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SUMMARY

The rapid emergence of new bacterial diseases negatively affects
both human health and agricultural productivity. Although the
molecular mechanisms underlying these disease emergences are
shared between human- and plant-pathogenic bacteria, not
much effort has been made to date to understand disease emer-
gences caused by plant-pathogenic bacteria. In particular, there
is a paucity of information in the literature on the role of envi-
ronmental habitats in which plant-pathogenic bacteria evolve
and on the stress factors to which these microbes are unceas-
ingly exposed. In this microreview, we focus on three molecular
mechanisms underlying pathogenicity in bacteria, namely muta-
tions, genomic rearrangements and the acquisition of new DNA
sequences through horizontal gene transfer (HGT). We briefly
discuss the role of these mechanisms in bacterial disease emer-
gence and elucidate how the environment can influence the
occurrence and regulation of these molecular mechanisms by
directly impacting disease emergence. The understanding of such
molecular evolutionary mechanisms and their environmental
drivers will represent an important step towards predicting bac-
terial disease emergence and developing sustainable manage-
ment strategies for crops.

Keywords: disease emergence, environmental habitats,
genomic rearrangements, horizontal gene transfer, point
mutations.

INTRODUCTION

Emerging diseases can be defined as infections that have either
newly appeared in a given population or have historically existed
and are once more spreading in incidence or geographical range
(Morse, 1995). In the last 40 years, 335 new infectious diseases

have emerged in humans, the majority of which are caused by
multidrug-resistant bacteria (Jones et al., 2008). Likewise, the
number of plant disease outbreaks, some caused by plant-
pathogenic bacteria, has also increased in recent decades. For
example, since the beginning of this century, the phytopathogen
Pseudomonas syringae has caused over 55 disease outbreaks in
perennial plants (Lamichhane et al., 2014) and over 70 disease
outbreaks in annual plants (Lamichhane et al., 2015). Such an
increasing number of disease outbreaks raises concerns about the
origin of the genetic lines causing such epidemics, as well as the
evolutionary processes involved.

A large number of infectious diseases are caused by host-
adapted microbial agents which evolve a pathogenic phenotype
through the acquisition of new pathogenic determinants (Morens
and Fauci, 2013). In addition, most of the disease outbreaks are
caused by different bacterial genetic lineages. The understanding
of the molecular mechanisms underlying the emergence of such
bacterial genetic lines therefore appears to be a fundamental step
towards predicting disease emergence.

Overall, three mechanisms are behind the origin of DNA modi-
fications that lead to the evolution of genomic traits underlying
pathogenicity in bacteria: (i) point mutations (small local
sequence change); (ii) rearrangements of DNA segments (such as
gene duplications or insertion/deletion of entire or portions of
genes); and (iii) the acquisition of new DNA components from
other organisms via horizontal gene transfer (HGT) (Arber, 2008).
The result of these processes is an altered bacterial phenotype
which could be either beneficial or harmful for bacteria depend-
ing on the environment they encounter. In addition, whether or
not the new alleles coming from genomic modifications will be
fixed into a given bacterial population is strictly related to the
effect of genetic drift and natural selection, both of which
are strongly influenced by environmental fluctuations (Ohta,
2000).

