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Abstract

Many real datasets contain values missing not at random (MNAR). In this scenario, investigators 

often perform list-wise deletion, or delete samples with any missing values, before applying causal 

discovery algorithms. List-wise deletion is a sound and general strategy when paired with 

algorithms such as FCI and RFCI, but the deletion procedure also eliminates otherwise good 

samples that contain only a few missing values. In this report, we show that we can more 

efficiently utilize the observed values with test-wise deletion while still maintaining algorithmic 

soundness. Here, test-wise deletion refers to the process of list-wise deleting samples only among 

the variables required for each conditional independence (CI) test used in constraint-based 

searches. Test-wise deletion therefore often saves more samples than list-wise deletion for each CI 

test, especially when we have a sparse underlying graph. Our theoretical results show that test-

wise deletion is sound under the justifiable assumption that none of the missingness mechanisms 

causally affect each other in the underlying causal graph. We also find that FCI and RFCI with 

test-wise deletion outperform their list-wise deletion and imputation counterparts on average when 

MNAR holds in both synthetic and real data.
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1 The Problem

Many real observational datasets contain missing values, but modern constraint-based causal 

discovery (CCD) algorithms require complete data. These facts force many investigators to 

either perform list-wise deletion or imputation on their datasets. The first strategy can 

unfortunately result in the loss of many good samples just because of a few missing values. 

On the other hand, the second strategy can corrupt the joint distribution when the 

corresponding assumptions do not hold. Both of these approaches therefore can (and often 

do) degrade the performance of CCD algorithms. We thus seek a practical method which 

allows CCD algorithms to efficiently utilize the measured values while placing few 

assumptions on the missingness mechanism(s).

We specifically choose to tackle the most general case of values missing not at random 

(MNAR), where missing values may depend on other missing values. MNAR stands in 
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contrast to values missing at random (MAR), where missing values can only depend on the 

measured values. MAR thus ensures recoverability of the underlying distribution from the 

measured values alone. In causal discovery, investigators usually deal with MAR by 

performing imputation and then running a CCD algorithm on the completed data [18, 19]. 

Causal discovery under MAR therefore admits a straightforward solution, once an 

investigator has access to a sound imputation method.

Causal discovery under MNAR requires a more sophisticated approach than causal 

discovery under MAR. Investigators have developed three general strategies for handling the 

MNAR case thus far. The first approach assumes access to some background knowledge for 

modeling the missingness mechanism, typically encoded using graphs [7,13,17]. 

Investigators with deep knowledge about the dataset at hand can therefore use this strategy 

to convert the MNAR problem into a more manageable form. However, access to 

background knowledge is arguably scarce in many situations or prone to error. The second 

solution involves placing an extra assumption on the missingness mechanism(s) so that we 

may combine the results of multiple runs of a CCD algorithm; in particular, we assume that 

a dataset with missing values can be decomposed into multiple datasets with potentially non-

overlapping variables subject to the same set of selection variables [25,27,26,28]. The 

problem of missing values therefore reduces to a problem of combining multiple datasets. 

Investigators nevertheless often find the assumption of identical selection bias across 

datasets hard to justify in practice. The third most general solution involves running a CCD 

algorithm that can handle selection bias on a list-wise deleted dataset, where investigators 

remove samples that contain any missing values [20]. List-wise deletion is nonetheless 

sample inefficient, because it eliminates samples with only a mild number of missing values. 

We therefore conclude that the three aforementioned strategies for the MNAR case can carry 

unsatisfactory limitations in real situations.

In this report, we propose to handle the MNAR case in CCD algorithms using a different 

strategy involving test-wise deletion. Here, test-wise deletion refers to the process of only 

performing list-wise deletion among the variables required for each conditional 

independence (CI) test. We develop the test-wise deletion procedure in detail throughout this 

report as follows. First, we provide background material in Section 2. We then characterize 

missingness using graphical models augmented with missingness indicators in Sections 3 

and 4. Next, we justify test-wise deletion in Sections 5 and 7 under the assumption that 

certain sets of missingness indicators do not causally affect each other in the underlying 

causal graph. These results lead to our final solution in Section 8. We also list experimental 

results in Section 9 which highlight the benefits of the Fast Causal Inference (FCI) algorithm 

and the Really Fast Causal Inference (RFCI) algorithm with test-wise deletion as opposed to 

the same algorithms with list-wise deletion or imputation. Finally, we conclude the paper 

with a short discussion in Section 10.

2 The Causal Interpretation of Graphs

Let italicized capital letters such as A denote a single variable and bolded as well as 

italicized capital letters such as A denote a set of variables (unless specified otherwise). We 

write A = 1 to indicate that all members of A are set to one. We will also use the terms 
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“variables” and “vertices” interchangeably. We assume that the reader is familiar with basic 

graphical terminology, which we cover briefly in Appendix 11.1.

We will interpret directed acyclic graphs (DAGs) in a causal fashion. To do this, we consider 

a stochastic causal process with a distribution ℙ over X that satisfies the Markov property. A 

distribution satisfies the Markov property if it admits a density that “factorizes according to 

the DAG” as follows:

f (X) = ∏
i = 1

p
f Xi | Pa Xi . (1)

We can in turn relate (1) to a graphical criterion called d-connection. Specifically, if 𝔾 is a 

directed graph in which A, B and C are disjoint sets of vertices in X, then A and B are d-
connected by C in the directed graph 𝔾 if and only if there exists an active path π between 

some vertex in A and some vertex in B given C. An active path between A and B given C 
refers to an undirected path π between some vertex in A and some vertex in B such that, for 

every collider Xi on π, a descendant of Xi is in C and no non-collider on π is in C. A path is 

inactive when it is not active. Now A and B are d-separated by C in 𝔾 if and only if they are 

not d-connected by C in 𝔾. For shorthand, we will write A ⫫d B|C and A⫫dB |C when A and 

B are d-separated or d-connected given C, respectively. The conditioning set C is called a 

minimal separating set if and only if A ⫫d B|C but A and B are d-connected given any proper 

subset of C.

Now if we have A ⫫d B|C, then A and B are conditionally independent given C, denoted as 

A ⫫ B|C, in any joint density factorizing according to (1); we refer to this property as the 

global directed Markov property. We also refer to the converse of the global directed 

Markov property as d-separation faithfulness; that is, if A ⫫ B|C, then A and B are d-

separated given C. One can in fact show that the factorization in (1) and the global directed 

Markov property are equivalent, so long as the distribution over X admits a density [10].1

A maximal ancestral graph (MAG) is an ancestral graph where every missing edge 

corresponds to a conditional independence relation. We specifically partition X = O ∪ L ∪ S 
into observable, latent and selection variables, respectively. One can then transform a DAG 

𝔾 = (O ∪ L ∪ S, ℰ) into a MAG MAG𝔾 = (O, ℰ) as follows. First, for any pair of vertices 

{Oi,Oj}, make them adjacent in 𝔾 if and only if there is an inducing path between Oi and Oj 

in 𝔾. We define an inducing path as follows:

Definition 1 A path π between Oi and Oj is called an inducing path with respect to L and S 
if and only if every collider on π is an ancestor of {Oi,Oj} ∪ S, and every non-collider on π 
(except for the endpoints) is in L.

1.We will only consider distributions which admit densities in this report.
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Note that two observables Oi and Oj are connected by an inducing path if and only if there 

are d-connected given any W ⊆ O \ {Oi,Oj} as well as S. Then, for each adjacency Oi ∗−∗ Oj 

in 𝔾, place an arrowhead at Oi if Oi ∉ An(Oj ∪ S) and place a tail otherwise. The MAG of a 

DAG is therefore a kind of marginal graph that does not contain the latent or selection 

variables, but does contain information about the ancestral relations between the observable 

and selection variables in the DAG. The MAG also has the same d-separation relations as the 

DAG, specifically among the observable variables conditional on the selection variables 

[23].

