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Abstract

Fine particulate matter (PM2.5) is known to have an adverse impact on public health and is an 

important climate forcer. Secondary organic aerosol (SOA) contributes up to 80% of PM2.5 

worldwide and multiphase reactions are an important pathway to form SOA. Aerosol-phase state 

is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering 

diffusion rates within particles. Current air quality models do not include the impact of diffusion-

limiting organic coatings on SOA formation. This work examines how α-pinene-derived organic 

coatings change the predicted formation of SOA from the acid-catalyzed multiphase reactions of 

isoprene epoxydiols (IEPOX). A box model, with inputs provided from field measurements taken 

at the Look Rock (LRK) site in Great Smokey Mountains National Park during the 2013 Southern 

Oxidant and Aerosol Study (SOAS), was modified to incorporate the latest laboratory-based 

kinetic data accounting for organic coating influences. Including an organic coating influence 

reduced the modeled reactive uptake when relative humidity was in the 55–80% range, with 

predicted IEPOX-derived SOA being reduced by up to 33%. Only sensitivity cases with a large 

increase in Henry’s Law values of an order of magnitude or more or in particle reaction rates 

resulted in the large statistically significant differences form base model performance. These 

results suggest an organic coating layer could have an impact on IEPOX-derived SOA formation 

and warrant consideration in regional and global scale models.
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I: INTRODUCTION

Isoprene (2-methyl-1, 3-butadiene, C5H8) is the most abundantly emitted biogenic volatile 

organic compound (BVOC) on a global basis and is known to contribute to fine particulate 

matter (PM2.5) via the formation of secondary organic aerosol (SOA) (Guenther et al., 

2006). SOA formation occurs when isoprene reacts with hydroxyl radicals (OH) to produce 

isoprene hydroxyhydroperoxides (ISOPOOH) that can further react with OH to form 

isomeric isoprene epoxydiols (IEPOX) (St Clair et al., 2016). IEPOX can undergo reactive 

uptake onto an acidified sulfate aerosol producing low-volatility products that are a 

significant source of SOA (Bates et al., 2014; Bondy et al., 2018b; Budisulistiorini et al., 

2015; Claeys et al., 2004; Edney et al., 2005; Jacobs et al., 2014; Jason D. Surratt et al., 

2006; Jesse H. Kroll et al., 2006; Krechmer et al., 2015; Liao et al., 2015; Lin et al., 2013; 

Lin et al., 2012; Liu et al., 2015; Nguyen et al., 2015; Paulot et al., 2009; Rattanavaraha et 

al., 2016; Surratt et al., 2010; Zhang et al., 2011). SOA formation from the OH-initiated 

oxidation of isoprene is now recognized as one of the major tropospheric sources of SOA 

(Carlton et al., 2010; Hallquist et al., 2009; Hu et al., 2015; Noziere et al., 2015). At certain 

locations within the southeastern US it has been estimated that this pathway accounts for up 

to 41% of the total organic mass fraction of PM2.5 (Budisulistiorini et al., 2016; Xu et al., 

2015). In this part of the US and any region with similar emission sources, a substantial 

organic aerosol (OA) mass fraction from isoprene contributing towards PM2.5 requires an 

accurate representation of SOA formation chemistry.

Isoprene derived-SOA formation has been implemented in a regional scale air quality 

models (AQMs), the Community Multiscale Air Quality Model (CMAQ 5.1) and Goddard 

Earth Observing System (GEOS-Chem), using a heterogeneous reaction parametrization 

defined by a reactive uptake coefficient (γ) (Budisulistiorini et al., 2017; Pye et al., 2013). 

While laboratory experiments of IEPOX uptake are often performed using pure inorganic 

seed, one critical assumption invoked in the CMAQ model is that the aerosol with which 

IEPOX reacts consists of one homogeneous, internally mixed phase consisting of all organic 

and inorganic particulate components with no diffusion limitations. In the polluted boundary 

layer, it is known that acidic sulfate particles rarely exist in pure form (Hatch et al., 2011) 

and in the southeast US sulfate is almost always mixed with organic material at the 

individual particle level (Bondy et al., 2018a). Further, these particles may not be 

homogeneously mixed, and thus, have both diffusion limitations and reduced solubility 

(Craig et al., 2017; Hatch et al., 2011).