However, the emergence of new diseases is also affected by a
combination of ecological, environmental and socio-economic
factors (Morens et al., 2004). Most of the emerging diseases
seem to be caused by existing pathogens which, through adap-
tation to new habitats, evolve the capability to cause disease in*Correspondence: Email: claudia.bartoli@toulouse.inra.fr
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new hosts. For instance, zoonoses, phytonoses and sapronoses
are examples of how the reservoirs of the aetiological agents
represent habitats in which such agents survive and replicate
(Hubálek, 2002; Morens and Fauci, 2013; van Overbeek et al.,
2014). Overall, such agents could be non-pathogenic or less
aggressive to their co-evolved hosts when compared with newly
infected hosts (in the case of phytonoses and zoonoses). In
terms of zoonoses, a recent World Health Organization report
has identified over 200 diseases, including those of bacterial and
viral origin. There is evidence that the Ebola virus first spread as
a single zoonotic transmission, followed by a subsequent
human–human transmission (Gire et al., 2014). A recent study
has suggested that bats may act as a reservoir of Ebola virus
(Saez et al., 2014). Like viruses, bacterial pathogens may origi-
nate from human-altered environments which act as reservoirs
of pathogenic strains (Morris et al., 2009). A report from the
World Health Organization includes the shiga toxin-producing
Escherichia coli O157:H7 and Salmonella enterica among the
most virulent food-borne bacterial pathogens. Both of these bac-
terial species gained access to the food chain as a result of poor
hygiene practices (Morens et al., 2004). There are also reports of
zoonotic agents coming from different reservoirs: Francisella
tularensis, the causative agent of tularaemia disease, was found
in over 100 vertebrate species and, to date, no specific reservoir
of this bacterium has been identified (Mailles and Vaillant,
2014). Like for human pathogens, both abiotic and biotic envi-
ronments can act as potential reservoirs of plant-pathogenic
bacteria. These bacterial lineages can evolve under pressures
that are different from those exerted by the final host plants.
Recent studies have emphasized the role of water habitats in the
evolution of Pseudomonas syringae lineages pathogenic to
kiwifruit and tomato plants (Bartoli et al., 2015a; Monteil et al.,
2013). In addition, plants are likely to play an important role in
disease emergence by acting as reservoirs of pathogenic lin-
eages, as, for example, observed in Xanthomonas campestris
strains (Toussaint et al., 2012). More generally, under the selec-
tive pressure of resistant and/or tolerant plants, bacteria can
evolve new allelic forms of virulence which, in turn, may trigger
disease on new hosts. In particular, tolerant plants seem to be
much more suitable for bacterial evolution, as tolerance is
attained by limiting pathogen damage without reducing bacte-
rial growth (i.e. without reducing population size) (J. R.
Lamichhane et al., unpublished data). Here, we summarize the
role of point mutations, genomic rearrangements and HGT in the
emergence of bacterial lineages pathogenic to either plants or
humans, with particular emphasis on the role of the environment
in triggering these mechanisms. The understanding of the
molecular evolutionary mechanisms underlying bacterial disease
emergence and the role of the environment in this evolutionary
scenario could shed light on the possible development of sus-
tainable disease management strategies.

MUTATIONS AND PATHOADAPTIVE MUTATIONS
ARE THE SMALLEST GENOMIC CHANGES
WHICH LEAD TO RAPID EVOLUTION OF
BACTERIAL LINEAGES IN A FLUCTUATING
ENVIRONMENT

Mutation is one of the major sources of DNA modification under-
lying the adaptation of bacteria to new environments. Although
mutations can result from encounters with chemical mutagenic
agents (Arber, 2008), they generally occur as the consequence of
replication machinery mistakes. Prokaryotes, like eukaryotes,
repair their post-replicative mistakes via the methyl-directed mis-
match repair (MMR) system (Schofield and Hsieh, 2003).When the
MMR system is defective, mutations are incorporated into the
DNA of the replicating cell, a process related to the occurrence of
variability.

Mutations can either directly confer a newly pathogenic phe-
notype or enhance its aggressiveness. These mutations are the
product of an evolutionary process called pathoadaptive muta-
tion which confers or enhances bacterial pathogenicity without
HGT (Sokurenko et al., 1999). Although pathoadaptive mutations
in human pathogens have been studied extensively, there is a
paucity of information regarding these mutations in plant-
pathogenic bacteria. In Pseudomonas aeruginosa, knockout
mutations in mucA, a repressor of alginate biosynthesis, lead to
the over-expression of the algU gene involved in alginate
biosynthesis (important for pulmonary tract colonization),
thereby promoting the colonization of the lung by the pathogen
(Boucher et al., 1997). In Yersinia pestis, mutations on yopA,
involved in neutrophil adhesion, enhance the ability of the bac-
terium to colonize the host by evading phagocytes (Rosqvist
et al., 1988). In P. syringae strains, the hopZ1 effector gene,
known to promote infection in soybean (Zhou et al., 2011), has
evolved into three functional and two non-functional forms (Ma
et al., 2006) as a consequence of bacterial–host interactions in
which the ancient hopZ1 evolved towards a more effective one
(Ma et al., 2006). Likewise, in Xanthomonas axonopodis pv.
vesicatoria, point mutations in avrBs2 enable evasion of Bs2 rec-
ognition for some strains isolated from peppers in the field
(Wichmann et al., 2005).