3 Selection Bias

Selection bias refers to the preferential selection of samples from ℙX, potentially due to 

some unknown factors S ⊆ X. Such preferential selection occurs in a variety of real-world 

contexts. For example, a psychologist may wish to discover principles of the mind that apply 

to the general population, but he or she may only have access to data collected from college 

students. A medical investigator may similarly wish to elucidate a disease process occurring 

in all patients with the disease, but he or she may only have samples collected from low 

income patients in Chicago who chose to enroll in the investigator’s study.

We can represent selection bias graphically using a DAG over X = {O ∪ L ∪ S}. We 

specifically let S denote a set of binary indicator variables taking values in {0,1}. Without 

loss of generality, we then say that a sample is selected if and only if all of the indicator 

variables in S take on a value of one. The preferential selection of samples due to selection 

bias therefore amounts to conditioning on S = 1; in other words, we no longer have access to 

i.i.d. samples from ℙO but rather i.i.d samples from ℙO |S = 1.

As an example, let X = {X1,…,X5}, O = {X1,X3} and L = {X4,X5}. Also let S = X2 

correspond to a binary variable taking the value of 1 when X1 is less than 50K and 0 

otherwise. Consider drawing i.i.d. samples from a joint distribution ℙX as shown in Figure 

1a; here, each sample corresponds to a row in the table. The caveat however is that we can 

only observe the values of {X1,X3} when X1 is below 50K as highlighted in blue in Figure 

1a. We therefore observe {X1,X3} when X2 = S takes on a value of 1, and otherwise we do 

not. In the real world, this situation may correspond to a physician who wants to measure the 

income X1 and resting systolic blood pressure (SBP) X3 of patients in the true patient 

population. The physician can nevertheless only measure {X1,X3} in patients with low 

income, since patients with low income tend to enroll in medical studies more often than 

patients with high income. Thus, we no longer have access to i.i.d. samples from ℙX1X3
 but 

rather i.i.d. samples from ℙX1X3 | X2 = 1, or equivalently ℙO |S = 1.

We can represent the causal process in the above example using the probabilistic DAG 

represented in Figure 1b. Here, we interpret X2 as a child of X1, since X2 represents an 

indicator variable that takes on values according to the values of X1. Notice also the double 

sided vertex in Figure 1b which denotes the conditioning on low income when X2 = 1.
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4 Missingness as Selection Bias on Selection Bias

We can informally interpret missing values as a type of “selection bias on selection bias.” 

Here, the first layer of selection bias due to S refers to the aforementioned measurement of 

all variables in O in a preferential selection of the samples. Missing values in turn represent 

the second layer of selection bias because missing values arise due to the measurement of 

only a subset of the variables in O in a preferential subset of the available samples already 

subject to the selection bias of S.

The missingness may more formally arise for many reasons as modeled by the factors 

SO1
⊇ S for O1, SO2

⊇ S for O2, and so on for all p variables in O. We therefore encode the 

binary missingness status (measured or missing) of any observable Oi ∈ O using the binary 

missingness indicators SOi
\S ⊆ L. Here, we measure the value of Oi if and only if SOi

= 1

because we must select a sample when S = 1 and then measure the value of Oi when SOi
 The 

preferential selection of samples due to some SOi
 thus amounts to conditioning on SOi

= 1

similar to the original selection bias case; in other words, we no longer have access to i.i.d. 

samples from the marginal distribution ℙOi
 or even ℙOi |S = 1 but rather i.i.d samples from 

ℙOi |SOi
= 1. We can also consider arbitrary joint distributions ℙV, where V ⊆ O. We have 

access to without selection bias, ℙV|S = 1 with selection bias, and ℙV|SV = 1 with selection 

bias and missing values, where SV = ∪V ∈VSV.

Consider for example the same samples in Figure 1a but with missing values according to 

the binary variable X5 in Figure 1c. Now, the variable X3 highlighted in pink in Figure 1c is 

subject to the selection variables SX3
= X2, X5 = 1 due to the unmeasured or missing 

values. On the other hand, the variable X1 in green is only subject to the original 

SX1
= X2 = S = 1 because X1 contains no missing values. We can therefore represent 

these two situations graphically as in Figure 1b for SX1
 and Figure 1d for SX3

. Notice that 

Figure 1d has an extra double sided vertex X5 representing the extra conditioning.

Returning to our medical example, X4 may correspond to the number of miles from the 

hospital to a patient’s house. Individuals with low income may have a hard time commuting 

to the hospital, if they live far away. The physician therefore may not be able to measure 

SBP X3 in low income patients who live far from the hospital. We thus no longer even have 

access to i.i.d. samples from ℙX1X3 |S = 1 but instead have access to i.i.d. samples from a set 

of conditional distributions {ℙ
X1 SX1

= 1
, ℙ

X3 SX3
= 1

, ℙ
X1X3 SX1X3

= 1
}.

More generally, we do not have access to i.i.d. samples from ℙO |S = 1 when missing values 

exist. Instead, we have access to i.i.d. samples from a set of conditional distributions 
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{ℙV|SV = 1, ∀V ⊆ O}. In this sense, we must deal with heterogeneous selection bias induced 

by SO1
, …, SOp

 as opposed to homogeneous selection bias induced by just S.

5 An Assumption on the Missingness Mechanisms

Let Su denote the set of q ≤ p unique members of SO1
, …, SOp

. Note that we have so far 

imposed no restrictions on the causal relations involving S or any member of Su. From here 

on, we will continue to impose no restrictions on the causal relations involving S, but we 

will impose restrictions on the causal relations involving the elements in the set 

M = S1
u\S, …, Sq

u\S .

Recall that each Mi ∈ M corresponds to a set of missingness indicators, but we can 

colloquially call each Mi ∈ M a “missingness mechanism” because we obtain missing values 

for some subset of variables V ⊆ O when (at least) one member of Mi takes on a value of 0. 

Here, a missingness mechanism often corresponds to a practical issue. For example, we may 

have three variables in Mi corresponding to three instruments required to perform a 

measurement. We have Mi = 1 when three instruments can perform the measurement but one 

variable in Mi equals zero when one of the three instruments fails. We may similarly have 

M3 = 1 when a subject can commute to the hospital and M3 = 0 when the subject cannot 

commute to the hospital as in the running medical example; thus M3 = X5 in this case.

Now let ℐi = 1, …, q \i  and consider the following assumption:

Assumption 1 (Non-Ancestral Missingness) Each Mi ∈ M does not contain an ancestor of 
any variable in O ∪ S or ∪ j ∈ ℐi

M j.

The above non-ancestral missingness assumption appears technical at first glance, but we 

can justify it using an inductive argument that reads as follows.2 First note that we have no 

missing values if and only if all variables in the sets in M take on a value of one. Suppose 

then that we have a missing value but then manually set all variables in the sets in M to one 

in order to observe the value. Then we do not expect the mere act of observing a value, or 

equivalently intervening on the sets in M, to induce changes in (or causally affect) (1) the 

values of the observable variables O in a dataset or (2) the set of available samples 

determined by S. In other words, none of the variables in any set in M should be an ancestor 

of any of the variables in O ∪ S.

The non-ancestral missingness assumption however imposes the extra condition that no 

missingness mechanism Mi ∈ M contains an ancestor of any variable in ∪ j ∈ ℐi
M j. We find 

the extra assumption reasonable, if an attempt is made to measure each observable variable 

in O for each sample regardless of the missingness status of any other variable in O. This 

means that the missingness statuses cannot causally affect each other. Now recall that the 

2.Recall that justifying MAR or MCAR in real datasets also requires inductive arguments.
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missingness status of any variable is determined by the variable’s missing mechanism. 