Studies have shown that both laboratory-generated and atmospheric SOA particles can be 

either homogenous or heterogeneous and the organic phase of heterogeneous particles can 

change from liquid to glassy phase state depending on the relative humidity (RH), 

temperature, and degree of functionalization of the compounds that these particles are 

comprised of (Pajunoja et al., 2013; Renbaum-Wolff et al., 2013; Rothfuss and Petters, 

2017; Vaden et al., 2011; Virtanen et al., 2010; Wang et al., 2012; Zhang et al., 2015). Song 

et al. (2018) found that droplets containing organic and inorganic mixtures can undergo 

liquid-liquid phase separation when the oxygen-to-carbon (O:C) of the organic component is 

low (<0.56) in a low RH (<50%) environment, while no phase separation was observed 
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when the O:C ratio was high (>0.8). The mixed inorganic-organic aerosols may also undergo 

phase separation due to efflorescence, deliquescence, and/or “salting out” of the inorganic 

components (Ault and Axson, 2017; Freedman, 2017; O’Brien et al., 2015; Renbaum-Wolff 

et al., 2016; Ryder et al., 2014; Smith et al., 2013; You et al., 2012). Slade et al. (2019) 

showed that a diurnal cycle of phase separation and particle viscosity at a forested site 

impacted by transported urban air masses. Pye et al.(2018) predicted organic and inorganic 

constituents within accumulation mode aerosols are phase separated 70% of the time in the 

southeastern US during summer with potentially more frequent phase separation in urban 

areas and the western US. With a decrease in RH from 95% to 5%, the liquid phase of SOA 

can change to semi-solid or even glassy leading to phase separation (Grayson et al., 2016; 

Kidd et al., 2014; Renbaum-Wolff et al., 2013; Zhang et al., 2015). This phase separation, 

with a viscous organic shell, has the potential to hinder SOA formation, change the 

sensitivity of model predictions to changes in sulfate, and have potentially important 

implications for how efficiently BVOC-derived SOA can be produced via heterogeneous 

reactions (Gaston et al., 2014b; Koop et al., 2011; Shiraiwa and Seinfeld, 2012; Shiraiwa et 

al., 2013).

Recently laboratory data have demonstrated that pre-existing organic coatings impede the 

reactive uptake of IEPOX onto acidic sulfate particles. Riva et al. (2016) found that α-pinene 

coatings on SOA could hinder the reactive uptake of IEPOX by as much as 80% at RH levels 

of 50%. Gaston et al. (2014a) found that increasing the mass fraction of polyethylene glycol 

-derived coatings on ammonium sulfate and ammonium bisulfate aerosols reduced the γ of 

IEPOX under 3 different RH conditions (30, 50, and 70%). A recent study by Zhang et al., 

(2018), used a flow tube reactor to systematically examine the impacts of reactive uptake 

and found that pre-existing SOA coatings, with a coating thickness of only 10 nm, on acidic 

sulfate aerosol can substantially reduce the γ values for IEPOX, in some cases up to 50%.

These new results suggest that the inorganic and organic components of the aerosol particles, 

as well as their physical and chemical properties, jointly impact the formation, evolution, 

and fate of ambient SOA. Current AQMs do not include how phase separation into an 

organic-rich shell and inorganic-rich core may affect IEPOX uptake (a coating effect), and 

thus, there exists great uncertainty in our predictive ability. This work used a box model that 

incorporates the latest laboratory-based kinetic data and field data from the 2013 South 

Oxidant Aerosol Study (SOAS) to allow analysis of sensitivities to critical parameters 

needed to simulate the coating effects in acid-catalyzed reactive uptake of IEPOX. SOAS 

also provided particle-phase filter data of known isoprene SOA constituents including 

organosulfates and methyltetrols for use in model evaluation and parameter optimization.