Experimental evolution is a powerful tool to investigate patho-
gen evolution, as well as to follow up the occurrence of mutations
related to host adaptation and pathogenicity (Bataillon et al.,
2013). A recent evolutionary study on Ralstonia solanacearum
(Guidot et al., 2014) demonstrated that, although a recurrent
inoculation passage of the bacterium on its original host (i.e.
tomato plant in which the bacterium is reported to cause disease
symptoms) leads to an enhancement of R. solanacearum fitness
on tomato, a similar passage on a distant host (i.e. bean plant in
which the bacterium replicates without inducing disease symp-
toms) leads to an adaptation to bean plants. The adaptation to a
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distant host was caused by mutations in the regulatory RSc1097
gene that R. solanacearum evolved during plant infection (Guidot
et al., 2014). Likewise, several inoculation passages of X. citri ssp.
citri on a resistant Meiwa kumquat line have led to the selection
of bacterial strains that are no longer able to induce a highly local
resistance response—which was often associated with the hyper-
sensitive response (HR)—in the host plant (Trivedi and Wang,
2014). The loss of HR—a process used by X. citri strains to evade
plant immune defences—was associated with non-synonymous
mutations in the effector genes avrXacE1, pthA2 and avrXacA3;
such effectors are known to elicit HR on resistant hosts (Trivedi
and Wang, 2014). The experimental evolution studies mentioned
above identified the pathogens’ pathoadaptive mutations in con-
trolled conditions in which their selection was the result of recur-
rent passages on the host plants. However, bacterial pathogens
might have different phases outside their host (i.e. in environmen-
tal habitats that are different from plants), where other factors
could affect the evolutionary dynamics of pathogenic determi-
nants. For example, less aggressive strains of P. syringae have
been demonstrated to have a fitness advantage in the presence of
virulent conspecifics in planta, whereas there was a fitness disad-
vantage in soil conditions (Barrett et al., 2011). Recent studies
have also highlighted a possible scenario in which P. syringae
strains inhabiting water habitats could rapidly evolve under envi-
ronmental conditions that differ from their final host plants
(Bartoli et al., 2015a; Monteil et al., 2013). However, none of
these studies has demonstrated the capacity of P. syringae to
experience evolution trajectories in non-crop habitats with conse-
quences on the pathogenicity of this bacterium on crops.

Hypermutable bacterial cells (cells showing a higher mutation
rate compared with their wild-type counterparts) constitute a
particular case in which mutations rapidly accumulate in a given
bacterial cell by strongly influencing the bacterial phenotype,
including pathogenicity. Overall, mutators experience accelerated
adaptive evolution which can be linked to the adaptation to new
environments (Remigi et al., 2014). If mutations reside in genes
that enable bacteria to infect new hosts, a bacterial mutator
population can rapidly emerge causing disease emergences. For
example, the mutation rate of Helicobacter pylori, the causal agent
of acute ulcers, increases during the acute infection phase. This
mutation burst decreases during chronic infection, suggesting that
an elevated mutation rate helps H. pylori to adapt to and colonize
human stomach (Linz et al., 2014). Hypermutators often exhibit a
defective MMR system that leads directly to antibiotic resistance
(Meyers and Bull, 2002; Richardson et al., 2002), a process that
has a serious impact on human health and disease control.
However, recent studies on plant-pathogenic Pseudomonas
viridiflava have demonstrated that, although mutability is posi-
tively associated with the occurrence of antibiotic-resistant bac-
terial lines, it is negatively associated with pathogenicity (Bartoli
et al., 2015b). This finding raises questions about whether or not

hypermutable antibiotic-resistant cells maintain their aggressive-
ness in human bacterial pathogens.

