
DOMAIN 4 SYNTHESIS AND PROCESSING OF
MACROMOLECULES

Architecture, Function,
and Substrates of the Type II
Secretion System
KONSTANTIN V. KOROTKOV1 AND MARIA SANDKVIST2

1Department of Molecular and Cellular Biochemistry, University of Kentucky,
Lexington, KY 40506
2Department of Microbiology and Immunology, University of Michigan Medical School,
Ann Arbor, MI 48109

ABSTRACT The type II secretion system (T2SS) delivers toxins and a range of hydrolytic
enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or
extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular
and intracellular pathogens as well as environmental species of proteobacteria is evident.
This dynamic, multicomponent machinery spans the entire cell envelope and consists of
a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a
secretin pore embedded in the outer membrane. Despite the trans-envelope configuration
of the T2S nanomachine, proteins to be secreted engage with the system first once they
enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is
specifically dedicated to their outer membrane translocation. The many sequence and
structural similarities between the T2SS and type IV pili suggest a common origin and argue
for a pilus-mediated mechanism of secretion. This minireview describes the structures,
functions, and interactions of the individual T2SS components and the general architecture
of the assembled T2SS machinery and briefly summarizes the transport and function of a
growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have
led to an increased understanding of the structure-function relationship of the secretin
channel and the pseudopilus, are emphasized.

INTRODUCTION
The type II secretion system (T2SS) is one of several extracellular secretion
systems in Gram-negative bacteria. While highly prevalent in gamma- and
betaproteobacteria, the T2SS is also recognized to a lesser extent in members
of the delta and alpha classes (1, 2). It is known for its prolific protease
secretion activity. In addition, the T2SS mediates extracellular delivery of a
variety of toxins, lipases, and enzymes that break down complex carbohy-
drates, thus conferring a survival advantage to pathogenic as well as envi-
ronmental species (2–4). The T2SS is not restricted to extracellular pathogens,
such as Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa, and Vibrio cholerae; it is also present and contrib-
utes to growth of intracellular pathogens, including Legionella pneumophila,
which replicates in aquatic amoebae, alveolar macrophages, and epithelial cells
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(5–7). The obligate intracellular pathogen Chlamydia tra-
chomatis also depends on T2SS components for extra-
cellular secretion; however, its T2SS is atypical, as some
components are missing or are too different from homo-
logs in other species to be identified using BLAST algo-
rithms (8, 9).

With 12 to 15 different components distributed in the cy-
toplasm, cytoplasmic membrane (CM), and outer mem-
brane (OM), the large multiprotein T2SS spans the entire
Gram-negative cell envelope (Fig. 1A). While many of the
T2SS constituents are structurally and functionally related
to those of type IV pilus systems (10), some of the com-
ponents are unique to the T2SS and are therefore likely
to have a specific role in the secretion process. Energy
through the hydrolysis of ATP is provided by GspE, a
cytoplasmic hexameric ATPase that interacts with the
cytoplasmic domains of GspL and GspF, two CM com-
ponents (Fig. 2) (11–21). GspL, in turn, forms a tight
complex with GspM, a structural homolog (22–27). The
CM complex also consists of GspC (Fig. 2), which reaches
into the periplasmic space, making contact with the se-
cretin that forms the OM conduit, consisting of 15 copies
of GspD (Fig. 3A) (28–38). A gene for GspN, a fifth CM
component, is present in the T2SS operons of a subset of
Gram-negative species; however, its removal has often no
discernible effect on secretion and its function remains
unknown (39, 40). Interestingly, Xanthomonas campestris
lacks GspC. Instead, it expresses GspN, which may sub-
stitute for GspC (41). In addition, the function of some
T2SSs is supported by the CM proteins GspA and GspB,
which contribute to GspD assembly and transport to the
OM, possibly by increasing the pore size of the peptido-
glycan or anchoring it to this structural meshwork (42–
44). Finally, GspG forms a periplasmic pseudopilus that
extends from the CM and is likely capped by the minor
pseudopilins GspH, GspI, GspJ, and GspK, components
that initiate the formation of the pseudopilus (Fig. 2) (45–
50). Prior to assembly of the pseudopilus, which involves
extracting the pseudopilins from the CM and polymer-
izing them into short helical pilus-like fibers, they are
N-terminally cleaved and methylated by the prepilin pep-
tidase GspO (PilD) (51–53).