II. MATERIALS AND METHODS

2.1 Reactive Uptake Algorithm

The formation of IEPOX-derived SOA is modeled in this work as a first order heterogeneous 

uptake reaction described elsewhere and provided in Equations S1–S7 and Table S1 

(Budisulistiorini et al., 2017; Pye et al., 2013). The heterogeneous reaction is parametrized, 

like in CMAQ v5.1–5.2, using a γ, but assuming a core-shell morphology with an additional 
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coating term as shown in Equation 1 and terms are defined in the Supplementary 

Information (Gaston et al., 2014a; Gaston et al., 2014b).

1
γ = 1

α + v
4H * R * T Da * kparticle

1
coth q − 1

q

+
v * lorg * rp

4 * Horg * R * T * Dorg * rcore
(1)

2.2 Box Model

The equations described above were implemented in a revised version of the box model used 

by Budisulistiorini et al. (2017) via Matlab software (version 2017a) to predict hourly 

average SOA concentrations, defined as the sum of IEPOX-OS and 2-methyltetrol 

concentrations. The amount of processing time that accounts for the atmospheric 

photooxidation during the day must also be assumed for this model. Using filter data 

Budisulistiorini et al. (2017) assumed a processing time of 6 hours which gave a reasonable 

simulation of the split of IEPOX-OS and 2-methyltetrol SOA found on the filters. Longer 

processing times overpredicted the concentration of 2-methyltetrols by a factor of 2.3 and 

under predicted the concentration of IEPOX-OS by a factor of 0.7 and did not reflect the 

total SOA mass found on the filters as well. It is not possible to robustly constrain the model 

processing time without air mass history given the model construction and therefore this 6 

hour processing time value is used in all simulations described here. All model simulations 

were completed from June 1, 2013 until July 15, 2013 using SOAS 2013 field measurement 

at the LRK site as input based on previous work with details found in the SI. A base 

simulation was run as a control that reproduced the results Budisulistiorini et al. (2017) and 

omitted the third coating term in Equation 1.

For these simulations an accommodation coefficient (α) of 0.2 (Serway, 2009) and Henry’s 

Law constant for the aqueous phase (H) of 3×107 M/atm (Budisulistiorini et al., 2017; Pye et 

al., 2013) were assumed to match the values used in CMAQ v5.2. The effects of adsorption 

of IEPOX onto the particle were assumed to be negligible due to competition with water 

molecules for adsorption sites (Pye et al. 2018).As shown in Table 1, the effect of RH on the 

solubility of IEPOX into the organic coating was assumed to be inconsequential, and a 

Henry’s law constant for the organic coat (Horg) value of 2×105 M/atm was used as reported 

in literature (Gaston et al., 2014a; Gaston et al., 2014b). The thickness of the organic coat 

( lorg ) is estimated to be 17 nm assuming a monodisperse aerosol distribution and calculated 

using the mass concentration, number concentration, and size of monoterpene-derived SOA 

reported during the 2013 SOAS campaign ( Zhang et al. 2018; Y Zhang et al. 2015) and 

calculated using Equation 2.

lorg = 3
4π

V
N + rp

33 − rp (2)

The estimation of the diffusion coefficient of IEPOX in the organic coating (Dorg) were 

based on two methodologies. The first relied on SOA viscosity measurements generated 
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from indoor flow tube studies (Shrestha et al., 2013; Zhang et al., 2015). In these studies, 

SOA was produced in a flow tube reactor with or without an α-pinene coating at several RH 

levels. The Stokes-Einstein Equation was then used to convert viscosity into diffusivity. The 

data provided by Zhang et al. (2015) was obtained from experiments with a RH range of 

15% to 80% and is shown in Figure S1. In this study, an extrapolation of the Dorg was used 

for RH < 15%. However, the Dorg value is assumed to revert to the default value of 1×10−9 

m2/s used in CMAQv5.1 when RH > 80% as shown in Equation 3.

