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Abstract

Introduction—Failure to properly account for normal systematic variations in OMICS datasets 

may result in misleading biological conclusions. Accordingly, normalization is a necessary step in 

the proper preprocessing of OMICS datasets. In this regards, an optimal normalization method 

will effectively reduce unwanted biases and increase the accuracy of downstream quantitative 

analyses. But, it is currently unclear which normalization method is best since each algorithm 

addresses systematic noise in different ways.

Objective—Determine an optimal choice of a normalization method for the preprocessing of 

metabolomics datasets.

Methods—Nine MVAPACK normalization algorithms were compared with simulated and 

experimental NMR spectra modified with added Gaussian noise and random dilution factors. 

Methods were evaluated based on an ability to recover the intensities of the true spectral peaks and 

the reproducibility of true classifying features from orthogonal projections to latent structures – 

discriminant analysis model (OPLS-DA).

Results—Most normalization methods (except histogram matching) performed equally well at 

modest levels of signal variance. Only probabilistic quotient (PQ) and constant sum (CS) 

maintained the highest level of peak recovery (> 67%) and correlation with true loadings (> 0.6) at 

maximal noise.

Conclusion—PQ and CS performed the best at recovering peak intensities and reproducing the 

true classifying features for an OPLS-DA model regardless of spectral noise level. Our findings 

suggest that performance is largely determined by the level of noise in the dataset, while the effect 

of dilution factors was negligible. A minimal allowable noise level of 20% was also identified for 

a valid NMR metabolomics dataset.
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Introduction

High-throughput facilities continue to improve the acquisition and throughput of OMICS 

experiments (e.g., genomics, transcriptomics, proteomics, and metabolomics), which has 

resulted in the rapid accumulation of large amounts of data (Berger, Peng, Singh 2013). 

These massive datasets have enabled the detection and quantification of thousands of genes, 

proteins, and metabolites across various biological samples (Chawade, Alexandersson, 

Levander 2014). Accordingly, OMICs data has significantly contributed to a variety of fields 

including drug discovery, (Butcher, Berg, Kunkel 2004) personalized medicine, (Chen, 

Mias, Li-Pook-Than, Jiang, Lam, Chen, Miriami et al. 2012) nutrition (Wishart 2008) and 

environmental studies (Aardema, MacGregor 2002). Perturbations or variance are inherent 

to all experimental datasets and come from a variety of sources such as biological variability, 

instrument instability, and inconsistency in sample handling and preparation. For example, 

the number of cells harvested, the mass of tissue collected, or the amount of urine produced 

may vary significantly across all of the biological replicates. These unavoidable variations 

may mask the real biological signals present in the samples, which, in turn, complicates the 

reliability and accuracies of all downstream quantitative analyses (Kohl, Klein, Hochrein, 

Oefner, Spang, Gronwald 2012). Accordingly, the preprocessing of OMICs data is a critical 

step and involves minimizing undesirable noise to make all subsequent analyses more 

robust, accurate, and precise (Dieterle, Ross, Schlotterbeck, Senn 2006). One crucial 

preprocessing step is the normalization of data, which has been shown to effectively reduce 

systematic noise in OMICs datasets (Chawade, Alexandersson, Levander 2014).

Normalization of OMICS datasets can be accomplished using a variety of methods 

(Giraudeau, Tea, Remaud, Akoka 2014; Hochrein, Zacharias, Taruttis, Samol, Engelmann, 

Spang, Oefner et al. 2015). But, the proper choice depends on data characteristics and the 

sources of variation that needs correcting. How well a specific normalization technique 

performs in reducing these extraneous biases is still an open question. Accordingly, 

identifying an optimal normalization technique is still a common issue encountered 

throughout the OMICs fields. For example, in genomics, differences in sequencing length 

(library size), gene length, or guanine-cytosine content may lead to data variance and a false 

interpretation of gene expression variability (Zyprych-Walczak, Szabelska, Handschuh, 

Gorczak, Klamecka, Figlerowicz, Siatkowski 2015). Thus, an appropriate normalization 

method needs to eliminate these sources of variance to ensure an accurate measure of gene 

expression levels. To address this issue, Choe et al. examined four popular normalization 

methods routinely used in genomics that included: constant sum, rank-invariant, LOESS 

(LOcally Estimated Scatterplot Smoothing), and quantile (Choe, Boutros, Michelson, 

Church, Halfon 2005). The normalization algorithms were compared using RNA-microarray 

data. The LOESS normalization algorithm assumes a non-linear relationship and uses a local 

regression approach to adjust signal intensity and noise. Incorporating LOESS normalization 

into the analysis of the RNA-microarray data yielded superior results relative to the other 
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normalization techniques. LOESS improved the detection of true differentially expressed 

genes as evident by the largest area under the receiver operating characteristic (ROC) curve. 