Proteins to be secreted by the T2SS are initially produced
as precursors with N-terminal signal peptides that are
removed following translocation across the CM by the Sec
or TAT pathways (54–57). While tethered to the CM or
following release to the periplasmic compartment, they
then undergo folding and, in some cases, oligomerization

into larger complexes (58–65). Figure 1B shows examples
of T2SS substrates with known structures. Many T2SS
substrates, particularly proteases, are also produced with
a removable propeptide, in addition to the signal pep-
tide, that functions as an intramolecular chaperone and/
or inhibitor (64, 66–68). Other T2SS substrates require
dedicated, often CM-tethered, chaperones that assist in
the folding and/or engagement with the T2SS prior to
OM translocation (see the crystal structure of the Burk-
holderia glumae lipase in complex with a soluble form of
its chaperone in Fig. 1B) (69–74).

Here we discuss the latest findings relating to the T2SS
substrates, the structure and assembly of the secretin, and
the mechanism of secretion, focusing on the role of the
pseudopilus.

TRANSPORT AND FUNCTION OF T2SS SUBSTRATES
The secretion of exoproteins by the T2SS is considered a
two-step process, where the two steps—transport across
the CM and OM—can be genetically and physically
separated (61, 62). All T2SS substrates have to be exposed
to the periplasmic compartment to be recognized by the
T2SS. Some enter the T2SS as soluble periplasmic inter-
mediates, while others are extracted directly from the CM.
Examples of the latter include the prolipoproteins pul-
lulanase and SslE produced by Klebsiella pneumoniae and
enteropathogenic Escherichia coli (EPEC), respectively,
which are expressed with signal peptides that contain a
lipobox with a conserved cysteine (75–77). The cysteine is
acylated and the signal peptide is removed. The lipidated
cysteine remains with the mature protein and is further
modified by an N-acyltransferase prior to engagement
with the T2SS (78). In contrast to many other, soluble
T2SS substrates, which are released from the cells fol-
lowing OM transfer, these lipoproteins remain primarily
associated with the bacterial cell surface (76, 79). Pre-
sumably they are retained with the OM through their
lipidated N termini, because a pullulanase variant pro-
duced with a typical Sec signal peptide is solubly released
following OM translocation (62). Another example of sur-
face retention includes the cell association of heat-labile
enterotoxin (LT) produced by enterotoxigenic Escherichia
coli (ETEC), which binds via the B subunit oligomer to
lipopolysaccharide in a Kdo core-dependent manner (80,
81). Although the B subunits of LT and cholera toxin are
nearly identical, cholera toxin does not remain associated
with the V. cholerae surface because its Kdo core is phos-
phorylated, thus preventing the binding. A third form of
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Figure 1 Overview of the general architecture of the T2SS and its substrates. (A) A schematic diagram of topology and location of the conserved
core components of the T2SS. The accessory components GspN, GspA, and GspB are not shown. (B)A selection of the T2SS substrates of variable
functions. Protein toxins include V. cholerae AB5 cholera toxin (139) and P. aeruginosa exotoxin A (140). Hydrolytic enzymes include V. cholerae
VesB (68), B. glumae lipase in complex with chaperone (shown in purple) (71), K. oxytoca pullulanase (77), D. dadantii pectate lyase C (141),
EHEC metalloprotease StcE (142), and L. pneumophila aminopeptidase LapA (91). V. cholerae biofilm matrix protein RbmA is a scaffolding
protein (143, 144).
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Figure 2 Structures of the T2SS assembly platform and pseudopilus com-
ponents. The ATPase is hexameric V. cholerae GspE with C6 and C2 sym-
metries (20). A close-up view shows the Zn2+ binding site, which is required
for the function of GspE (14, 145). Inner membrane components include the
cytoplasmic domain of V. cholerae GspF (19), cytoplasmic domain of GspL in
complex with N1 domain of V. cholerae GspE (16), periplasmic domain of V.
parahaemolyticus GspL (26), periplasmic domain of V. cholerae GspM (25),
the homology region (HR) domain of ETEC GspC (32), and the PDZ domain
ofV. choleraeGspC (29). The structure of periplasmic domain of P. aeruginosa
GspL (XcpY) has been recently published (146). Regarding pseudopilus
components, in the K. oxytocaGspG pseudopilus model based on the cryo-EM
reconstruction (50), a close-up view shows the Ca2+ binding site of K. oxytoca
GspG, V. cholerae minor pseudopilin GspH (47), and the trimeric complex
of ETEC GspK-GspI-GspJ (48), and a close-up view shows a double-Ca2+