Hence, we can equivalently state that the missingness mechanisms cannot causally affect 

each other (i.e., each Mi ∈ M does not contain an ancestor of any variables in ∪ j ∈ ℐi
M j). 

For example, we assume that a failure of any one of three instruments does not cause an 

investigator to potentially forgo the measurement of other variables which do not require the 

instruments but say rather cost a lot of money. Instead, the investigator attempts to measure 

the other variables regardless of whether or not an instrument fails. The instrument failures 

are thus not causes of the inability to pay or any other missingness mechanism. We conclude 

inductively that non-ancestral missingness is justified with “comprehensively measured 

observational data,” where an attempt is made to measure each observable variable in O for 

each sample regardless of the missingness status of any other variable in O.

6 The FCI & RFCI Algorithms

We can justify test-wise deletion, if we can utilize the non-ancestral missingness assumption 

as well as CCD algorithms which can handle selection bias. We will focus on two such CCD 

algorithms in particular called FCI and RFCI. We therefore cover the two algorithms briefly 

in the next two subsections.

6.1 The FCI Algorithm

The FCI algorithm considers the following problem: assume that the distribution of X = O ∪ 
L ∪ S is d-separation faithful to an unknown DAG. Then, given oracle information about the 

conditional independencies between any pair of variables Oi and Oj given any W ⊆ O\

{Oi,Oj} as well as S, reconstruct as much information about the underlying DAG as 

possible. The FCI algorithm ultimately accomplishes this goal by reconstructing a MAG up 

to its Markov equivalence class, or the set of the MAGs with the same conditional 

independence relations over O given S.

The FCI algorithm represents the Markov equivalence class of MAGs, or the set of MAGs 

with the same conditional dependence and independence relations between variables in O 
given S, using a completed partial maximal ancestral graph (CPMAG).3 A partial maximal 
ancestral graph (PMAG) is nothing more than a MAG with some circle endpoints. A PMAG 

is completed (and hence a CPMAG) when the following conditions hold: (1) every tail and 

arrowhead also exists in every MAG belonging to the Markov equivalence class of the 

MAG, and (2) there exists a MAG with a tail and a MAG with an arrowhead in the Markov 

equivalence class for every circle endpoint. Each edge in the CPMAG also has the following 

interpretations:

i. An edge is absent between two vertices Oi and Oj if and only if there exists some 

W ⊆ O\{Oi,Oj} such that Oi ⫫ Oj|(W,S). That is, an edge is absent if and only if 

there does not exist an inducing path between Oi and Oj with respect to L and S.

ii. If an edge between Oi and Oj has an arrowhead at Oj, then Oj ∉ An(Oi ∪ S).

3.The CPMAG is also known as a partial ancestral graph (PAG). However, we will use the term CPMAG in order to mimic the use of 
the term CPDAG.
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iii. If an edge between Oi and Oj has a tail at Oj, then Oj ∈ An(Oi ∪ S).

The FCI algorithm learns the CPMAG through a three step procedure. Most of the 

algorithmic details are not important for this paper, so we refer the reader to [21] and [29] 

for algorithmic details. However, three components of FCI called v-structure discovery, 

orientation rule 1 (R1), and the discriminating path rule (R4) are important. V-structure 

discovery reads as follows: suppose Oi and Ok are adjacent, Oj and Ok are adjacent, but Oi 

and Oj are non-adjacent. Further assume that we have Oi ⫫ Oj|(W, S) with W ⊆ O \ {Oi,Oj} 

and Ok ∉ W. Then orient the triple 〈Oi,Ok, Oj〉 as . R1 reads as follows: if we have , 

Oi ⫫ Oj|(W,S) with W ⊆ O\{Oi,Oj} minimal, and Ok ∈ W, then orient  as ; here, the 

asterisk represents a placeholder for either a tail, arrowhead or circle. R4 involves the 

detection of additional colliders in certain shielded triples.

6.2 The RFCI Algorithm

Discovering inducing paths can require large d-separating sets, so the FCI algorithm often 

takes too long to complete. The RFCI algorithm [5] resolves this problem by recovering a 

graph where the presence and absence of an edge have the following modified 

interpretations:

i. The absence of an edge between two vertices Oi and Oj implies that there exists 

some W ⊆ O\{Oi,Oj} such that Oi ⫫ Oj|(W,S).

ii. The presence of an edge between two vertices Oi and Oj implies that 

Oi ⫫ O j | (W, S) for all W ⊆ Adj(Oi) \ Oj and for all W ⊆ Adj(Oj) \ Oi. Here Adj(Oi) 

denotes the set of vertices adjacent to Oi in RFCI’s graph.

We encourage the reader to compare these edge interpretations to the edge interpretations of 

FCI’s CPMAG.

The RFCI algorithm learns its graph (not necessarily a CPMAG) also through a three step 

procedure. We refer the reader to [5] for algorithmic details.

7 Graph Theory

We now analyze the effects of using test-wise deletion with FCI and RFCI in detail. We will 

consider the set of selection variables Sl = ∪i = 1
p SOi

. Notice that we obtain Sl = 1, when we 

perform list-wise deletion on the dataset. Also let SOiO jW
 refer to the selection set induced 

by the complete samples among the variables Oi,Oj and W ⊆ O \ {Oi,Oj} alone by setting V 
= {Oi,Oj,W} in SV; in other words, SOiO jW

 corresponds to the selection variables obtained 

after performing test-wise deletion, or list-wise deletion only among the variables 

{Oi,Oj,W}.

The following important lemma now forms the basis of our arguments:
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Lemma 1 Assume non-ancestral missingness. If Oi ⫫d O j | (W, SOiO jW
) with W ⊆ O \{Oi,Oj}, 

then Oi ⫫d O j | (W, Sl).

Proof If Oi ⫫d O j | (W, SOiO jW
), then {W, SOiO jW

} must contain the descendants of all 

colliders and no non-colliders on a path π between Oi and Oj. In other words, π is active 

given {W, SOiO jW
}. Note that the conclusion follows trivially if Sl = SOiO jW

. Suppose then 

that we have Sl ⊃ SOiO jW
. Let TOiO j

W = Sl \SOiO jW
. It suffices to show that TOiO jW

 cannot 

contain a non-collider on π. Suppose for a contradiction that there exists a variable 

Z ∈ TOiO jW
 which is a non-collider on π. Then Z must be an ancestor of Oi,Oj or SOiO jW

. 

Note that we have Z ∈ {Sl \ S}, so Z must be a member of at least one element in M.

As a result, Z cannot be an ancestor of any variable in O by non-ancestral missingness; thus 

Z cannot be an ancestor of Oi or Oj. So Z can only be an ancestor of SOiO jW
. The variable Z 

however cannot be an ancestor of S also by non-ancestral missingness, so Z can only be an 

ancestor of SOiO jW
\S. Next, notice that Z is not a member of SOi

\S, SO j
\S or SW \S for any 

W ∈ W because we have Z ∈ TOiO jW
. Thus no element in M containing Z can also contain 

an ancestor of SOi
\S, SO j

\S or SW \ S for any W ∈ W by non-ancestral missingness; hence 

no element in M containing Z can also contain an ancestor of SOiO jW
\S, so Z cannot be an 

ancestor of SOiO jW
\S. We conclude by contradiction that TOiO jW

 cannot contain a non-

collider on π. Hence, we have Oi ⫫d O j | (W, Sl) via the active path π.

The above lemma leads to important conclusions regarding the design of CCD algorithms. 