Dorg = e6.55 * RH − 34.49 * 10−4 when RH < 80%
Dorg = 10−9 when RH > 80%

(3)

A second methodology for estimating Dorg used a resistance model and measurements from 

a potential aerosol mass (PAM) reactor (Zhang et al., 2018) to derive the value of Horg*Dorg 

at various RH levels as shown in Table 1 as ap2Dorg (also shown in Figure S1). An 

extrapolation of the Dorg was used for RH < 15%, while the Dorg is assumed to revert to the 

value of 1×10−9 m2/s when RH > 80% as shown in Equation 3. For RH from 50–80% the 

value of Dorg was derived by measuring the viscosity of the coating and then using the 

viscosity-diffusivity relationship given by the Stokes-Einstein Equation. For RH from 15–

50%, the value of Horg*Dorg was derived using a model fit of experimental data, and with 

and assumed Horg, the Dorg relationship to RH was estimated using Equation 4.

Dorg = 10

−16.821 + 5.2725

1 + e74.99 * RH * 100
4.0633 * 10−4 when RH < 80%

Dorg = 10−9 when RH > 80%

(4)

III. RESULTS

The model used in this study generated 792 hours of predicted IEPOX-derived SOA that 

were then averaged to match the 65 3- and 11-hour filters that were collected at the LRK 

site. The first simulation is the “base” simulation where IEPOX SOA formation was 

predicted by Equation 1, but without the third term, making it identical to the 

implementation in Budisulistiorini et al. (2017). In the next two simulations the full 

Equation 1 with the coating term was implemented using parameters derived by Shrestha et 

al. (2013) and (Zhang et al. (2015) (ap1Dorg), or from Zhang et al. (2018) (ap2Dorg), as 

shown in Table 1. The addition of organic coatings in simulations ap1Dorg and ap2Dorg 

further reduced the predicted amount of IEPOX uptake and amount of SOA produced for 

every simulation. On average, the ap1Dorg simulation predicted a 12.7% (maximum 33.4%) 

reduction in total IEPOX-derived SOA when compared to predictions from the base 

simulation, and on average 4.73% (maximum 33.6%) reduction in case of ap2Dorg. Figure 1 
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shows the predicted total IEPOX-derived SOA for each filter period and shows that 

predictions from both the ap1Dorg and ap2Dorg simulations were lower than the base 

simulation. Figure S2 shows the observed versus predicted SOA mass for the base, ap1Dorg, 

and ap2Dorg simulations. The ap1Dorg simulation predictions resulted in a decrease of the 

slope from 1.07 in the base simulation to 0.466. However, no significant increase in values 

R2 compared to the base simulation was observed. For ap2Dorg, the slope was reduced to 

0.866, but similarly no significant change in R2.

The Normalized mean bias (NMB) and normalized mean error (NME), calculated by 

Equations 5–6, are provided in Table 2.

NMB =
∑1

N Model − Obs

∑1
N Obs

* 100 (5)

NME =
∑1

N Model − Obs

∑1
N Obs

* 100 (6)

where Model are model predictions and Obs are the measurement data from the LRK site.

As shown in Table 2 the predictions from the base model had a bias of −66.2% and the 

reductions in SOA mass in the two coating simulations further increased that negative bias. 

The ap1Dorg simulation decreased the NMB by 12.7% and decreased the NME marginally 

and ap2Dorg worsened overall model performance decreasing NMB by 4.73% and some 

marginal increase in NME (Table 2). Figure S3 shows the change in percentage error from 

the base simulation versus the RH measured at the LRK site. All changes in error occurred 

at RH < 85%. The figure also shows some increases in error when coating impacts are 

included. However, there was no statistically significant relationship between the RH and the 

difference in error from the Base Simulation for the simulations in the figure. All model 

simulations predicted the largest negative errors at the mass concentrations < 0.5 μg

m3  as 

shown in Figure S4.