binding site of GspK. The structure of a homologous XcpX-XcpV-XcpW
complex from P. aeruginosa has been recently reported (147).
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surface retention is typified by the pectin lyase PnlH, which
is anchored in the Dickeya dadantii OM by a noncleavable
TAT signal peptide (82). V. cholerae provides yet another
means by which T2SS substrates associate with the cell
surface. This involves the production of proteins with a C-
terminally located tripartite motif, GlyGly-CTERM, which
consists of residues rich in glycines and serines followed
by a stretch of hydrophobic amino acids and positively
charged residues (83, 84). A recent study has shown that
the GlyGly-CTERM domain of one of these proteins,
VesB, is cleaved off in the CM by an intramembrane
protease, rhombosortase, and the newly generated C ter-
minus is capped with a glycerol-phosphoethanolamine
unit that may be acylated (84). This is followed by OM
translocation and surface localization of VesB. Expression
of VesB without its GlyGly-CTERM domain results in the

release of VesB to the extracellular compartment, signi-
fying the importance of the GlyGly-CTERM extension
and C-terminal modification for VesB surface retention.
While the above-listed methods exemplify ways to retain
T2SS substrates on the bacterial surface, these proteins can
also be found in various amounts in culture supernatants.
This is due to release of OM vesicles, the formation of
micelles, or removal of the proteins from the cell surface
by extracellular proteases (79, 84).

The contribution of the T2SS to environmental growth
and virulence of human, animal, and plant pathogens is
apparent when one considers the secreted proteins and
their activities (Table 1). Devastating diseases such as
cholera and childhood diarrhea caused by ETEC are
mediated by cholera toxin and LT and result in severe

Figure 3 Structures of the T2SS secretins and pilotins. (A) The side and top views of ETEC GspD-AspS complex (37), EPEC GspD (36), E. coli
K-12 GspD (34), and P. aeruginosa GspD (35). A single secretin protomer is highlighted, with N1, N2, and N3 domains in shades of blue, the
secretin domain in green, and the S domain in magenta. Several AspS protomers (brown) were omitted to clearly show the location of the
S domain. The cap subdomain in the Vibrio-type secretins is highlighted in orange. The N0 domains (purple) were not resolved in the available
cryo-EM reconstructions due to flexibility. Instead, its approximate location is indicated (148). Note that the N1-N2 domains of EPEC GspD (36)
and the N1 domain of P. aeruginosa GspD (35) have been placed as rigid fit models. (B) Structures of pilotins in complex with the secretin
S domains (magenta). Structures of Vibrio-type ETEC AspS (37) and Klebsiella-type D. dadantii GspS (116) are shown.
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dehydration and even death when not treated (85, 86). By
inducing watery diarrhea, the enterotoxins aid in the
spread and transmission of these diseases. Another means
by which T2SS substrates benefit bacteria is through nu-
trient acquisition in the eukaryotic host and environment.
The release and generation of nutrients are the result of
the action of pore-forming toxins such as aerolysin, which
causes osmotic host cell lysis, and a range of enzymes,
including proteases, lipases, DNases, and carbohydrate-
degrading enzymes that digest host components and tis-
sue (40, 63, 87–92). For example, plant cell wall-degrading
enzymes, such as cellulases, pectinases, and pectate lyases,
promote growth of phytopathogenic bacteria, resulting
in crop losses (55, 87, 93). L. pneumophila aminopepti-
dase LapA is another recently identified example of a
T2SS protein that contributes to nutrient acquisition by
generating amino acids and thus supporting intracellu-