We begin to justify v-structure discovery and an orientation rule (R1) using test-wise 

deletion with another lemma:

Lemma 2 Assume non-ancestral missingness. If we have Oi ⫫d Oj|(W, SOiO jW
) with W ⊆ O 

\ {Oi,Oj} minimal and Oi ⫫d Oj| (W,Sl), then Oi ⫫d Oj|(W,Sl) with W minimal.

Proof If we have Oi ⫫d Oj|(W, SOiO jW
) with W ⊆ O \ {Oi,Oj} minimal, then 

Oi ⫫d O j | (A, SOiO jW
), where A denotes an arbitrary strict subset of W. Now 

Oi ⫫d O j | (A, SOiO jW
) implies Oi ⫫d O j | (A, Sl) by Lemma 1. The conclusion follows because 

we chose A arbitrarily and assumed Oi ⫫d Oj|(W,Sl).

Note that FCI and RFCI require many calls to a CI oracle precisely because they search for 

minimal separating sets. We can therefore take advantage of Lemma 2 by searching for 

minimal separating sets with test-wise deletion and then only confirming the separating sets 
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with list-wise deletion (rather than directly searching for minimal separating sets with list-

wise deletion). This greatly reduces the number of CI tests performed with list-wise deletion.

We can now directly justify some desired conclusions. Let us examine the most difficult 

arguments in detail. We have the following conclusion for v-structure discovery and R1:

Proposition 1 Assume non-ancestral missingness. Suppose Oi ⫫d Oj|(W,SOiO jW
) with W ⊆ 

O \ {Oi,Oj} minimal and Oi ⫫d Oj|(W,Sl). Further assume Oi ⫫d Ok | (W, SOiO jW
) and 

O j ⫫d Ok | (W, SOiO jW
). We have Ok ∈ W if and only if Ok ∈ An({Oi,Oj} ∪ Sl).

Proof If Oi ⫫d Oj|(W, SOiO jW
) with W minimal and Oi ⫫d Oj|(W,Sl), then Oi ⫫d Oj|(W,Sl) 

with W minimal by Lemma 2. By Lemma 1, we know that Oi ⫫d Ok | (W , SOiO jW
) and 

O j ⫫d Ok | (W, SOiO jW
) imply Oi ⫫d Ok | (W, Sl) and O j ⫫d Ok | (W, Sl), respectively. We may now 

invoke Lemma 3.1 of [5] with Sl.

We can also justify the discriminating path rule (R4) with a similar argument:

Proposition 2 Assume non-ancestral missingness. Let πik = {Oi,…,Ol,Oj,Ok} be a sequence 
of at least four vertices which satisfy the following:

1. Oi ⫫d Ok|(W,Sl) with W ⊆ O \ {Oi,Oj},

2. Any two successive vertices Oh and Oh+1 on πik are d-connected given:

Y \ Oh, Oh + 1 ∪ S
OhOh + 1 Y\ Oh, Oh + 1

for all Y ⊆ W,

3. All vertices Oh between Oi and Oj (not including Oi and Oj) satisfy Oh ∈ An(Ok) 

and Oh ∉ An({Oh−1,Oh+1}∪Sl), where Oh−1 and Oh+1 denote the vertices 
adjacent to Oh on πik.

Then, if Oj ∈ W, then Oj ∈ An(Ok ∪ Sl) and Ok ∈ An(Oj ∪ Sl). On the other hand, if Oj ∉ 
W, then Oj ∉ An({Ol,Ok} ∪ Sl) and Ok ∉ An(Oj ∪ Sl).

Proof Apply Lemma 1 to conclude that the required d-connections with 

S
OhOh + 1 Y\ Oh, Oh + 1

 also hold with Sl. Subsequently invoke Lemma 3.2 of [5] with Sl.

We can prove the soundness of the remaining 8 orientation rules in [29] using a similar 

strategy.4 Many desired conclusions therefore easily follow from Lemmas 1 and 2.

4.FCI has 10 orientation rules in total, 2 of which include R1 and R4.
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8 FCI & RFCI with Test-Wise Deletion

We introduced some direct proofs in Propositions 1 and 2 of the previous section which 

capitalize on Lemmas 1 and 2. We can however actually prove the full soundness and 

completeness of FCI in one sweep by designing a CI oracle wrapper.

We introduce the CI oracle wrapper in Algorithm 1. Without loss of generality, we assume 

that the CI oracle outputs 0 when conditional dependence holds and 1 otherwise. The 

wrapper works by first querying the CI oracle with SOiO jW
 in line 1. If the CI oracle outputs 

1, then the wrapper also checks whether the CI oracle outputs 1 with Sl in line 3. If so, the 

wrapper outputs 1 and otherwise outputs 0 due to line 4. Hence, the wrapper claims 

conditional independence only when both the CI oracle with SOiO jW
 and the CI oracle with 

Sl output 1 thus implementing Lemma 2. On the other hand, if the CI oracle with SOiO jW

outputs 0, then the wrapper immediately outputs 0 thus implementing Lemma 1. Notice that 

the finite sample version of Algorithm 1 follows immediately by replacing line 2 with an α 
level cutoff.

Algorithm 1: CI oracle wrapper

Data:Oi, O j, W

Result: p

1 p Ask CI oracle whetherOi ⫫ O j (W, SOiO jW
)

2 if p is 1 then
3 q Ask CI oracle whetherOi ⫫ O j (W, Sl)

4 p min(p, q)
5 end

We now make the following claim:

Theorem 1 Assume non-ancestral missingness. Further assume d-separation faithfulness. 
Then FCI using Algorithm 1 outputs the same graph as FCI using a CI oracle with Sl. The 
same result holds for RFCI.

Proof Recall that d-separation and conditional independence are equivalent under d-

separation faithfulness, so we can talk about d-separation and conditional independence 

interchangeably. It then suffices to show that Oi ⫫ O j | (W, Sl) if and only if Algorithm 1 

outputs zero. For the backward direction, if Algorithm 1 outputs zero, then we must have (1) 

Oi ⫫ O j | (W, SOiO jW
) or (2) Oi ⫫ O j | (W, Sl) (or both). If (2) holds, the conclusion follows 

immediately. If (1) holds, then the conclusion follows by Lemma 1. For the forward 

direction, assume for a contrapositive that Algorithm 1 outputs one. The conclusion follows 

because Algorithm 1 outputs one only if we have Oi ⫫ Oj|(W, S
OiO j W

) and Oi ⫫ Oj|(W,Sl).
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It immediately follows that FCI equipped with Algorithm 1 is sound and complete under d-

separation faithfulness and non-ancestral missingness.

Note however that FCI or RFCI may not provide the same output using Algorithm 1 and a 

CI oracle with Sl, if we violate the non-ancestral missingness assumption. Consider the 

causal graph in Figure 2a as a specific example. Let O = {X1,X2,X3}, S = ∅, M1 = SX1
= X4

and M3 = SX3
= X5. Notice that the missingness mechanism M3 is a parent of the 

missingness mechanism M1, so that we violate the non-ancestral missingness assumption. 

We also have the following conditional independence relations under d-separation 

faithfulness: X1 ⫫ X2|Sl, X1 ⫫ X2 SX1
 and X1 ⫫ X2 (X3, Sl), where Sl = SX1X3

. FCI or RFCI 

using Algorithm 1 will thus discover the graph in Figure 2b, while the same algorithms 

using a CI oracle with Sl will discover the graph in Figure 2c as a consequence of v-structure 

discovery. Observe that FCI and RFCI using a CI oracle with Sl outperform the same 

algorithms using Algorithm 1 in this case, because only the CCD algorithms using 

Algorithm 1 output a completely uninformative graph. We conclude that non-ancestral 

missingness is critical for justifying FCI and RFCI using Algorithm 1 as potentially superior 

methods to the same algorithms using a CI oracle with Sl.

