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‘Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.’ (George E. P. Box)

INTRODUCTION

In 2006, Jones and Dangl proposed a simple coevolutionary model
of plant–pathogen interactions, called the ‘zigzag’ model, which
encompasses two branches of the plant immune system (Jones
and Dangl, 2006).The first branch recognizes conserved molecules
shared by many classes of microbe (pathogen-associated or
microbe-associated molecular patterns, PAMPs or MAMPs), and is
now called pattern-triggered immunity (PTI). The second branch
recognizes and responds to virulence factors termed effectors
that, in the model, serve to suppress PTI. This branch is called
effector-triggered immunity (ETI). The model has captured the
imagination of plant pathology researchers and students alike,
and has proved to be a powerful conveyor of the principal con-
cepts in plant–pathogen interactions. Eight years on, we take a
fresh look at the model to consider how well it fits its intended
purpose, and how a model framework to inspire future researchers
in the field of plant–microbe interactions might develop.

WHAT MODELS MEAN

Models in the scientific sense are abstract representations of
reality. Their purpose is to reduce the complexity of a real-world
system to a manageable and understandable level. At its heart,
any model simply acts as a logical machine for deducing conclu-
sions from the restricted set of assumptions that define that model
(Gunawardena, 2014). A model is, essentially, a microcosm of
scientific hypothesis generation.

Some models are expository, in that they are intended to clarify
principles so that they can be explained simply. Expository models
are not usually intended to make quantitative predictions or to
generate novel insights. Examples of expository models might
include diagrams that represent protein complexes inferred from a

protein–protein interaction experiment or schematics of dynamic
processes, such as an organism’s life cycle.

Other models, especially those based on physical laws or ones
that are quantitative, are predictive. The aim of a predictive model
is to represent complex systems in such a manner that new knowl-
edge and understanding can be obtained by analysis of the model
and not just by direct investigation of the real-world system it
represents. Models of this kind include Henri–Michaelis–Menten
enzyme kinetics, the Lotka–Volterra model of predator–prey inter-
actions and the Virtual Liver(Holzhütter et al., 2012).

It may not be important that an expository model is ‘wrong’ if
the aim of transferring understanding is achieved. Predictive
models can even achieve great utility and power when they are
wrong because they are falsifiable: the assumptions that define
the model can be tested experimentally and discarded if they are
incorrect. Models of this kind can deliver great, and perhaps
unanticipated, biological insight. As George Box pointed out, a
model that has not (yet) been falsified is still likely to be wrong
but, by a cycle of progressive improvement (revision of assump-
tions) and testing, our confidence in the model’s output might be
improved to the point that it is predictively useful. A quantitative,
predictive model framework would be especially useful in the
study of plant–microbe interactions, where so much can be meas-
ured in the context of the still-expanding influence of the many
‘omics’ methods, but the complexity of the biological system
ensures that much insight is currently derived from phenomenol-
ogy and guesswork.

In this opinion piece we argue that the time has come for the
study of plant–microbe interactions as a field to move beyond the
dominant expository zigzag model of the plant immune system
(Jones and Dangl, 2006) to embrace fully quantitative, predictive
modelling. We want to encourage scientists in this field to adopt a
diversity of model frameworks that are able to incorporate new
and unexpected knowledge revealed by experiment, rather than
risk moulding all interpretation into an expository model form that
simply does not fit. To this end, we briefly describe a toy quanti-
tative dynamic model that, while by no means complete or the
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system, provides a basic dynamic representation of key behaviours
of the plant immune system.

WHAT ARE THE LIMITATIONS OF THE
EXPOSITORY ZIGZAG MODEL?

The zigzag model of the plant immune system was introduced by
Jones and Dangl in 2006 and was intended to ‘illustrate [. . .] the
quantitative output of the plant immune system’(Jones and Dangl,
2006). The model has an implied time component, because
ordered phases [PTI, effector-triggered susceptibility (ETS), ETI,
ETS2, ETI2, etc.] are described, each following the other. As an
expository model of (one possible realization of) the evolutionary
history of the plant immune system, the zigzag model is difficult to
criticize. However, the model has limitations that mean it is not a
quantitative or predictive framework for the direct study of plant–
microbe interactions.