However, the environment can directly influence the occurrence
of mutations. For instance, reactive oxygen species (ROS)—which
are generated in the environment by different processes (Gracy
et al., 1999)—can interfere with MMR gene expression, leading to
hypermutable phenotype conversion in P. aeruginosa (Torres-
Barceló et al., 2013). During plant infections, ROS produced by
plants could directly inhibit the MMR system of the colonizing
bacterium with a consequence on its mutation rate. Particular
environmental conditions, such as starvation, can induce
mutagenesis leading to antibiotic resistance (Poole, 2012). Taken
together, particular environmental stresses could enhance the
occurrence of mutations, leading to a better adaptation of bacteria
to fluctuating environments. For this reason, we propose that
experimental evolution studies that focus on a better understand-
ing of the evolutionary trajectories of pathogenic determinants,
via pathoadaptive mutation processes, should be performed in
conditions that are close to the natural conditions to which both
pathogens and hosts are continuously exposed.

The approaches used in a given evolutionary experiment could
dramatically influence the outcome of the analysis with a con-
sequent misinterpretation of the prediction of the evolution of a
given organism in natural conditions. Two parallel studies on the
avian H5N1 influenza A virus—both aiming to understand
whether the virus could acquire mutations conferring the ability
to be transmitted in mammals—led to different biological con-
clusions. In the first study, hybrid virus was first created and
random mutations were introduced in a viral region containing a
haemagglutinin protein which is known to determine host range
specificity (Imai et al., 2012). The authors demonstrated that four
mutations on the hybrid virus were needed to enable its trans-
mission from ferret to ferret and that the resulting virus main-
tained its aggressiveness. By contrast, in the second study,
the wild-type H5N1 virus was allowed to randomly evolve after
artificial infection passages in ferrets (Herfst et al., 2012). The
authors showed that five mutations were needed to enable
H5N1 to be transmitted from ferret to ferret, although the
transmissible virus was much less aggressive in ferrets and was
more susceptible to antiviral drugs. In plant pathology, experi-
mental evolution studies can be more easily performed on the
‘natural’ hosts of the pathogens. However, serial passages are
likely to be far from representative of natural infections when
performed in controlled conditions. For example, a given bacte-
rial pathogen evolves in plants with the whole microbiota, which
may differ markedly between controlled and field conditions. All
of these observations suggest that experimental evolution
studies, in monitoring pathogen evolution in plants, may provide
more reliable predictions of the evolutionary trajectories of the
pathogens if such studies are conducted in ecologically realistic
conditions.
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GENOMIC REARRANGEMENTS: THE
ENHANCERS OF PATHOGENICITY UNDER
STRESSFUL ENVIRONMENTAL CONDITIONS?

Genomic rearrangements (deletions, inversions and duplications)
are molecular mechanisms that occur through the recombination
between homologous sequences, such as transposons, mobile
genetic elements, insertion sequence (IS) elements and prophages
(Anderson and Roth, 1981; Cui et al., 2012; Iguchi et al., 2006).
This mechanism has significant effects on bacterial phenotypes,
including traits associated with pathogenicity and virulence
(Jackson et al., 2011). Genomic rearrangements can profoundly
affect gene expression, leading to the complete loss of gene
function when the rearrangement falls in reading frames (Darling
et al., 2008).

Several human and plant bacterial pathogens exhibit a reduced
genome size compared with other non-pathogenic bacteria
because of frequent genomic rearrangements (Jackson et al.,
2011). These genomic reductions in specialized pathogens are
often associated with host adaptation. A long-term study on
patients affected by cystic fibrosis showed that 8% of the
P. aeruginosa genome was deleted following an adaptation to the
human environment (12-fold greater than in strains that evolved
in vitro; Rau et al., 2012). Evidence that genomic rearrangements
lead to the acquisition of pathogenicity traits also exists in
phytopathogenic bacteria. In planta experiments have demon-
strated that, during bean infection, P. syringae pv. phaseolicola
loses the conjugative PPHGI-1 element, carrier of the avirulent
gene hopAR1 which triggers immune responses in bean plants.
The loss of PPHGI-1 leads to disease development in the host plant
(Lovell et al., 2009). In P. syringae, the exchangeable effector
locus (EEL), which is part of the type III secretion system (T3SS) of
this bacterium and harbours effector genes important for both
pathogenicity and host range, contains mobile and IS elements
(Alfano et al., 2000). The presence of these mobile elements sug-
gests that EEL is often the target of recurrent genomic rearrange-
ments, potentially facilitating host adaptation, with direct
consequences on the emergence of pathogenic P. syringae
lineages.