9 Experiments

We now describe the experiments used to assess the finite sample size performance of test-

wise deletion as compared to existing approaches.

9.1 Algorithms

We compared the following algorithms with Fisher’s z-test and α set to 0.01:

1. FCI with test-wise deletion (i.e., equipped with Algorithm 1);

2. FCI with heuristic test-wise deletion, where we only run line 1 of Algorithm 1. 

We can justify this procedure under values missing completely at random 

(MCAR) as explained in detail in Appendix 11.2;

3. FCI with list-wise deletion [20];

4. FCI with five different imputation methods including hot deck [6], k-nearest 

neighbor (k=5; k-NN) [9], Bayesian linear regression (BLR) [4,1,15], predictive 

mean matching (PMM) [11,14,3,4] and random forests (ntree=10; RF) [8,16,2].

We then repeated the comparisons with RFCI in place of FCI. We therefore compared a total 

of 16 methods.

Note that FCI with heuristic test-wise deletion is not justified in the general MNAR case, but 

we find that it performs well with finite sample CI tests and hence report its results mainly in 

the Appendix.
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9.2 Synthetic Data

9.2.1 Data Generation—We used the following procedure in [5] to generate 400 

different Gaussian DAGs with an expected neighborhood size of 𝔼(N) = 2 and p = 20 

vertices.5 First, we generated a random adjacency matrix 𝒜 with independent realizations of 

Bernoulli(𝔼(N)/(p − 1)) random variables in the lower triangle of the matrix and zeroes in the 

remaining entries. Next, we replaced the ones in 𝒜 by independent realizations of a 

Uniform([−1,−0.1]∪ [0.1,1]) random variable. We can interpret a nonzero entry 𝒜i j as an 

edge from Xi to Xj with coefficient 𝒜i j in the following linear model:

X1 = ε1,

Xi = ∑
r = 1

p − 1
𝒜irXr + εi,

(2)

for i = 2,…,p where ε1,…,εp are mutually independent 𝒩(0, 1) random variables. We finally 

introduced non-zero means μ by adding p independent realizations of a 𝒩(0, 4) random 

variable to X. The variables X1,…,Xp then have a multivariate Gaussian distribution with 

mean vector μ and covariance matrix Σ = (𝕀 − 𝒜)−1(𝕀 − 𝒜)−T, where 𝕀 is the p × p identity 

matrix.

We generated MNAR datasets using the following procedure. We first randomly selected a 

set of 0–4 latent common causes L without replacement. We then selected a set of 1–2 

additional latent variables L without replacement from the set X\L. Next, we randomly 

selected a subset of 3–6 variables in O = X \ L, L  without replacement for each L ∈ L and 

then removed the bottom r percentile of samples from those 3–6 variables according to L; we 

drew r according to independent realizations of a Uniform([0.1,0.5]) random variable. Thus, 

the missing values depend directly on the unobservables L in this MNAR case. The non-

ancestral missingness assumption is also satisfied because none of the missingness 

indicators have children. We finally eliminated all of the instantiations of the latent variables 

L ∪ L from the dataset.

For the MAR case, we again randomly selected a set of 0–4 latent common causes L (at least 

two children) without replacement. We then selected a set of 1–2 observable variables 

O ⊆ O = X \ L  without replacement and then randomly selected a subset of 3–6 variables in 

O\O without replacement for each variable in O ∈ O. We next removed the bottom r 
percentile of samples from those 3–6 variables according to Õ; we again drew r according to 

independent realizations of a Uniform([0.1,0.5]) random variable. Thus, the missing values 

depend directly on the observables Õ with no missing values in this MAR case. We finally 

again eliminated all of the instantiations of the latent variables L from the dataset.

5.We also set 𝔼(N) = 3 and obtained identical results as reported in Appendix 11.4.
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We ultimately created datasets with sample sizes of 100, 250, 500, 1000 and 5000 for each 

of the 400 DAGs for both the MNAR and MAR cases. We therefore generated a total of 400 

× 5 × 2 = 4000 datasets.

9.2.2 Metrics

We compared the algorithms using the structural Hamming distance (SHD) from the oracle 

graphs in the MNAR and MAR cases. We in particular computed the mean SHD difference 
which is equal to the mean of the SHD with test-wise deletion minus the SHD with a 

comparison method (e.g., list-wise or heuristic test-wise deletion).

We set the selection variables to Sl for the oracle graphs in the MNAR case, since FCI with 

test-wise and list-wise deletion recover these graphs in the sample limit. Here, we hope FCI 

and RFCI with test-wise deletion will outperform FCI and RFCI with list-wise deletion, 

respectively, by obtaining lower SHD scores on average.

We also set the selection variables to the empty set for the oracle graphs in the MAR case, 

since a sound imputation method should recover the underlying distribution without 

selection bias using the observed values. Note however that test-wise deletion cannot 

eliminate the selection bias induced by the observed values in this case. Clearly then the 

imputation methods should outperform test-wise deletion under the metric of SHD to the 

oracle graph without selection bias. However, we still hope that the algorithms with test-wise 

deletion will perform reasonably well because none of variables in Õ induce dense MAGs 

by design when acting as selection variables.

9.2.3 Results—We have summarized the results for the MNAR case in Figure 3. We 

focus on comparing FCI and RFCI with test-wise deletion against the same algorithms with 

list-wise deletion. FCI and RFCI with any of the five imputation methods expectedly 

performed much worse in this task, so we relegate the imputation results to Figure 9 in the 

Appendix. We have also summarized the excellent results of heuristic test-wise deletion in 

Figure 6 in the Appendix.

Figures 3a and 3b suggest that the algorithms with test-wise deletion consistently 

outperform their list-wise deletion counterparts across all sample sizes. In fact, most test-

wise vs. list-wise comparisons were significant using paired t-tests at a Bonferroni corrected 

threshold of 0.05/5 for both FCI and RFCI (exceptions: FCI at sample size 5000, t=2.018, 

p=0.044; RFCI 1000, t=2.108, p=0.036; RFCI 5000, t=1.055, p=0.292). We found the 

largest gains with smaller sample sizes, where the CCD algorithms are prone to error and 

greatly benefit from the sample size increase (sample size vs. SHD difference correlation; 

FCI: Pearson’s r=−0.0941, t=−4.226, p=2.48E-5; RFCI: r = −0.111, t=−5.000, p=6.24E-7). 

Figure 3c and 3d list the average sample size increase per executed CI test for test-wise 

deletion compared to list-wise deletion in percentage points. We see that test-wise deletion 

results in an approximately 25 to 35% increase in sample size than list-wise deletion 

regardless of the algorithm. RFCI in particular benefits the most at a steady 35% regardless 

of the sample size because the algorithm utilizes smaller conditioning set sizes than FCI, so 

test-wise deletion results in the deletion of even fewer samples per CI test than list-wise 

deletion for RFCI. We conclude that FCI and RFCI with test-wise deletion consistently 
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outperform their list-wise deletion counterparts because Algorithm 1 allows the algorithms 

to more efficiently utilize the available samples.

We have also summarized the results for the MAR case in Figure 4. Figures 4a and 4b list 

the average ranked results against the five imputation methods. A rank of one denotes the 

best performance whereas a rank of six denotes the worst. We see that test-wise deletion 

again outperforms list-wise deletion. The effect is significant for all sample sizes between 

100 and 500 at a Bonferonni level of 0.05/5 for FCI (max t = −5.223, max p = 2.84E-7) and 

for RFCI (max t = −4.147, max p = 4.12E-5). The performance improvements result from 

the improved sample efficiency of test-wise deletion as compared to list-wise deletion in 

both FCI (approx. 15 to 30% increase; Figure 4c) and RFCI (approx. 30% increase; Figure 

4d).