Similarly, Callister et al. evaluated four normalization techniques routinely used in 

proteomics (Callister, Barry, Adkins, Johnson, Qian, Webb-Robertson, Smith et al. 2006). 

Central tendency, linear regression, locally weighted regression, and quantile normalization 

algorithms were compared using three sets of samples representing different levels of data 

complexity. The linear regression normalization algorithm was identified as the top 

performer since it exhibited the largest reduction in extraneous variability while also 

maintaining the highest reproducibility as measured by both pooled estimate of variance and 

a median coefficient of variance.

Metabolomics characterizes both the identity and the quantity of metabolites present in a 

biological sample (Kohl, Klein, Hochrein, Oefner, Spang, Gronwald 2012). Since 

metabolites are a direct product of cellular processes, the metabolome is able to accurately 

capture the current state of the system. Thus, even subtle changes in metabolite 

concentrations may provide important insights into disease progression, (Cuykx, Claes, 

Rodrigues, Vanhaecke, Covaci 2018) drug resistance, (Thulin, Thulin, Andersson 2017) or a 

response to numerous stress factors (e.g., environmental toxins, nutrient limitation, genetic 

mutation, etc.)(Doran, Knee, Wang, Rzezniczak, Parkes, Li, Merritt 2017; Fukushima, 

Iwasa, Nakabayashi, Kobayashi, Nishizawa, Okazaki, Saito et al. 2017; Jung, Lee, Seo, 

Hwang 2017). Unfortunately, like genomics and proteomics, these metabolite differences are 

easily obscured by the natural variance that occurs between biological replicates or by 

inconsistencies in sample sizes. Furthermore, since nuclear magnetic resonance (NMR) 

spectroscopy (Kohl, Klein, Hochrein, Oefner, Spang, Gronwald 2012) is routinely used to 

monitor the metabolome, instrument instability and experimental factors such as changes in 

pH, temperature, ionic strength or even sample composition may lead to unintended signal 

variance (Dieterle, Ross, Schlotterbeck, Senn 2006). Such non-biologically induced 

perturbations are likely to mask the true biological signals in the data and complicate the 

data analysis process. Again, normalization is a necessary requirement to minimize these 

undesirable variations and to increase the accuracy and reliability of all subsequent data 

analyses.

A variety of procedures are currently available to normalize NMR metabolomics data 

(Fukushima, Iwasa, Nakabayashi, Kobayashi, Nishizawa, Okazaki, Saito et al. 2017; 

Hochrein, Zacharias, Taruttis, Samol, Engelmann, Spang, Oefner et al. 2015). Since each 

algorithm addresses systematic variations in a different manner, the correct choice of a 

normalization scheme can be challenging. For example, some normalization algorithms aim 

to remove unwanted noise by minimizing inter-sample variation such as probabilistic 

quotient (Dieterle, Ross, Schlotterbeck, Senn 2006) and cubic splines methods (Workman, 

Jensen, Jarmer, Berka, Gautier, Nielser, Saxild et al. 2002), while others such as unit 

variance or Pareto (often referred to as scaling), aim to adjust the variance of spectral 

features so that all peaks are equally weighted when used to construct multivariate models 

such as principal components analysis (PCA). Since these algorithms were developed with 

different underlying assumptions, each method confers a unique set of advantages and 

disadvantages. For example, Craig et al. (Craig, Cloarec, Holmes, Nicholson, Lindon 2006), 

demonstrated that while constant sum normalization adequately preserves signal quality, it 
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can change the underlying correlations between peaks and generate artifacts. Thus, constant 

sum may confound interpretations when used incorrectly. A comparative analysis of 

normalization schemes by Kohl et al. (Kohl, Klein, Hochrein, Oefner, Spang, Gronwald 

2012) determined that quantile normalization significantly outperforms other approaches in 

both minimizing inter-sample standard deviation and accurately preserving fold change 

information. However, it was also noted that the performance of quantile normalization was 

only truly realized for large datasets (n ≥ 50) and offers no significant performance benefits 

on more modestly sized datasets.