The relationship between environmental stresses and the occur-
rence of rearrangements in genomic regions with IS has been
demonstrated in only a few cases. In a glucose-limited environ-
ment, inversions, deletions and duplications located close to IS
elements, have been shown to confer a rapid fitness enhancement
in 12 evolved E. coli strains (Raeside et al., 2014). Deletion and
duplication events have also been observed in E. coli strains under
high-temperature conditions as a response to thermal adaptation
(Riehle et al., 2001). The latter study suggests that, in the context
of ongoing climate change, bacteria might be more likely to
rearrange their genome to rapidly adapt to fluctuating tempera-
tures. Genomic rearrangements have also been shown to play an

important role in the adaptation of Thermus species to human-
made pullulate environments (Kumwenda et al., 2014). The nature
of other environmental factors driving genomic rearrangements
and the molecular mechanisms that influence such rearrange-
ments still remain open questions, particularly in the case of
pathogenicity acquisition.

The first step in understanding the factors driving genomic
rearrangements requires a better identification of such rearrange-
ments. To date, the detection of genomic rearrangements is still
limited because of the short reads produced by the current next-
generation sequencing technologies. Consequently, assembling
methods on next-generation sequence data often fail to assemble
regions containing IS or other transposable sequences associated
with genomic rearrangements.With the ever more successful next-
generation sequencing technologies that allow the sequencing of
>1-kb reads (e.g. Pacific Biosciences Menlo Park, CA, USA), the
investigation and detection of genomic rearrangements in evolving
bacterial populations will be facilitated (Larsen et al., 2014).

HGT: THE DIRECT ACQUISITION OF NEW
PATHOGENIC DETERMINANTS OCCURRING
INSIDE AND OUTSIDE THE HOST

HGT consists of the movement of genetic material from a ‘donor’
to a ‘recipient’ cell, which can lead to either modest or profound
genomic differences among closely related bacterial strains (Polz
et al., 2013). HGT, one of the powerful evolutionary processes at
the molecular level, can immediately change the phenotype of
bacteria, including their ability to colonize new habitats, differen-
tiate in new niches and infect new hosts. Several studies have
demonstrated that HGT is structured by habitats and ecology,
rather than by geography and phylogeny, i.e. donors and recipients
usually reside in the same habitat and share the same ‘ecological
behaviour’ (Boucher et al., 1997; Polz et al., 2013; Popa et al.,
2011). In particular, genes acquired horizontally form networks
among bacteria that reflect the species niche specialization of
these bacteria (Popa et al., 2011). For example, a recent study
from the human microbioma demonstrated that the human body
is shaped by different niches in which bacteria are clustered
(Smillie et al., 2011).Within these niches, bacteria experience high
levels of HGT independently from their phylogenetic histories. This
process facilitates the colonization of a given niche by new bac-
terial species (Smillie et al., 2011).

Several studies on human bacterial pathogens have demon-
strated how a bacterial lineage can rapidly shift from a weakly to
a highly aggressive form through the acquisition of virulence
determinants via HGT processes. Pathogenic lineages of Staphy-
lococcus aureus evolved from several HGT events, leading to the
acquisition of plasmids, pathogenicity islands (carrying genes
important for pathogenicity of bacteria), bacteriophage and other
transferred genomic determinants (Lindsay, 2010). A recent study
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has shown that the acquisition of an arginine catabolic mobile
element harbouring spermidine genes from Staphylococcus
epidermidis provided an advantage to S. aureus during skin colo-
nization (Planet et al., 2013).

Non-host-adapted bacterial lineages can evolve into host-
specialized pathogenic lineages via HGT. An example is the
Yersinia genus in which non-pathogenic lineages horizontally
acquired the pCD1 plasmid carrying T3SS that led to the evolution
of the primordial non-pathogenic Yersinia into an aggressive
human pathogen (Wren, 2003; Zhou et al., 2004).