lar growth of L. pneumophila in amoebae (91). Degra-
dative enzymes also aid pathogens in gaining access to
new niches. Enzymes that target mucins, which cover and
protect cells of the digestive tract, generate direct access
to the epithelial cell surface for colonization of enteric
pathogens and facilitate delivery of toxins (94–96). Re-
cent work has also recognized the contribution of many
proteases and other effectors in immune evasion. Burk-
holderia cenocepacia ZmpA and ZmpB are examples of
proteases that cleave antimicrobial peptides, and the L.
pneumophila T2SS reduces the output of cytokines and
chemokines during infection, in part due to secretion and
activity of the metalloprotease ProA (97–99). Another se-
creted metalloprotease, StcE, protects enterohemorrhagic
Escherichia coli (EHEC) from host defense mechanisms,
including complement-mediated killing, by cleaving C1
esterase inhibitor and neutrophil-associated proteins, while

TABLE 1 Examples of T2SS substrates

Protein(s) Type(s) Activity(ies) Reference(s)
Toxins Enterotoxin (cholera toxin, E. coli heat-labile

enterotoxin)
ADP-ribosylation of Gsα subunit leading to
increased adenylate cyclase activity and raising
cAMP levels, which activates protein kinase A,
followed by phosphorylation of the CFTR
channel. This leads to efflux of chloride ions
and water release into the intestinal lumen and
consequent secretory diarrhea.

85, 86

Exotoxin A ADP-ribosylation of elongation factor 2,
inhibition of protein synthesis in host cells

149

Pore-forming toxin (aerolysin, cytolysin) Host cell membrane depolarization and lysis 63, 150–152

Proteases Metalloprotease, serine protease, cysteine
protease, aminopeptidase

Cleavage of proteins or peptides, breakdown
of host extracellular matrix, tissue damage,
detachment from host cells, nutrient acquisition,
evasion of host defense system, translocation to
new niche

73, 90, 91, 96, 97,
99–101, 103, 149,
153–156

Lipid-modifying
enzymes

Lipase, phospholipase, glycerophospholipid
cholesterol acyltransferase

Breakdown of lipids to fatty acids and glycerol,
nutrient acquisition, translocation to new niche;
breakdown of phospholipids and destabilization
of host cell membranes

40, 70, 73, 88, 91,
149, 157, 158

Carbohydrate-active
enzymes

Chitinase, amylase, cellulase, pullulanase,
xylanase, pectinase, pectin methylesterase,
pectate lyase, levansucrase

Breakdown of polysaccharides such as chitin,
cellulose, pectin, amylose, pullulan, and xylan;
targeting of O-GlcNAcylated proteins in the host;
nutrient acquisition; depolymerization of plant
cell wall; wilting; soft rot

55, 87, 93, 157,
159, 160

Phosphatases Alkaline phosphatase, acid phosphatase Dephosphorylation, phosphate acquisition,
phosphate solubilization

161–163

Nucleic acid-targeting
enzymes

DNase, RNase Hydrolysis of DNA and RNA; generation of
nutrients, including carbon, nitrogen, and
phosphate, that support bacterial growth;
evasion of neutrophil extracellular traps

92, 164, 165

Metal reductase C-type cytochromes Reduction of insoluble metal oxides; electron
transport; anaerobic respiration

166, 167

Others Chitin-binding protein, collagen-like protein,
biofilm-associated proteins

Adherence, biofilm formation 105, 106, 168, 169
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the A. baumannii metalloprotease CpaA interferes with
blood coagulation by inactivating factor XII, which may
result in the escape from clearance by intravascular clots
and dissemination of A. baumannii (73, 100–103). In the
environment, bacterial life frequently occurs as matrix-
encased biofilm. The major component is often poly-
saccharides, but the matrix also contains specific proteins
secreted by the T2SS that contribute to the formation,
architecture, and stability of the biofilm (76, 104–109).