The diversity of normalization algorithms and the lack of a clear consensus has provided the 

motivation to conduct a thorough and quantitative evaluation of normalizing methods 

currently available to the metabolomics community through our MVAPACK software 

package (Worley, Powers 2014a). MVAPACK is open source software that includes a 

complete set of functions for data loading, preprocessing, modeling, and validation of NMR 

metabolomics datasets. MVAPACK also includes the following normalization methods: 

probabilistic quotient (PQ) (Dieterle, Ross, Schlotterbeck, Senn 2006), histogram matching 

(HM) (Torgrip, Åberg, Alm, Schuppe-Koistinen, Lindberg 2008), standard normal variate 

(SNV) (Barnes, Dhanda, Lister 1989), multiplicative scatter correction (MSC) (Windig, 

Shaver, Bro 2008), quantile (Q) (Kohl, Klein, Hochrein, Oefner, Spang, Gronwald 2012), 

natural cubic splines (CSpline) (Workman, Jensen, Jarmer, Berka, Gautier, Nielser, Saxild et 

al. 2002), smoothing splines (SSpline) (Fujioka, Kano 2005), constant sum (CS) and region 

of interest (ROI) (Dieterle, Ross, Schlotterbeck, Senn 2006). Our phase-scatter correction 

(PSC) algorithm is also available in MVAPACK, but was not included in this comparison 

since PSC was previously discussed in detail (Worley, Powers 2014b). The normalization 

methods were compared using simulated and experimental NMR datasets with various levels 

of added noise and dilution factors (Worley, Powers 2016). Their performances were 

evaluated based on an ability to recover the intensities of the true spectral peaks and the 

reproducibility of true classifying features from orthogonal projections to latent structures – 

discriminant analysis (OPLS-DA) model (Worley, Powers 2013). In this manner, the 

normalization methods were evaluated based upon expected outcomes for routine 

metabolomics study: (i) the ability to eliminate irrelevant signal variance due to dilution 

factors and noise; and (ii) the ability to produce a predictive model that correctly identifies 

the real group-dependent variants. Our analysis indicates that of the normalization 

algorithms evaluated, PQ and CS performed the best in the analysis of noisy one-

dimensional (1D) NMR metabolomics datasets.

Materials and Methods

The performance of each normalization method was assessed using two distinct datasets: (i) 

simulated spectral data and (ii) a previously described experimental data set of 1D 1H NMR 

spectra of various coffee samples (Worley, Powers 2016). All of the analyses were 

conducted using our MVAPACK software package (Worley, Powers 2014a). All of the 

figures were generated using the R software package (R Development Core Team 2017).
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Simulated 1D 1H NMR metabolomics dataset.

The simulated dataset consisted of 50 spectra in which each spectrum contained 901 spectral 

features. The set of spectra were divided into two separate groups. Each group consisted of 

25 spectra that were randomly generated from a reference spectrum. The reference spectrum 

for each group was independently simulated from the Cauchy distribution (Weisstein), but 

with different parameters. Each reference spectrum contains four peaks located at chemical 

shifts of 3 ppm, 3.2 ppm, 3.5 ppm, and 8 ppm, respectively. The peak intensities differ 

between the four peaks and between the two reference spectra as illustrated in Figure 1.

The 25 spectra per group were generated from the reference spectrum by the addition of a 

minimal amount of Gaussian noise (Mean = 0, SD = 0.001). These two sets of 25 spectra, 

which correspond to group 1 and group 2, were combined to define the simulated reference 

dataset X0 (N = 50, K = 901). The simulated reference dataset X0 was then used to generate 

eight noise-added simulated sets (Xi) (Figure S1) with i   =   1,   2,   …,   8 (Table 1) 

according to equation (1):

Xi = Fi * X0 + Ei (1)

where Fi is a 50×1 vector of dilution factors generated from a uniform distribution for the ith

set, Ei is a matrix of independent Gaussian noise distributed with mean 0 and standard 

deviation σi for the ith set, and * presents element-wise multiplication. The value of σi ranged 

from 0.1 to 5 which produced a systematic increase in noise for the dataset.