Test-wise deletion and list-wise deletion also perform very well overall even in the MAR 

case as compared to imputation methods. Both methods perform approximately middle of 

the road (rank approx. 2.5) and are only consistently outperformed by BLR and PMM, 

where the linear models are correctly specified. On the other hand, the non-parametric k-NN 

and random forest imputation methods often fall short of both test-wise and list-wise 

deletion. We conclude that FCI and RFCI with test-wise deletion are competitive against the 

same algorithms with imputation even when MAR strictly holds.

9.3 Real Data

We finally ran the same algorithms using the nonparametric CI test called RCoT [24] at α = 

0.01 on a publicly available longitudinal dataset from the Cognition and Aging USA 

(CogUSA) study [12], where scientists measured the cognition of men and women above 50 

years of age. The dataset contains three waves of data, but we specifically focused on the 

first two waves in this dataset. The first two waves are only separated by one week, and the 

investigators collected data for the first wave by telephone. Note that neuropsychological 

interventions are near impossible within a week after phone-based testing, so no missingness 

indicator should be an ancestor of O ∪ S. Moreover, to the best of our knowledge, the 

investigators attempted to measure each variable regardless of the missingness statuses of 

the other variables for each sample. We can therefore justify the non-ancestral missingness 

assumption in this setting.

We used a cleaned version of the dataset containing 1514 samples over 16 variables; we 

specifically removed deterministic relations and variables related to administrative purposes 

as opposed to neuropsychological variables. Despite the cleaning, the dataset contains many 

missing values. List-wise deletion drops the number of samples from 1514 to 1106. 

However, this is also precisely the setting where we hope to use test-wise deletion in order to 

increase sample efficiency.

Note that we do not have access to a gold standard solution set in this case. However, we can 

develop an approximate solution set by utilizing two key facts. First, recall that we cannot 

have ancestral relations directed backwards in time. Thus, a variable in wave 2 cannot be an 

ancestor of a variable in wave 1; we can therefore count the number of edges between wave 

1 and wave 2 with both a tail and an arrowhead at a vertex in wave 2. Second, the mental 
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status score is a composite score that includes backwards counting as well as some other 

metrics. Thus, there should exist an edge between backwards counting and mental status, 

and the edge ideally should have a tail at backwards counting as well as an arrowhead at 

mental status in both waves.

We used the above solution set to construct the following cost metric; we counted the 

number of incorrect ancestral relations w as well as counted the number of unoriented or 

incorrectly oriented endpoints between backwards counting and mental status v. A lower 

cost of w + v therefore indicates better performance.

We have summarized the results in Figure 5 after generating 300 bootstrapped datasets. Test-

wise deletion outperforms 6 of the 7 other methods at a Bonferroni corrected threshold of 

0.05/7 when incorporated into FCI (max t= −3.210, max p = 1.47E-3); test-wise deletion 

also outperformed FCI with PMM but not by a significant margin (t = −1.331, p = 0.184). 

Test-wise deletion did however outperform all of the other 7 methods with RFCI (max t=

−3.482, max p=5.73E-4). Moreover, test-wise deletion conserves an average of 8.96% more 

samples per CI test (95% CI: 7.95–9.98%) than list-wise deletion for FCI and similarly 

8.82% (95% CI: 7.82–9.82%) for RFCI. On the other hand, heuristic test-wise deletion 

conserves only 1.05% (95% CI: 1.00–1.10%) more samples than test-wise deletion for FCI 

and only 0.98% (95% CI: 0.94–1.02%) more samples for RFCI. We conclude that the real 

data results largely replicate the synthetic data results for the MNAR case.

10 Conclusion

We proposed test-wise deletion as a strategy to improve upon list-wise deletion for CCD 

algorithms even when MNAR holds. Test-wise deletion specifically involves running FCI or 

RFCI using Algorithm 1 without preprocessing the missing values. We proved soundness of 

the procedure so long as the missingness mechanisms do not causally affect each other in the 

underlying causal graph. Moreover, experiments highlighted the superior sample efficiency 

of test-wise deletion as compared to list-wise deletion. We conclude that test-wise deletion is 

a viable alternative to list-wise deletion when MNAR holds.

We ultimately hope that test-wise deletion will prove useful for investigators wishing to 

apply CCD algorithms on data with missing values. Test-wise deletion is easily implemented 

in a few lines of code via Algorithm 1. Here, we simply call a CCD algorithm equipped with 

Algorithm 1 in place of a normal CI test.

Acknowledgements

Research reported in this publication was supported by grant U54HG008540 awarded by the National Human 
Genome Research Institute through funds provided by the trans-NIH Big Data to Knowledge initiative. The 
research was also supported by the National Library of Medicine of the National Institutes of Health under award 
numbers T15LM007059 and R01LM012095. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Strobl et al. Page 16

Int J Data Sci Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

11 Appendix

11.1 Graphical Terminology

We will represent causality by Markovian graphs. We therefore require some basic graphical 

definitions.

A graph 𝔾 = (X, ℰ) consists of a set of vertices X = {X1,…,Xp} and a set of edges ε such that 

one edge exists between each pair of vertices. The edge set ε may contain the following six 

edge types: → (directed), ↔ (bidirected), — (undirected), ◦→ (partially directed), ◦− 

(partially undirected) and ◦−◦ (nondirected). Notice that these six edges utilize three types 

of endpoints including tails, arrowheads, and circles.

We call a graph containing only directed edges as a directed graph. We will only consider 

simple directed graphs in this paper, or directed graphs containing at most one directed edge 

between any two distinct vertices. On the other hand, a mixed graph contains directed, bi-

directed and undirected edges. We say that Xi and Xj are adjacent in a graph, if they are 

connected by an edge independent of the edge’s type. An (undirected) path π between Xi 

and Xj is a set of consecutive edges (also independent of their type) connecting the variables 

such that no vertex is visited more than once. A directed path from Xi to Xj is a set of 

consecutive directed edges from Xi to Xj in the direction of the arrowheads. A cycle occurs 

when a path exists from Xi to Xj, and Xj and Xi are adjacent. More specifically, a directed 

path from Xi to Xj forms a directed cycle with the directed edge Xj → Xi and an almost 
directed cycle with the bidirected edge Xj ↔ Xi.

Three vertices {Xi,Xj,Xk} form an unshielded triple, if Xi and Xj are adjacent, Xj and Xk are 

adjacent, but Xi and Xk are not adjacent. We call a nonendpoint vertex Xj on a path π a 

collider on π, if both the edges immediately preceding and succeeding the vertex have an 

arrowhead at Xj. Likewise, we refer to a nonendpoint vertex Xj on π which is not a collider 

as a non-collider. Finally, an unshielded triple involving {Xi,Xj,Xk} is more specifically 

called a v-structure, if Xj is a collider on the subpath 〈Xi,Xj,Xk〉.

We say that Xi is an ancestor of Xj (and Xj is a descendant of Xi) if and only if there exists a 

directed path from Xi to Xj or Xi = Xj. We write Xi ∈ An(Xj) to mean Xi is an ancestor of Xj 

and Xj ∈ De(Xi) to mean Xj is a descendant of Xi. We also apply the definitions of an 

ancestor and descendant to a set of vertices Y ⊆ X as follows:

An(Y) = Xi Xi ∈ An X j for someX j ∈ Y ,

De(Y) = Xi Xi ∈ De X j for someX j ∈ Y .