SECRETIN STRUCTURE AND ASSEMBLY
The secretin of the T2SS forms the OM channel for the
passage of secreted proteins. Topologically, it contains
an N-terminal N0 domain, homologous repeat N1 to N3
domains, and a C-terminal secretin core domain (Fig. 3A).
The majority of T2SS secretins have an additional C-
terminal S domain required for interaction with pilotins,
which delivers them to the OM (see below and Fig. 3B).
Early electron microscopy (EM) studies revealed the
general architecture of secretins as a multimeric channel
with an open periplasmic chamber, a closed central gate,
and a top chamber (31, 110–113). The crystal structures
of the N0-N1-N2 domains of ETEC GspD (30) allowed
modeling of the N0-N1-N2-N3 domains in the cryo-EM
structure of V. cholerae GspD (31). However, only the
recent progress in cryo-EM methodology enabled in-
vestigators to solve the full-length secretin structures of
GspD from E. coli K-12 and V. cholerae (34), P. aerugi-
nosa (35), and EPEC (36) and of the GspD-pilotin com-
plex from ETEC (37) (Fig. 3A). The general structural
features are well conserved between secretins of theVibrio
type, the Klebsiella type (114), and the more sequence-
divergent Pseudomonas type (Fig. 3A) (35). The secre-
tins form cylindrical structures ∼150 Å in diameter and
∼195 Å in length that display 15-fold symmetry, in con-
trast with previously reported 12-fold symmetry, a dis-
crepancy likely caused by the limited resolution of the
earlier studies. The major difference between the secretins
is the presence of an extracellular gate (cap) of unknown
function in the Vibrio-type secretins (Fig. 3A) (34, 36).

In the secretin monomer, the domains are arranged in
line that is tilted at ∼30° (Fig. 3A). The N0 domain is not
modeled in the available reconstructions, as it was dis-
ordered, although weak smeared density was observed
in some two-dimensional (2D) class averages (34). To-
gether, the secretin core domains form a double-barrel
structure that includes inner and outer barrels. Each se-
cretin monomer contributes 4 shorter beta-sheets to the

inner barrel and 4 longer beta-sheets to the outer barrel.
The β-hairpin extensions from the inner barrel form the
periplasmic gate in the secretin channel. A mechanism of
periplasmic gate opening during secretion has been sug-
gested based on a partially open structure of a G453A
mutant of V. cholerae GspD, which showed an upward
rotation of the β-hairpins (34). This is consistent with a
recent structure of a homologous type III secretion sys-
tem secretin in the open form, which revealed that the β-
hairpins of the periplasmic gate are in upward position
(115). The aromatic and aliphatic residues on the top of
the outer barrel contribute to the hydrophobic belt that
creates the transmembrane region. The S domain pro-
vides overall stability to the secretin oligomer by inter-
acting with an adjacent protomer. The N3 domains form
a ring below the secretin core domains with which they
make extensive contacts. The interactions between N1-N2
and N2-N3 domain rings, on the other hand, are limited
to the linkers and several specific contacts, which led to
lower resolution of 3D reconstructions in this region.

The majority of T2SSs contain a Klebsiella-type pilotin, a
fatty-acylated protein which has an α-helical structure that
provides a hydrophobic groove for interactions with the
second α-helix from the S domain of the secretin (Fig. 3B)
(116). In contrast, Vibrio-type secretins utilize an alterna-
tive, structurally unrelated pilotin, although this pilotin
fulfills the same function (114, 117). The structure of the
Vibrio-type pilotin in complex with the secretin adopts an
open conformation compared to the apo-pilotin to ac-
commodate the α-helix from the S domain (Fig. 3B) (37).
While pilotins direct secretins to the OM via the lipopro-
tein sorting system (118), the mechanism by which the
secretin protomers acquire the assembled state and insert
into the OM independently of the BAM complex is less
clear (119, 120). However, a recent study that subjected
the N3 domain of the Klebsiella oxytoca GspD to muta-
tional analysis underscores the importance of the N3 do-
main in the early steps of secretin assembly (121). The
results suggest that the N3 domain provides stability to the
prepore, a prerequisite for OM insertion and pore for-
mation of the secretin.