The CS, PQ, HM, SNV, MSC, ROI, Q, CSpline, and SSpline normalization methods were 

then separately applied to each noise-added set (Xi) to obtain normalized set (Xi). An OPLS-

DA model was then generated from each normalized set (Xi). Two-component OPLS-DA 

models were calculated to obtain the first component loadings to compare the performance 

of the normalization approaches.

Experimental 1D 1H NMR metabolomics dataset.

A data matrix of 32 1D 1H NMR spectra from a publicly available coffees dataset was used 

to further evaluate the normalization algorithms (Worley, Powers 2016). The coffees dataset 

contains two groups defined as light and medium decaffeinated coffee consisting of 16 1D 
1H NMR spectra per group. Each spectrum contains 284 spectral features.

We applied the same procedures as described above to generate the noise-added 

experimental dataset. Specifically, the original coffees dataset of 32 1D 1H NMR 

experimental spectra was designated as the reference data set Y0 (N = 32, K = 284). The 

reference data set Y0 was then used to generate seven simulated sets (Yi) with 

i   =   1,   2,   …,   7 (Table 2) according to equation 2:
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Yi = Fi * Y0 + Ei (2)

where Fi is a 32×1vector of dilution factors generated from a uniform distribution for the ith

set, Ei (N = 32, K = 284) is a matrix of independent Gaussian noise distributed with mean 0 

and standard deviation σi for the ith set, and * presents element-wise multiplication. The 

value of σi ranged from 2.3 × 10−7 to 10−5 which produced a systematic increase in noise 

while also mimicking the relative variance in the noise present in the coffees dataset.

Summary of normalization procedures.

CS: Each spectrum of the data matrix was divided by its own integral (Dieterle, Ross, 

Schlotterbeck, Senn 2006).

PQ: The normalization factor was the most probable quotient between the signals of the 

corresponding spectrum and the reference spectrum (Dieterle, Ross, Schlotterbeck, Senn 

2006). The reference spectrum was chosen as the median spectrum of the spectral set. Each 

spectrum in the dataset was divided by this normalization factor to obtain the normalized 

spectrum.

HM: Raw spectra were log transformed prior to normalization. Similar to PQ, the target 

reference spectrum was the median spectrum of the dataset. Histograms for each sample 

spectrum and target spectrum were obtained on prespecified intensity intervals. A dilution 

factor was then chosen to minimize the differences between each sample spectrum 

histogram and the target histogram (Torgrip, Åberg, Alm, Schuppe-Koistinen, Lindberg 

2008). The new normalized spectrum was generated by multiplying each original spectrum 

by the corresponding dilution factor.

SNV: Each sample spectrum in the dataset was centered prior to normalization. The 

standard deviation of each spectrum was calculated as a normalization factor (Barnes, 

Dhanda, Lister 1989). A new normalized dataset was then obtained by dividing each original 

spectrum by its corresponding normalization factor.

MSC: The normalization factors were least squares estimates obtained by regressing each 

sample spectrum onto the reference spectrum (Windig, Shaver, Bro 2008). The reference 

spectrum was the mean spectrum. The ordinary least squares of the regression parameters 

were used to correct the spectral intensities.

ROI: Each sample spectrum of the dataset was normalized to a specified spectral region 

where its integral was set to one. Each sample spectrum was then normalized relative to the 

most intense peak in the spectrum.

Q: The goal of this quantile normalization method was to obtain an identical distribution of 

intensities for all of the spectral features (Kohl, Klein, Hochrein, Oefner, Spang, Gronwald 
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2012). First, the mean spectrum was calculated for the data set. The intensities of all features 

in each sample spectrum were then replaced by the mean intensities in accordance with their 

quantile orders.

CSpline: The CSpline method normalized each sample spectrum to the target spectrum. 

The target spectrum was calculated using the non-linear arithmetic mean of the data set. 

Depending on the type of data, a geometric mean may also be used (Kohl, Klein, Hochrein, 

Oefner, Spang, Gronwald 2012). A set of 100 quantiles was taken from both the sample 

spectrum and the target spectrum. The quantiles were then fitted to a natural cubic spline to 

obtain parameter estimates, which were used for interpolations. The process was repeated 

five times. For each iteration, a small offset was added to the quantiles before refitting with a 

natural cubic spline to obtain new interpolations. The set of interpolations were averaged to 

obtain the normalized spectrum.