The effect of the coating term is strongly dependent on RH as the largest decreases in γ 
were found to occur at lower RH values. For RH > 80%, all simulations behaved like the 

base case. Figure 2 shows the distribution of average Dorg values for each filter sampling 

period as predicted by the 792 hours generated by the model. The figure shows that most 

predictions occurred when the RH was between 70–95%, with only 18 filters that were 

predicted with an average RH of 55–60%. Above 80% RH, both ap1Dorg and ap2Dorg 

converged resulting in a negligible influence by coatings. For RH < 65%, ap2Dorg has a 

higher Dorg than ap1Dorg by an order of magnitude. As shown in Figure S1, for RH between 

65–80%, ap2Dorg exhibits a transition period where it is highly sensitive to changes in RH 

and the calculated Dorg rapidly increases by 5 orders of magnitude from the values at RHs 
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below 65%. The inclusion of this change in Dorg in the 65–80% RH transition period caused 

increase in both γ and production of SOA compared to the ap1Dorg fit, which did not 

include a transition period. Figure 3 shows the resulting γ values used in these simulations 

and percentage reductions from the base simulation. Both ap1Dorg and ap2Dorg simulations 

showed reductions in γ for all data with RH less than 80%, with ap1Dorg exhibiting larger 

reductions than ap2Dorg.

3.1 Model Sensitivity

Uncertainty in the coating algorithms was explored via model sensitivity simulations for 

changes in Equation 1 to the following parameters: kparticle, H, Horg, Dorg, and lorg. Table 1 

summarizes the values for the parameters used in these simulations. The new kparticle 

simulation explored the sensitivity of the inclusion of organics (Equation S7) in to the 

volume for the calculation of kparticle. The inclusion of a dilution effect of organics in the 

reacting core has the impact of lowering the particle-phase rate constant i.e. kparticle. A 

sensitivity run, named new kparticle, as an upper bound excluded all organics from the 

volume of the reacting core as shown in equation S8. The new H simulation increased H to 

3×108 M/atm, which is within the reported upper range found in the literature (Riedel et al., 

2015; Riedel et al., 2016). The new Horg simulation increased Horg to a value of 3×107 

M/atm as an upper bound test. The thick and thin coat simulations focused on the sensitivity 

of SOA formation when coating thickness (Equation 2) was changed to 11.9 nm or 22.1 nm, 

which represents a 30% decrease or increase respectively in the estimated coating thickness 

by Zhang et al. (2018).

Figure 4 shows the correlation of total modeled SOA versus observations for all sensitivity 

simulations. As shown in Figure 4, the largest changes in predicted SOA mass occurred 

when H was increased. With a 10 time increase in the value of H, the new H simulation 

predicted 7 times increase in the slope of the fit line over the IEPOX-derived SOA predicted 

by ap2Dorg and changed a 66% underprediction to a 124% overprediction as shown in Table 

2 and Figure 4. The larger value for H increased γ by increasing the prediction of IEPOX’s 

ability to partition into the aqueous phase. The increase in Horg in the new Horg simulation 

also produced increases in predicted SOA relative to ap2Dorg. As shown in Table 2, these 

increases however resulted in no statistically significant difference in model performance of 

the new Horg resembling that of the base simulation, in terms of marginal changes in NMB 

and NME. The data in Figure 4 shows that modifying the coating thickness had little impact 

on SOA predictions. The thin coat simulation had decreased the correlation by 0.23 and the 

NMB by 2.84%, with marginal increase in the slope of the fit to the observed data. The thick 

coat decreased the correlation by 0.14 and the NMB by 6.32% from the base, with marginal 

reduction in the slope of the fit to the observed SOA. In the simulation that excluded the 

dilution by organics in kparticle (new kparticle), the result was an increase in predicted SOA 

mass compared to ap2Dorg and a slope of 1.48. Although not as much as the new H 

simulation, the exclusion of organics from kparticle calculations also led to a decrease in 

NMB to 36.3% and NME to 77.9%. This combination of excluding organics, a H of 3.0×107 