PSEUDOPILUS AND ASSEMBLY PLATFORM
Topologically, all pseudopilins consist of an N-terminal
hydrophobic helix that extends into variable C-terminal
globular domains. The major pseudopilin GspG contains
a conserved Ca2+ binding site (Fig. 2) (50, 122). Disrup-
tion of Ca2+ binding by either amino acid substitutions
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or Ca2+ ion removal with chelating agents affects the sta-
bility of the pseudopilin monomer, pseudopilus assem-
bly, and substrate secretion (50, 122). Interestingly, the
minor pseudopilin GspK also contains a Ca2+ binding site
(Fig. 2); however, the functional significance of this fea-
ture has yet to be determined (48). The minor pseudo-
pilins GspK, GspI, and GspJ form a quasihelical trimeric
complex that is thought to be located at the pseudopilus
tip (Fig. 2) (48). It has been demonstrated that this com-
plex serves as a priming site for pseudopilus assembly
(123). The minor pseudopilin GspH possibly acts as an
adapter between the GspK-GspI-GspJ tip and the poly-
GspG fiber (47). The most recent model of the K. oxytoca
GspG pseudopilus based on a cryo-EM reconstruction
revealed a right-handed helical fiber with a 10-Å rise (50).
The N-terminal hydrophobic helices of the GspG sub-
units arrange within the core of the pseudopilus, with the
C-terminal domains and the Ca2+ binding sites located
at the surface (Fig. 2). Interestingly, the N-terminal hy-
drophobic helix is connected to the C-terminal domain by
an extended linker, a feature distinct from the type IV
pilus.

While a number of GspE homologs from the type IV pili
systems have been structurally characterized in hexameric
form (124–126), the structure of hexameric GspE has been
elusive. Employing a “scaffold” Hcp1 fusion strategy al-
lowed visualization of GspE in two hexameric conforma-
tions: a symmetrical C6 form and an extended C2 form
(Fig. 2) (20). These conformations may reflect structural
transitions in GspE during ATP hydrolysis and transfer of
mechanical energy to support pseudopilus assembly. The
details of this process are not completely understood, al-
though it is believed to involve GspF, GspL, and GpsM,
which have all been shown to interact with the pseudopilus
(13, 18, 127, 128). While the structures of the extramem-
brane domains of GspC, GspF, GspL, and GspM have been
solved (Fig. 2), the structure of the assembly platform
formed by these components has not yet been reported.

IMPLICATIONS FOR MECHANISM
Despite the progress in understanding the structure-
function relationship of the various components of the
T2SS, the mechanism by which this important secretion
system transports both soluble and lipidated proteins
across the OM remains poorly understood. As folding
of the T2SS substrates is a prerequisite for engagement
with the T2SS, a secretion signal is thought to be formed
in the folded structures; however, the structures of T2SS

substrates greatly vary and a common, general secretion
signal has yet to be identified. The protein-protein in-
teraction domain PDZ of GspC has been suggested to
recognize and recruit the T2SS substrates once they
arrive in the periplasmic compartment, yet interactions
between the T2SS substrates and GspD, GspH-GspI-
GspJ-GspK (which forms the tip of the pseudopilus), and
the CM proteins GspL and GspM have also been dem-
onstrated (129–134). These interactions are, for the most
part, consistent with two prevailing models for driving
proteins through the secretin pore: the piston machinery
and the Archimedes screw (135). In the piston model the
pseudopilus tip supposedly pushes the substrates through
the secretin in a linear fashion, although this mechanism
cannot fully account for the required retraction of the
pseudopilus and recharging of substrate, as the T2SS lacks
a retraction ATPase (48, 129, 132, 135, 136). In the Ar-
chimedes screw model, the rotary motion via interactions
with the poly-GspG shaft of the pseudopilus threads the
T2SS substrates out through the secretin pore; however,
this model requires a continuous degradation and re-
plenishment of GspG (137, 138). Dedicated removal of
GspG-bound calcium and subsequent destabilization of
GspG may result in degradation (50), but given the rigid
structure of the double-barrel secretin domain, the di-
mensions of the pseudopilus, and the mounting evidence
for the rotation of the pseudopilus itself, perhaps a com-
posite model should be considered, in which the rotary
motion of the pseudopilus drives the secretion of the
substrates that are pushed out by the pseudopilus tip.

CONCLUSION
In conclusion, while structural information is now avail-
able for most of the T2SS components and many T2SS
substrates and the general architecture of the T2SS is
understood, there are still multiple unanswered questions
about the precise stoichiometry of this secretion complex,
the detailed mechanism of pseudopilus assembly and pos-
sibly disassembly, and the molecular basis for substrate
recognition. Before long, however, answers to these quan-
daries are expected to be revealed, as the field is pro-
gressing rapidly due to technology advances.
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