SSpline: SSpline is similar to CSpline, but the SSpline algorithm adds more quantiles 

toward the tail end of the spectrum. The most intense spectral features are located in this 

region of the spectrum. Moreover, the quantiles are fitted with a smoothing spline that 

includes a penalty parameter to avoid overfitting. The predicted feature intensities were then 

used as the normalized intensities.

Evaluation Criteria.

Regardless of the type of approach used to address dataset bias or variance, an optimal 

normalization procedure should reduce any unwanted noise while still preserving the true 

biological signals. In other words, a necessary condition to retain the true signals is the 

ability to recover the original peak intensities after removing noise. In this regards, it should 

be possible to evaluate the relative performance of normalization methods based on how 

well the algorithms handle increasingly noisy spectra. As the reference set is exposed to 

increasing amounts of noise, some (or all) of the normalization algorithms would be 

expected to fail to recover the original peaks intensities. Thus, the peak recovery criteria 

served as a means to filter-out poorly performing normalization procedures prior to 

proceeding with the second evaluation criteria.

A multivariate statistical model, such as PCA or OPLS, is typically employed to identify 

spectral features that separate the different groups in the dataset (Worley, Powers 2013). 

These spectral features are intrinsic to the dataset. Accordingly, any properly normalized 

dataset should reproduce these true set of features. The first component loadings extracted 

from an OPLS-DA model contains the weights of the spectral features that contribute the 

most to separating the groups. Simply, the first component loadings identify the most-

important group-dependent features. Thus, an OPLS-DA model was generated to obtain the 

first component loadings associated with each normalization method. Only the top 

performing normalization methods were used to generate an OPLS-DA model. The top 

performing normalization methods were identified based on the peak recovery criteria. 

Pearson correlation coefficients were calculated between the loadings of each normalized 

dataset and the true loadings set. The Pearson correlation coefficients provide a means to 
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measure the reproducibility of the true classifying spectral features produced by each 

normalization algorithm.

Peak Recovery: After sequentially normalizing each noisy data matrix using the nine 

normalization methods, the intensity of each peak in each spectrum of the normalized set 

(Xi) was compared to the true original spectrum (X0) to measure the recovery of peak 

intensities (rpii
j). For each spectrum from the normalized data matrix (Xi), the recovery of the 

jth peak was calculated according to this eqn. 3:

rpii
j = 1 −

Ii
j − I0

j

max( I0
j |,   Ii

j )
(3)

where Ii
j and I0

j  are the intensities of the jth peak from Xi and X0, respectively. In this 

manner, rpii
j will range from 0 to 1 regardless of the relative magnitudes of Ii

j and I0
j . This 

process was repeated for every peak in each spectrum. The mean recovery and standard error 

were calculated and reported for each normalized set.

Pearson correlation coefficients: The coffees noisy data matrix (Yi) was only 

normalized using the top performing algorithms identified from the peak recovery criteria. 

An OPLS-DA model was generated for each normalized coffees data matrix (Yi) and also the 

original coffees data set (Yo). The datasets were scaled with Pareto scaling prior to 

calculating the OPLS-DA models. The first component loadings from each OPLS-DA model 

were then used to calculate a Pearson correlation coefficient between the true backscale 

loadings vector (po) from the original coffees data set (Yo) and the backscale loadings vector 

(pi) from each normalized coffees noisy data matric (Yi). The Pearson correlation 

coefficients were calculated according to eqn. 4:

ri = k = 1
K (pi

k − pi) p0
k − p0

k = 1
K

pi
k − pi

2  
k = 1
K

p0
k − p0

2
(4)

where K denotes the number of spectral features; pi is the mean loading of vector pi; pi
k is 

the kth loading of vector pi; p0 is the mean loading of vector p0; and p0
k is the kth loading of 

vector p0. This process was repeated 100 times. The mean correlation coefficients and 

standard error were calculated for each normalized set.
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Results and Discussions

The two reference NMR spectra displayed in Figure 1 were used to generate eight noise-

added simulated metabolomics datasets consisting of 25 spectra for each of the two groups 

(Figure S1). Accordingly, each simulated dataset contained a total of 50 spectra. The total 

signal variance in each dataset was defined by the amount of Gaussian noise added and by 

the dilution factors listed in Table 1. The simulated NMR metabolomics datasets were then 

normalized using each of the nine normalization methods (i.e., CS, CSpline, HM, MSC, PQ, 

Q, ROI, SNV, and SSpline). A peak recovery was calculated for each dataset according to 

eqn. 3. The peak recovery compares each of the normalized dataset to the original reference 

NMR spectra (Figure 1). The peak recoveries for each normalized dataset are plotted in 

Figures 2 and 3.