M/atm, Horg of 2×105 M/atm, and a Dorg estimated from Equation 4 (Zhang et al., 2018) 

minimized bias and error compared to all other runs. The modification made on this 

simulation increased SOA mass for all conditions with or without coatings. This increase in 
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all predictions improved overall model performance with a statistically significant change in 

bias from the base simulation (p = 0.008) and a moderately statistically significant difference 

in error from the base (p = 0.05). The predicted increases in SOA mass from the new kparticle 

simulation is shown in Figure 1 in comparison with predictions from the base simulation, 

ap1Dorg, ap2Dorg for the time period during which the filter samples were taken.

As a sensitivity for Dorg, an alternative formulation (Equation 7) was used that was derived 

from viscosity measurements taken from isoprene oxidation flow reactor experiments. This 

Dorg has most recently been used in CMAQv5.2 simulations to predict isoprene-derived 

SOA (isopDorg) (Pye et al. 2017).

Dorg = 107 . 18 * RH − 12 . 7 * 10−4 (7)

The isopDorg simulation changed the Dorg relationship as shown in Figure 2. The isopDorg 

simulation predicts an exponential relationship with RH like ap1Dorg, except for RH < 80% 

where it predicts Dorg values that are 5 orders of magnitude higher than ap1Dorg and 

ap2Dorg. The Dorg values predicted by isopDorg are large enough that the reduction in γ is 

negligible at any RH in the simulations, implying IEPOX uptake in CMAQ is not currently 

impacted by diffusivity limitations. At RH values above the cutoff, the average predicted 

SOA mass generated by the three different implementations converged to constant values for 

each filter collection period. At RH > 80%, the values of Dorg were high enough that the 

resistance from the coating was insufficient to inhibit SOA formation. There was no 

statistical significance in the bias and error of the isopDorg simulation when compared to the 

base simulation.

IV: DISCUSSION

The inclusion of a coating term in the reactive uptake algorithm reduced the amount of 

predicted SOA mass by up to 33%. The predicted effect of the coating is most sensitive to H, 
causing large increases in predicted SOA mass. Preventing organic constituents from 

diluting the inorganic reacting volume (kparticle calculation) also substantially increased 

predicted SOA mass, but not as much as increasing H. The model was least sensitive to 

changes in lorg. The model predictions also showed that the Dorg relationship with RH is a 

critical parameter and large differences exist in current published models, especially when 

RH is less than 80%. These results highlight the importance in future models and 

experiments to use atmospherically-relevant SOA tracers and integrating particle viscosity 

measurements into the fitting parameters. It is a challenge, however, to accurately constrain 

the new parameters used in this model due to the fixed 6 hour chemical processing time 

(Budisulistiorini et al. (2017). A change in the processing time would affect model results 

and produce different parameter values as a best fit. Thus, these results should be viewed in 

terms of relative changes compared with the base simulation.

This work uses a Dorg that was derived from α-pinene oxidation products and only 

represents part of the organic aerosol constituents in the real atmosphere. Other constituents 

including anthropogenic and other biogenic sources could have a different impact on γ. 
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Furthermore, the RH-dependent Dorg functions used were derived from experimental 

conditions that were only limited to RH < 80%. ISORROPIA II (Fountoukis and Nenes, 

2007) output was used to predict H+ and aerosol water assuming ambient SOA forms a 

distinct electrolyte- rich aqueous phase and electrolyte-poor organic phase at thermodynamic 

equilibrium. Because of the difficulty in separating the effects of limitations in diffusivity 

and solubility in the coating, determining a better constrained Horg parameterization through 

laboratory experiments could lead to more scientifically sound results as well, while 

maintaining the same relative contributions of 2-methyltetrols and IEPOX-organosulfates. 