We call a directed graph a directed acyclic graph (DAG), if it does not contain directed 

cycles. Every DAG is a type of ancestral graph, or a mixed graph that (1) does not contain 

directed cycles, (2) does not contain almost directed cycles, and (3) for any undirected edge 

Xi−Xj in ε, Xi and Xj have no parents or spouses.
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11.2 Heuristic Test-Wise Deletion

We consider running FCI or RFCI with only line 1 of Algorithm 1; we therefore do not 

query the CI oracle with Sl when the CI oracle with SOiO jW
 outputs one.

We refer to the above test-wise deletion strategy as heuristic test-wise deletion because the 

procedure is not sound in general, even when non-ancestral missingness holds. The problem 

lies in the inability to query the CI oracle with a consistent set of selection variables either 

directly (as with list-wise deletion) or indirectly (as with Algorithm 1). We thus often cannot 

soundly execute FCI or RFCI’s orientation rules. For example, for FCI’s R1, if we have the 

unshielded triple Oi∗→ Ok◦−Oj with Ok ∉ An Oi, SOiO jW1
, (1) Oi ⊥ ⊥d Oj|(W2,SOiO jW2

) 

with W2 ⊆ O \ {Oi,Oj} minimal and (2) Ok ∈ W2, then we may claim that Ok is an ancestor 

of Oi,Oj or SOiO jW2
 with (1) and (2) (but not SOiO jW1

; see Lemma 14 in [22]). We thus 

cannot conclude in general that we have Ok ∈ An(Oj) by using the arrowhead at Ok; we can 

only conclude that Ok ∈ An(Oj,SOiO jW2
); this fact in turn prevents us from executing R1 by 

orienting Oi* → Ok◦−∗Oj as Oi∗→ Ok → Oj.

We can however justify heuristic test-wise deletion under MCAR, where missing values do 

not depend on any other measured or missing values. One interpretation of MCAR in terms 

of a causal graph reads as follows:

Assumption 2 There does not exist an undirected path between any member of O and any 

member of ∪i = 1
q Mi in the underlying DAG.6

Now Assumption 2 states that the set ∪i = 1
q Mi plays no role in the conditional dependence 

relations between the observables. Specifically:

Lemma 3 Consider Assumption 2. Then Oi ⫫d O j | (W, SOiO jW
) if and only if Oi ⫫ O j | (W, S).

Proof The proof follows trivially if SOiO jW1
= S, so assume that we have SOiO jW

⊃ S. Let 

TOiO jW
= Sl\S . Then no member of TOiO jW

 is on any undirected path between Oi and Oj 

by Assumption 2. Hence, no subset of TOiO jW
 can be used to block an active path π 

between Oi and Oj. This proves the backward direction. Moreover, no subset of TOiO jW
 can 

be used to activate any inactive path π between Oi and Oj. This proves the forward direction 

by contrapositive.

The corresponding statement to Theorem 1 then reads as follows:

6.This MCAR interpretation implies that ∪i = 1
q Mi⫫d O, so the interpretation is similar to the MCAR interpretation introduced in 

[13], where we have ∪i = 1
q Mi⫫d ( O ∪ L ∪ S \ ∪i = 1

q Mi ).
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Proposition 3 Consider Assumption 2. Further assume d-separation faithfulness. Then FCI 
using only line 1 of Algorithm 1 outputs the same graph as FCI using a CI oracle with S. 
The same result holds for RFCI.

Proof It suffices to show that Oi ⫫ O j | (W, S) if and only if line 1 of Algorithm 1 outputs zero. 

This follows directly by Lemma 3 and d-separation faithfulness.

Notice however that Assumption 2 is much more difficult to justify in practice than the non-

ancestral missingness assumption. We therefore do not recommend FCI or RFCI with only 

line 1 of Algorithm 1 in general, because these algorithms may not be sound when dealing 

with real data.

Heuristic test-wise deletion can nonetheless perform very well in the finite sample size case 

even when Assumption 2 is violated due to the extra boost in sample size provided by 

avoiding list-wise deletion altogether. We have summarized the simulation results in Figures 

6 and 7 in the MNAR case. Heuristic test-wise deletion outperforms test-wise deletion 

slightly by at most 0.203 SHD points on average (Figures 6a and 6b). We could account for 

the increase in performance by a 515% increase in the average sample size per CI test 

compared to test-wise deletion (Figures 6c and 6d). However, heuristic test-wise deletion 

generally underperforms test-wise deletion in skeleton discovery by a margin gradually 

increasing in sample size. This dichotomy between the overall SHD and the skeleton SHD 

occurs because accurate endpoint orientation requires more samples than accurate skeleton 

discovery in general. We conclude that while heuristic test-wise deletion usually 

outperforms test-wise deletion when taking endpoint orientations into account, the 

performance improvement is small.

The results for the MAR case follow similarly, as summarized in Figure 8. Heuristic test-

wise deletion claims an average lower rank than test-wise deletion due to a 5–20% increase 

in sample size in this scenario.

11.3 Test-Wise Deletion vs. Imputation

We have summarized the results of test-wise deletion vs. imputation for the MNAR case in 

Figure 9. Test-wise deletion outperforms all imputation methods by a large margin in this 

regime.

11.4 Results with Larger Neighborhood Sizes

We also report the synthetic data results for the MNAR and MAR cases when we set the 

expected neighborhood size to 3 in Figures 10 and 11, respectively. Results are near 

identical to the results with 𝔼(N) = 2 as reported in Figures 3 and 4.
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Fig. 1: 
A dataset in (a) subjected to selection bias according to X2 in the DAG in (b). In (a), we can 

only view the samples in blue in practice. The dataset in (c) is the same dataset in (a) but 

with some missing values. The variable in pink is subject to selection bias according to X2 

and X5 as in (d) due to the missing values, while the to X2 and X5 as in (d) due to the 

missing values, while the variable in green is subject only to X2 as in (b).
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Fig. 2: 
An example of a situation where the non-ancestral missingness assumption is violated. (a) 

The ground truth, where M3 = X5 is a parent of M1 = X4. (b) The output of FCI or RFCI 

using Algorithm 1. (c) The output variable in green is subject only to X2 as in (b). of the 

same algorithms using a CI oracle with Sl.
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Fig. 3: 
FCI and RFCI with test-wise deletion vs. the same algorithms with list-wise deletion in the 

MNAR case. Test-wise deletion results in a decrease in the average SHD for FCI in (a) and 

RFCI in (b). The performance increase results because of a 25–35% increase in sample size 

per CI test on average for FCI in (c) and RFCI in (d).
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Fig. 4: 
Test-wise deletion vs. list-wise deletion as compared to five imputation methods in the MAR 

case. A rank of one denotes the best performance and a rank of six denotes the worst. Test-

wise deletion has a smaller average rank than list-wise deletion for FCI in (a) and RFCI in 

(b). The performance increase of test-wise deletion again results because of increased 

sample efficiency for FCI in (c) and RFCI in (d).
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Fig. 5: 
Real data results for all methods in terms of the cost metric w+v. Test and list-wise deletion 

both perform well, but test-wise deletion performs the best when incorporated into both (a) 

FCI and (b) RFCI.
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Fig. 6: 
Test-wise deletion vs. heuristic test-wise deletion in the MNAR case. Notice that the y-axis 

is reversed in (a) and (b). We find that test-wise deletion underperforms heuristic test-wise 

deletion by yielding slightly larger SHD values on average according to (a) and (b). 

Subfigures (c) and (d) show the increase in average sample size per CI test for heuristic test-

wise deletion as compared to test-wise deletion.
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Fig. 7: 
Test-wise deletion vs. heuristic test-wise deletion in skeleton discovery in the MNAR case. 