As expected, the efficiency of peak recovery decreases with increasing signal variance 

regardless of the normalization method. As illustrated in Figure 2, most of the normalization 

methods achieve nearly 100% peak recovery (96 to 99%) under conditions of modest signal 

variance (S1 and S2).

The most notable outlier is HM, which achieved a peak recovery of only 20% to 28%. This 

extremely poor performance suggests that HM should be avoided and not used for the 

normalization of NMR metabolomics data. While significantly better than HM, SSpline also 

performed consistently below average with a peak recovery range of 93% to 95%. PQ was 

modestly below the best performers with a peak recovery range of 96% to 97%. Conversely, 

ROI, CS, SNV, MSC, and Q, recovered at least 98% of the peak intensities under conditions 

of modest signal variance. A further separation in algorithm performance was apparent as 

the signal variance was progressively increased. SSpline continued to perform worse than 

average, but from simulated set S5 forward the performance of SNV had also significantly 

declined to match SSpline.

Similarly, from simulated set S6, CSpline had fallen below the average performance of the 

other normalization methods. In fact, as the amount of signal variance was increased to the 

highest level (S8), the peak recoveries for CSpline, HM, MSC, Q, and SSpline all fell below 

50%. Conversely, CS, PQ and ROI maintained a peak recovery of around 70% (67% to 

74%). Accordingly, the peak recovery results suggest that the CS, PQ and ROI were the 

most robust normalization methods and were able to maintain a maximal peak recovery as a 

function of signal variance (Figure 3). Pairwise Student’s t tests of the mean peak recovery 

values at the highest signal variance level (S8) yield a maximum p-value of < 2.8×10−13 

between the CS, PQ, ROI algorithms and the other normalization methods.

To further investigate the individual impact of Gaussian noise and dilution factors on peak 

recovery, the simulation was repeated for the three top performing normalization methods 

(i.e., CS, PQ and ROI). Instead of simultaneously varying both Gaussian noise and the 

dilution factors as listed in Table 1, the simulation was repeated with either Gaussian noise 

or the dilution factor held constant at S1 values. The combined average peak recovery values 

for CS, PQ and ROI normalized datasets are plotted as a function of added Gaussian noise or 

dilution factor in Figure 4. This simulation yielded an unexpected result. The performance of 
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the normalization method was essentially unaffected by the dilution factor. Near perfect peak 

recovery was obtained even for the highest dilution factor. Instead, the normalization 

performance was strictly dependent on the level of Gaussian noise add to the spectra. 

However, it is important to note that normalization methods also rely on good peak 

alignment, spectral phasing, baseline correction and solvent suppression in order to perform 

well. Accordingly, the simulations reported herein were restricted to well-behaved datasets.

While being able to accurately reconstitute peak intensity is an important attribute of a 

normalization algorithm, the proper identification of group-defining spectral features is still 

a vital necessity. In essence, are biologically-relevant metabolic differences still being 

correctly identified regardless of the natural signal variance? Does a PCA or OPLS scores 

plot yield statistically relevant group separations and do the loadings identify the “true” 

metabolic differences between the groups? To address this issue, the CS, PQ and ROI 

normalization methods were further evaluated based on the reproducibility of OPLS-DA 

models as a function of increasing signal variance. An experimental coffees dataset 

previously used to investigate PCA and OPLS model stability (Worley, Powers 2016), was 

employed to generate OPLS-DA models using the CS, PQ and ROI normalization methods. 

Specifically, the coffee dataset consists of 32 1D 1H NMR spectra for two groups of 

observations (light and medium decaffeinated coffees). The coffees dataset was modified 

with Gaussian noise and a dilution factor (Figure S2) as outlined in Table 2. Consistent with 

our prior observations (Worley, Powers 2016), the two coffee groups become 

indistinguishable with an increase in signal variance. Importantly, the estimated loadings 

from the corresponding OPLS-DA model are less correlated to the true loadings (Figure 5) 

with increasing signal variance. Notably, at minimal to moderate signal variance levels (C1 
to C3), the PQ and ROI normalization methods perform almost identically and significantly 

better than CS. But, as the amount of signal variance increased significantly (C4 to C7), the 

OPLS-DA model was no longer valid with the ROI normalization technique; and the 

loadings correlation, not surprisingly, decreased dramatically.