Constraining H and Horg would allow for the effects of model processing times to be better 

explored as well. Studies on constraining H, Dorg, and Horg in the resistance model, and 

including organic interactions in kparticle, could improve model accuracy, provide a more 

accurate SOA formation pathway for IEPOX, and lead to more informed decisions for 

regional control strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Time series of total predicted IEPOX-derived SOA mass concentration from the box-model 

at the Look Rock site from A: June 8 to June 24, 2013 and B: July 9 to July 16, 2013 for the 

following simulations: base (red triangle), ap1Dorg (blue circle), ap2Dorg (green square), and 

New kparticle (orange star).

Schmedding et al. Page 14

Atmos Environ (1994). Author manuscript; available in PMC 2020 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
Dorg values as a function of measured RH at the Look Rock site for the ap1Dorg (blue 

circle), ap2Dorg (green square) and isopDorg (purple diamond) simulation, Model 

simulations are summarized in table 1.
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Figure 3. 
(A) Predicted value of γ and (B) percent reduction in γ for the original base simulation (red 

triangle, subplot A only), ap1Dorg (blue circle), ap2Dorg (green square), and isopDorg (purple 

diamond) simulations as a function of average relative humidity for each filter sample.
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Figure 4. 
Observed SOA mass vs model predicted mass for all SOA generated for the following 

simulations: ap2Dorg (green square), newH (cyan triangle), newHorg (black plus), thick coat 

(magenta hexagram), thin coat (gold x), and new kparticle (orange star).
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Table 1.

Summary of parameters used in all 0-D model simulation simulations. H is the effective Henry’s law constant 

for IEPOX partitioning onto inorganic aerosol, Horg is the effective Henry’s law constant for IEPOX 

partitioning onto organic coating, RH is relative humidity, Dorg is the IEPOX gas diffusion coefficient through 

organic coating, Lorg is the thickness of coating layer. RH cutoff is the RH above which Dorg reverts to a 

baseline value of 10−9 m2/s. The rightmost column indicates whether the organics diluted the concentration of 

inorganic constituents that was used to calculate kparticle

Simulation H (M/atm) Horg (M/atm) Dorg (m2/s) (RH<Cutoff) Dorg (m2/s) (RH>Cutoff) Lorg (m) kparticle includes organics

Base 3.00*107 NA NA NA NA Yes

ap1Dorg 3.00*107 2*105 e6.55*RH-34.488)*10−4 1*10−9 1.7*10−8 Yes

ap2Dorg 3.00*107 2*105 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))* 10−4 1*10−9 1.7*10−8 Yes

isopDorg 3.00*107 2*105 10(7.18*RH – 12.7)*10−4 1*10−9 1.7*10−8 Yes

new kparticle 3.00*107 2*105 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))*10−4 1*10−9 1.7*10−8 No

newH 3.00*108 2*105 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))*10−4 1*10−9 1.7*10−8 Yes

newHorg 3.00*107 3*108 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))*10−4 1*10−9 1.7*10−8 Yes

thin coat 3.00*107 2*105 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))*10−4 1*10−9 1.19*10−8 Yes

thick coat 3.00*107 2*105 10(−16.821+ 5.2725/(1+e^(74.99*RH*100)/4.0633))*10−4 1*10−9 2.21*10−8 Yes
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Table 2.

The normalized mean bias (NMB) and normalized mean error (NME) for total predicted IEPOX-derived SOA 

when compared with filter-based molecular measurements collected at the LRK site. The difference when 

compared with the base simulation is shown in parentheses and simulation parameters are summarized in 

Table 1.

Simulation Normalized Mean Bias (Difference from base) Normalized Mean Error (Difference from Base)

base −66.2 83.4

ap1Dorg −78.9 (−12.7) 83.3 (−0.10)

ap2Dorg −70.9 (−4.73) 83.5 (0.07)

isopDorg −68.0 (−1.84) 83.0 (−0.43)

New kparticle −36.3 (29.9) 77.9 (−5.5)

New H 124 (190) 211 (128)

New Horg −66.2 (−0.01) 83.4 (0.04)

thin coat −69.0 (−2.84) 83.0 (−0.43)

thick coat −72.5 (−6.32) 84.5 (1.07)
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