HGT also has an undisputed role in the emergence of
phytopathogenic bacteria. For example, the presence of IS
elements, integrases, transposases and different G + C contents
suggests that pathogenicity islands spread among bacteria via
HGT processes, thereby enabling them to invade their hosts
(Hacker et al., 1997). Most plant-pathogenic bacteria—
Pseudomonas, Erwinia, Xanthomonas and Ralstonia—have
evolved two different hrp/hrc cluster groups that encode for the
central core of T3SS. The discrepancy between the presence/
absence of these two cluster groups and the phylogeny of dif-
ferent bacterial species has provided strong evidence that the
hrp/hrc cluster has been horizontally acquired (Alfano and
Collmer, 1997; Araki et al., 2006). The acquisition of a plasmid
harbouring a hrp/hrc gene cluster, T3SS effectors and a gene
cluster encoding for the biosynthesis of indole-3-acetic acid
transformed the epiphytic Pantoa agglomerans into a host-
specific, gall-forming pathogen of two different host plants, i.e.
gypsophila and sugar beet (Barash and Manulis-Sasson, 2009).
In silico whole-genome analysis constitutes a powerful tool to
investigate genomic regions that are under HGT and to under-
stand whether these regions could affect the pathogenic behav-
iour of a given bacterial species. For example, a study on
the whole genome of X. campestris pv. campestris and
X. axonopodis pv. citri revealed that genes associated with
pathogenicity and suppression of host immune defences have
been acquired by HGT during the evolutionary histories of these
phytopathogenic bacteria (Lima et al., 2008).

The bacterial genome can also show traces of prophages—i.e.
bacteriophages integrated into the host bacterial genome, follow-
ing infection. These integrative elements can be considered as a
particular case of HGT. In addition, prophages can easily be trans-
ferred horizontally among bacteria as they are often associated
with gene transfer agents (Varani et al., 2013). Prophage, once
integrated into the genome, confers novel phenotypic properties
to the recipient bacterial cell, including the pathogenicity trait
(Canchaya et al., 2004). The relationship between prophages and
disease emergence has been studied intensively in the medical
field, such as the prophage of Salmonella typhimurium carrying
the SopE effector protein (Mirold et al., 1999) and the Shigella
flexneri prophage Sf6 harbouring genes that encode for the
lipopolysaccharide (LPS) virulence factors (Clark et al., 1991). By

contrast, the direct link between phages and pathogenicity traits
has been much less well investigated in plant-pathogenic bacteria.
There is evidence that effector proteins and other virulent genes
are flanked by phage DNA sequences (Varani et al., 2013), sug-
gesting that phages play an important role in the pathogenicity of
phytopathogenic bacteria. Studies on the two prophages SC1 and
SC2 of Candidatus Liberibacter asiaticus, the causal agent of citrus
greening, showed that their activation may be regulated by ROS
stress produced during infection in non-host plants (Zhang et al.,
2011). In particular, the expression of the lytic phase induced by
the bacterium was higher during non-host plant infection (i.e.
periwinkle), thereby suggesting a lack of adaptation of
Ca. L. asiaticus to periwinkle cells. By contrast, no lytic phase was
induced on citrus, the natural host of Ca. L. asiaticus. In other
words, induction of the SC1 prophage by the bacterium was
shown to be responsible for the host specificity of Ca. L. asiaticus
(Fleites et al., 2014).