Similarly, the standard errors of mean loadings correlation coefficients increased 

significantly for ROI compared to the negligible values observed for CS and PQ (ranged 

from 0.0003 to 0.008). Interestingly, despite CS initially performing worse than PQ, there 

was no difference in the loadings correlation between PQ and CS at C4. Furthermore, CS 

out-performed PQ at the highest signal variance levels (C5 to C7). But, the loadings 

correlations still decreased linearly with increasing signal variance following CS or PQ 

normalization. The loss of a correlation to the true loadings was still substantial and would 

likely lead to incorrect biological interpretations. A similar set of results was obtained for 

the simulated dataset (Figure S3). In total, our analysis suggest that CS and PQ are the most 

robust normalization techniques and are able to compensate, at least partly, for large signal 

variance. Both CS and PQ maintained the highest level of peak recovery and the highest 

correlation between backscaled loadings. Notably, PQ was the most robust normalization 

technique at low to moderate noise levels while CS was slightly better at compensating for 

larger signal variance.

A combined analysis of the peak recovery and OPLS-DA backscaled loadings data provides 

some further guidance for designing and executing an NMR metabolomics study. As we 
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have noted previously (Halouska, Powers 2006; Halouska, Zhang, Gaupp, Lei, Snell, 

Fenton, Barletta et al. 2013; Worley, Powers 2016), noise is detrimental to the accurate and 

reliable analysis of metabolomics data using multivariate statistical techniques such as PCA 

and OPLS. The results reported herein further support the negative impact of noise on the 

analysis of NMR metabolomics data. As evident in Figure 4, a dilution factor had no 

appreciable impact on the performance of a normalization method. Instead, all variance in 

the performance of the normalization methods was due to noise. Furthermore, most of the 

normalization methods performed equally-well in regards to peak recovery and loadings 

correlation for added noise levels up to about 20%. The lone exception is HM, which should 

be avoided. A significant decay in performance occurred when more than 20% of noise was 

added to either the simulated or experimental dataset. Accordingly, an experimental NMR 

dataset that exhibits greater than 20% noise is a serious concern and the resulting 

chemometrics model is highly suspect. In essence, our analysis sets a minimum criterion for 

maintaining noise (defined by a standard Gaussian distribution) at below 20% for a valid 

metabolomics dataset.

Conclusion

The nine normalization methods available in our MVAPACK software package were 

evaluated for their ability to compensate for increasing signal variance. The performance of 

the normalization techniques were tested on simulated and experimental 1D 1H NMR 

datasets with the addition of Gaussian noise and dilution factors. However, it is important to 

keep in mind that the Gaussian noise and dilution factors used in model construction are 

only an approximation of non-biological variance. At low to moderate noise levels, all of the 

normalization methods, except HM, performed well in terms of peak recovery. Accordingly, 

HM should be avoided as a normalization technique for NMR. Notably, peak recovery 

performance was only dependent on added Gaussian noise, and independent of dilution 

factor. At high signal variance, most normalization procedures failed to recover true peak 

intensities except for CS, PQ, and ROI. Again, PQ and ROI normalization algorithms 

performed equally-well and significantly better than CS at low to moderate noise levels in 

reproducing the backscaled loadings from an OPLS-DA model. But, ROI generated 

statistically invalid OPLS-DA models and poor backscaled loadings correlations at higher-

levels of noise. Interestingly, CS performed slightly better than PQ in reproducing the 

backscaled loadings at high noise levels. Thus, our results suggest that CS and PQ perform 

the best in regards to maintaining the true signal in noisy datasets. Consistent with our prior 

observations, groups become indistinguishable with increasing noise; and correlations to the 

true loadings are lost. In other words, an increasing level of additive Gaussian noise masks 

the true signals in the datasets. Accordingly, if this noise is not handled properly, it will lead 

to false conclusions and biologically irrelevant observations. In this regards, our analysis 

suggests that, at a minimum, noise needs to remain below 20% in order for an NMR 

metabolomics dataset to provide an accurate and biologically-relevant chemometrics model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

