(2017) The mitochondrion of Euglena gracilis. In: Euglena: Biochemistry, Cell and

Molecular Biology (Schwartzbach, S.D. and Shigeoka, S., eds), pp. 19–37. Cham,

Switzerland: Springer International Publishing.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article at the publisher’s website:

Fig. S1 Reactions in the Phytophthora infestans model per sub-

cellular compartment, and overlap in reaction content between

different subcellular compartments. These include the cytosol

(cyto), mitochondrion (mito), extracellular space (extr), endo-

plasmic reticulum (ER), peroxisome (pero), Golgi complex (golg)

and vacuole (vacu). The bars at the bottom left show the total

numbers of reactions in each subcellular compartment. The

connected bullets indicate the compartments that are com-

pared, and the bars in the graph represent the number of reac-

tions (intersection size, y-axis) that overlap between the

compartments.

Fig. S2 Frequencies of gene numbers per reaction (a) and reac-

tion numbers per gene (b) in the Phytophthora infestans

model.

Fig. S3 Transcriptome data of Phytophthora infestans in rela-

tion to stage-specific metabolic models. (a) Distributions of

transcripts per million (TPM) expression values of all

P. infestans genes (background) and the genes in the model,

combined from four life stages. The red line indicates the TPM

threshold set to distinguish expressed/non-expressed genes in

the model. (b) The percentages of all P. infestans genes (back-

ground) and the genes in the model for which gene expression

in each life stage exceeds the TPM threshold. MY, mycelium;

SP, sporangia; ZO, zoospores; GC, germinating cysts.

Fig. S4 Numbers of reactions per KEGG pathway that are

shared between the Phytophthora infestans life stage-specific

models of mycelium (MY), sporangia (SP), zoospores (ZO) and

germinating cysts (GC). The colours of the tiles scale to the rel-

ative frequencies of all non-core reactions (i.e. the reactions

that are absent in at least one stage-specific model). The num-

bers in the two right-most columns represent the core set of

reactions (shared by all stage-specific models) and the total set

of reactions for the respective pathway (core 1 non-core).

Table S1 Properties of all reactions in the Phytophthora infes-

tans model.

Table S2 Gap-filling solutions, drain reactions, candidate

metabolites and essential reactions in the Phytophthora infes-

tans model.

File S1 The Phytophthora infestans model in SBML format.
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