Particular environmental conditions markedly influence bacte-
rial competence, which is the first step in gene uptake. In
general, stressful environmental conditions alter bacterial com-
petency to uptake DNA, thereby facilitating bacteria to acquire
genomic determinants that might enhance their fitness in hostile
environments (Jackson et al., 2011). For example, in
Pseudomonas stutzeri, the activation of genes for cell compe-
tence, and consequently HGT, occurs only under low nutritional
environments as an adaptive strategy based on the acquisition
of genomic determinants triggered by poor food supplies
(Bertolla and Simonet, 1999). Likewise, extreme environmental
conditions, such as high salinity or temperature, can influence
cell competence with an effect on HGT occurrence. Bacteria from
high-salinity waters have been shown to express gene transfer
agents (proteins that aid HGT in bacteria; McDaniel et al., 2012),
suggesting that such environments can represent reservoirs of
bacteria characterized by a high ability to acquire new genomic
elements with putative consequences on disease emergence.
Interestingly, in contrast with stressful conditions, particular high
nutritional levels that allow the maintenance of high bacterial
concentrations have been demonstrated to be essential for HGT
occurrence (Dröge et al., 1998). Therefore, one can speculate
that plants are optimal environments in which HGT might occur
among bacterial species. Several studies have also identified
water habitats as reservoirs of HGT processes for bacteria
(reviewed by Lupo et al., 2012). In water habitats, favourable
conditions for HGT are shaped by filter-feeding organisms or a
biofilm matrix, both of which concentrate numerous bacterial
species at high densities, thereby enhancing HGT processes
(Molin and Tolker-Nielsen, 2003). Because phages are much
more abundant than bacterial cells in water habitats (Srinivasiah
et al., 2008), it can be deduced that such habitats can play an
important role in HGT (from phages to bacteria) of pathogenic
determinants (Colomer-Lluch et al., 2011).
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Ecological studies that aim to understand where HGT processes
occur and under what conditions—such as whole-genome com-
parisons of different pathogenic and non-pathogenic bacterial
lineages—in combination with experimental evolution
approaches applied to these bacterial lineages, could help us
understand how a non-pathogenic strain can rapidly evolve, adapt
to hosts and spread, thereby causing disease epidemics. The eco-
logical data on the distribution of P. syringae in non-agricultural
habitats showed the importance of looking beyond the host
(Bartoli et al., 2015a; Morris et al., 2007, 2010). Although com-
parative genomics studies have been performed on non-crop and
weakly pathogenic P. syringae strains, evolution experiments that
aim to demonstrate whether these strains might evolve into
aggressive pathogens via HGT or other molecular evolutionary
mechanisms are still lacking.

CONCLUSIONS

Infectious bacterial diseases emerge as a consequence of molecu-
lar evolutionary processes underlying DNA modifications naturally
experienced by bacteria. The mechanisms underlying these
molecular evolutionary processes can be affected by several envi-
ronmental factors to which bacteria are exposed. As a conse-
quence, the rearrangements of pre-existing pathogenic
determinants or the acquisition of new ones can occur in environ-
mental conditions completely different from those of the final host
plants. In order to better understand disease emergences and to
develop sustainable management practices, we strongly encour-
age interdisciplinary studies that merge the fields of ecology,
pathology, genomics and molecular biology. In particular, we
suggest setting up: (i) parallel experiments in both controlled and
field conditions to investigate whether DNA modifications are
driven by environmental factors that are different from those in
host plants; (ii) experiments that simulate stressful conditions to
understand whether these conditions are the major forces regu-
lating cell competence and mutations; and (iii) field experiments
that aim to study disease emergence in the context of plant
communities that might be reservoirs of pathogenic bacteria.

With the continuing development of next-generation sequenc-
ing technologies, population genomics has become a low-cost tool
to study the epidemiology, aetiology and evolution of bacteria
causing emerging diseases. In human bacterial pathogens, several
studies have demonstrated the power of population genomics in
understanding the virulence factors determining pathogen spread
(reviewed by Wilson, 2012). The sampling strategies adopted to
investigate the evolution of pathogens under a population
approach can strongly influence the biological conclusions of a
given study (Vinatzer and Monteil, 2014). Unlike human bacterial
pathogens—where some studies on pathogenic strains have been
performed at the population level—most evolutionary studies in
plant pathology have lacked a population sampling approach.

Recently, Karasov et al. (2014) have adopted a population
approach whilst studying Arabidopsis thaliana and its
co-inhabiting P. syringae populations, and have revealed new
insights into the evolutionary trajectories of the plant resistant R
gene RPS5 and the corresponding bacterial effector avrPphB.
Based on their results, the authors concluded that a long-lived
polymorphism in the gene RPS5 was more likely to be maintained
through complex and diffuse community-wide interactions and
probably not through a tightly coupled interaction involving a
single co-evolved R gene and effector pair (Karasov et al., 2014).
Therefore, we urge future studies that aim to understand the
evolution of plant-pathogenic bacteria in a context of disease
emergence to carefully consider population samples.
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