NMR Nuclear Magnetic Resonance

PCA principal components analysis

OPLS-DA orthogonal projections to latent structures – discriminant analysis

PQ probabilistic quotient

HM histogram matching

SNV standard normal variate

MSC multiplicative scatter correction

Q quantile

CSpline natural cubic splines

SSpline smoothing splines

CS constant sum

ROI region of interest

PSC phase-scatter correction

LOESS LOcally Estimated Scatterplot Smoothing

ROC receiver operating characteristic curve

1D one-dimensional

SD standard deviation
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Figure 1. 
The simulated reference spectrum used for (A) group 1 and (B) for group 2. The two spectra 

contain the same number of peaks at the same chemical shifts. The only difference between 

the spectra is the relative peak intensities.
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Figure 2. 
A plot of the recovery of peak intensities (eqn. 3) for the 9 normalization methods after 

being applied to the 8 (S1 to S8) simulated datasets listed in Table 1. The total signal 

variance due to the amount of added Gaussian noise and the magnitude of the dilution factor 

increases from S1 to S8. The horizontal dashed lines represent a full recovery at 100% and 

partial recovery at 50%. Each bar represents the mean peak recovery and the error bars 

represent ±2*standard error of the mean.
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Figure 3. 
A plot of the recovery of peak intensities (eqn. 3) for the three top performing normalization 

methods after being applied to the 8 (S1 to S8) simulated datasets listed in Table 1. The total 

signal variance due to the amount of added Gaussian noise and the magnitude of the dilution 

factor increases from S1 to S8. The horizontal dashed lines represent a full recovery at 100% 

and partial recovery at 50%. Each bar represents the mean peak recover and the error bars 

represent ±2*standard error of the mean.
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Figure 4. 
A plot of the average peak recovery calculated from the three top-performing normalization 

methods (CS, PQ, and ROI). Datasets were regenerated according to the scheme described 

in Table 1 but containing only a dilution factor (♦) or the addition of Gaussian noise (■). 

The dilution factor or added Gaussian noise was held constant at S1 values when the other 

parameter was varied. The peak recovery decreases with additive noise, but is unaffected by 

dilution factor.
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Figure 5. 
A plot of the average Pearson correlation coefficients (eqn. 4) calculated by comparing the 

true backscaled loadings from the original coffee dataset OPLS-DA model relative to the 

backscaled loadings from the CS (♦), PQ (■), and ROI (▲) normalized coffees noisy dataset 

OPLS-DA model. The amount of signal variance introduced into the coffees dataset is 

described in Table 2. The error bars represent ±2*standard error of the mean. Please note 

that most of the error bars are smaller than the size of the symbols.
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Table 1:

Parameters used to generate the noise-added simulated spectra

Set Dilution Factors (F)
a

Standard Deviation (σ)b Percent Added Noise

S1   Uni f 0.9,   1.1 0.1 5%

S2   Uni f 0.9,   1.1 0.2 10%

S3   Uni f 0.8,   1.2 0.4 20%

S4   Uni f 0.5,   1.5 1 50%

S5   Uni f 0.3,   1.7 1.4 70%

S6   Uni f 0.1, 1.9 1.8 90%

S7   Uni f 0.01,   2.5 2.5 100%

S8   Uni f 0.001,   5 4 200%

a
A dilution factor was randomly selected from the indicated range of values.

b
The value of standard deviation used to generate a Gaussian distribution of noise.
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Table 2.

Parameters used to generate the noise-added coffees dataset

Set Dilution Factors (F)a
Standard Deviation (σ)b Percent Added Noise

C1   Uni f 0.9,   1.1 2.3 × 10−7 5%

C2   Uni f 0.8,   1.2 4.6 × 10−7 10%

C3   Uni f 0.5,   1.5 9.3 × 10−7 20%

C4   Uni f 0.3,   1.7 2.3 × 10−6 50%

C5   Uni f 0.1,   1.9 5 × 10−6 100%

C6   Uni f 0.01, 2.5 8 × 10−6 170%

C7   Uni f 0.001,   5 10−5 200%

a
A dilution factor was randomly selected from the indicated range of values.

b
The value of standard deviation used to generate a Gaussian distribution of noise.
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