We find that test-wise deletion outperforms heuristic test-wise deletion by yielding smaller 

skeleton SHD values on average. Moreover, the margin gradually increases with sample size.
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Fig. 8: 
Test-wise deletion vs. heuristic test-wise deletion as compared to five imputation methods in 

the MAR case. Heuristic test-wise deletion has a smaller average rank than test-wise 

deletion for FCI in (a) and RFCI in (b). The performance increase of heuristic test-wise 

deletion results because of increased sample efficiency for FCI in (c) and RFCI in (d).
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Fig. 9: 
Performance of test-wise deletion vs. the best of five imputation methods in terms of the 

SHD when MNAR holds. Test-wise deletion outperforms the best imputation method 

(usually RF) by an increasing margin as sample size increases.
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Fig. 10: 
FCI and RFCI with test-wise deletion vs. the same algorithms with list-wise deletion in the 

MNAR case when 𝔼(N) = 3. Same format as Figure 3.
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Fig. 11: 
Test-wise deletion vs. list-wise deletion as compared to five imputation methods in the MAR 

case when 𝔼(N) = 3. Same format as Figure 4.
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	Appendix11 Appendix11.1 Graphical TerminologyWe will represent causality by Markovian graphs. We therefore require some basic graphical definitions.A graph  consists of a set of vertices X = {X1,…,Xp} and a set of edges ε such that one edge exists between each pair of vertices. The edge set ε may contain the following six edge types: → (directed), ↔ (bidirected), — (undirected), ◦→ (partially directed), ◦− (partially undirected) and ◦−◦ (nondirected). Notice that these six edges utilize three types of endpoints including tails, arrowheads, and circles.We call a graph containing only directed edges as a directed graph. We will only consider simple directed graphs in this paper, or directed graphs containing at most one directed edge between any two distinct vertices. On the other hand, a mixed graph contains directed, bi-directed and undirected edges. We say that Xi and Xj are adjacent in a graph, if they are connected by an edge independent of the edge’s type. An (undirected) path π between Xi and Xj is a set of consecutive edges (also independent of their type) connecting the variables such that no vertex is visited more than once. A directed path from Xi to Xj is a set of consecutive directed edges from Xi to Xj in the direction of the arrowheads. A cycle occurs when a path exists from Xi to Xj, and Xj and Xi are adjacent. More specifically, a directed path from Xi to Xj forms a directed cycle with the directed edge Xj → Xi and an almost directed cycle with the bidirected edge Xj ↔ Xi.Three vertices {Xi,Xj,Xk} form an unshielded triple, if Xi and Xj are adjacent, Xj and Xk are adjacent, but Xi and Xk are not adjacent. We call a nonendpoint vertex Xj on a path π a collider on π, if both the edges immediately preceding and succeeding the vertex have an arrowhead at Xj. Likewise, we refer to a nonendpoint vertex Xj on π which is not a collider as a non-collider. Finally, an unshielded triple involving {Xi,Xj,Xk} is more specifically called a v-structure, if Xj is a collider on the subpath 〈Xi,Xj,Xk〉.We say that Xi is an ancestor of Xj (and Xj is a descendant of Xi) if and only if there exists a directed path from Xi to Xj or Xi = Xj. We write Xi ∈ An(Xj) to mean Xi is an ancestor of Xj and Xj ∈ De(Xi) to mean Xj is a descendant of Xi. We also apply the definitions of an ancestor and descendant to a set of vertices Y ⊆ X as follows:We call a directed graph a directed acyclic graph (DAG), if it does not contain directed cycles. Every DAG is a type of ancestral graph, or a mixed graph that (1) does not contain directed cycles, (2) does not contain almost directed cycles, and (3) for any undirected edge Xi−Xj in ε, Xi and Xj have no parents or spouses.11.2 Heuristic Test-Wise DeletionWe consider running FCI or RFCI with only line 1 of Algorithm 1; we therefore do not query the CI oracle with Sl when the CI oracle with  outputs one.We refer to the above test-wise deletion strategy as heuristic test-wise deletion because the procedure is not sound in general, even when non-ancestral missingness holds. The problem lies in the inability to query the CI oracle with a consistent set of selection variables either directly (as with list-wise deletion) or indirectly (as with Algorithm 1). We thus often cannot soundly execute FCI or RFCI’s orientation rules. For example, for FCI’s R1, if we have the unshielded triple Oi∗→ Ok◦−Oj with , (1) Oi ⊥ ⊥d
Oj|(W2,) with W2 ⊆ O \ {Oi,Oj} minimal and (2) Ok ∈ W2, then we may claim that Ok is an ancestor of Oi,Oj or  with (1) and (2) (but not ; see Lemma 14 in [22]). We thus cannot conclude in general that we have Ok ∈ An(Oj) by using the arrowhead at Ok; we can only conclude that Ok ∈ An(Oj,); this fact in turn prevents us from executing R1 by orienting Oi* → Ok◦−∗Oj as Oi∗→ Ok → Oj.We can however justify heuristic test-wise deletion under MCAR, where missing values do not depend on any other measured or missing values. One interpretation of MCAR in terms of a causal graph reads as follows:Assumption 2
There does not exist an undirected path between any member of
O
and any member of  in the underlying DAG.66.This MCAR interpretation implies that , so the interpretation is similar to the MCAR interpretation introduced in [13], where we have .Now Assumption 2 states that the set  plays no role in the conditional dependence relations between the observables. Specifically:Lemma 3
Consider Assumption 2. Then
 if and only if .Proof The proof follows trivially if , so assume that we have . Let . Then no member of  is on any undirected path between Oi and Oj by Assumption 2. Hence, no subset of  can be used to block an active path π between Oi and Oj. This proves the backward direction. Moreover, no subset of  can be used to activate any inactive path π between Oi and Oj. This proves the forward direction by contrapositive.The corresponding statement to Theorem 1 then reads as follows:Proposition 3
Consider Assumption 2. Further assume d-separation faithfulness. Then FCI using only line 1 of Algorithm 1 outputs the same graph as FCI using a CI oracle with
S. The same result holds for RFCI.Proof It suffices to show that  if and only if line 1 of Algorithm 1 outputs zero. This follows directly by Lemma 3 and d-separation faithfulness.Notice however that Assumption 2 is much more difficult to justify in practice than the non-ancestral missingness assumption. We therefore do not recommend FCI or RFCI with only line 1 of Algorithm 1 in general, because these algorithms may not be sound when dealing with real data.Heuristic test-wise deletion can nonetheless perform very well in the finite sample size case even when Assumption 2 is violated due to the extra boost in sample size provided by avoiding list-wise deletion altogether. We have summarized the simulation results in Figures 6 and 7 in the MNAR case. Heuristic test-wise deletion outperforms test-wise deletion slightly by at most 0.203 SHD points on average (Figures 6a and 6b). We could account for the increase in performance by a 515% increase in the average sample size per CI test compared to test-wise deletion (Figures 6c and 6d). However, heuristic test-wise deletion generally underperforms test-wise deletion in skeleton discovery by a margin gradually increasing in sample size. This dichotomy between the overall SHD and the skeleton SHD occurs because accurate endpoint orientation requires more samples than accurate skeleton discovery in general. We conclude that while heuristic test-wise deletion usually outperforms test-wise deletion when taking endpoint orientations into account, the performance improvement is small.The results for the MAR case follow similarly, as summarized in Figure 8. Heuristic test-wise deletion claims an average lower rank than test-wise deletion due to a 5–20% increase in sample size in this scenario.11.3 Test-Wise Deletion vs. ImputationWe have summarized the results of test-wise deletion vs. imputation for the MNAR case in Figure 9. Test-wise deletion outperforms all imputation methods by a large margin in this regime.11.4 Results with Larger Neighborhood SizesWe also report the synthetic data results for the MNAR and MAR cases when we set the expected neighborhood size to 3 in Figures 10 and 11, respectively. Results are near identical to the results with  as reported in Figures 3 and 4.
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