1. Molecular scope. The zigzag model defined in Jones and Dangl
(2006) is based only upon interactions between the host
immune system and biotrophic microbes that impair plant
growth and reproduction.The defined molecular participants in
the model are: (1) on the plant’s side, pattern recognition
receptors (PRRs) and NB-LRR proteins; and (2) on the patho-
gen’s side, MAMPs or PAMPs and ‘effectors that interfere with
PTI or otherwise enable pathogen nutrition and dispersal’. It
has been noted previously that endogenous elicitors, or
‘damage-associated molecular patterns’ (DAMPs) are not
accounted for in the original zigzag model (Boller and Felix,
2009), though an attempt has been made to incorporate them
(Hein et al., 2009). Other potential interactions, including nutri-
ent exchange, are also likely to occur as part of the extensive
natural association between plants and microbes (Knief, 2014).
These interactions may also have an impact on the progress of
disease but are, by definition, beyond the scope of the zigzag
model, and it is not immediately clear how they might be
integrated into that framework. Other productive and relevant
interaction modes such as symbiosis and necrotrophy also
occur, but are likewise not within the scope of the model. A
severe ETI response from the plant is probably not a compo-
nent in symbiosis (the plant ‘leaves the door open’). In
necrotrophy, plant cell death might be seen as a favourable
outcome for the microbe, thereby reversing the usual interpre-
tation of induced cell death in ETI from ‘immunity’ to some-
thing more like ‘susceptibility’ (Dickman and de Figueiredo,
2013).Also, despite the definition of effector function including
the possibility that they may otherwise enable pathogen nutri-
tion and dispersal (Jones and Dangl, 2006), this too lies outside
the model’s intentionally restricted scope.

2. Absence of environmental context. Over the lifetime of any
organism, its environmental context and history influence

which molecular processes are active, and to what degree.
Prosaically, a plant’s immune response is dependent on its
previous and current experiences, whether biotic or abiotic—
drought or flood; heat or cold; dark or light; whether there has
been prior exposure to pathogens and beneficial microorgan-
isms, or sterile growth. Assuming that the genotypes of an
interacting host and pathogen are constant and fixed, the
outcome of the interaction in terms of resistance or suscep-
tibility may nevertheless be influenced by environmental
factors. These may have a negative impact (e.g. abiotic
stresses) or a positive impact [e.g. factors promoting systemic
acquired resistance or induced systemic resistance (‘priming’)]
on the host’s expression of immunity. The zigzag model
was never intended to reflect these possibilities or their
potential influences, and it is not clear how they might be
incorporated.

3. Ordering of events. The zigzag model describes four phases:
phase 1 (PAMPs detected by PRRs) is followed by phase 2
(pathogens deliver effectors to interfere with PTI), which is in
turn followed by phase 3 (effectors recognized by NB-LRRs,
ETI) then phase 4 (loss/gain of effectors over evolutionary
time). In the original model description this was not intended
to be a physical description of cell–cell interaction during
infection time-scales (Jones and Dangl, 2006). Recent litera-
ture indicates strongly that plant innate immunity is an
integrative and essentially stochastic process combining the
detection and action of effectors, MAMPs and damage-
associated signals, and casts doubt on the validity of a concep-
tual division between PTI and ETI, when considered at a
molecular or systems level in the plant (Thomma et al., 2011).
The strongly ordered nature of the zigzag model does not
capture behaviour that is useful for predictive or quantita-
tive modelling of a system where these interactions occur
concurrently.

4. Time-scale. Most of the molecular processes described in the
zigzag model are likely to occur during a single plant interac-
tion with one or more biotrophic pathogens. It can be tempting
to attempt to interpret the model on the time-scale of a single
interaction. However, phase 4 (ETS2) of the original model
description (loss and/or gain of effectors) occurs in the zigzag
model explicitly as a result of selection pressure, which would
act at a population level and over longer time-scales. The
zigzag model was clearly not intended to represent an ordered
set of occurrences during a single infection event or to describe
the processes that occur during infection in such a way as to be
an interpretative framework for direct experiment, in that
context.

5. Physical scale. The original formulation of the zigzag model is
ambiguous about the physical scale it describes. The evolution-
ary events of phase 4 (effector loss/gain) necessarily transpire
at the population level, but the molecular processes being
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described occur in only some proportion of cells in a plant
currently being challenged by a pathogen. Although some
might succumb to the temptation, again it seems we ought not
to interpret the zigzag model to represent events in a single
cell, or even a single organism.

6. The model is qualitative. Although the original presentation of
the zigzag model states that it ‘illustrates the quantitative
output of the plant immune system’, this is not the case. The
quantitative term ‘amplitude’ (meaning breadth, range, physi-
cal extent or magnitude) is used in the model, and an expres-
sion is presented as representing the ‘ultimate amplitude of
disease resistance or susceptibility proportional to [PTI – ETS +
ETI]’, but it is not indicated what measurements these values
might represent, what units they may have, or whether a
linear summation of the values is valid. Instead, the host
response is subdivided into three qualitative states, delimited
either by a ‘threshold for effective resistance’ and a ‘threshold
for HR [the hypersensitive cell death response]’ (Jones and
Dangl, 2006). At no point is the model actually made
quantitative.

The zigzag model is extremely widely used. It is a good pedagogi-
cal and expository model and maybe even an accurate approxi-
mation to the evolutionary order of development of components
of the plant immune system. It illustrates well the broad nature of
some types of plant–microbe molecular interactions, but it does
not describe them in a way that is useful for quantification or
prediction.

With the advent of faster, cheaper, high-throughput ‘omics’
methods, the ability to acquire large amounts of quantitative data
is transforming and accelerating research in plant science, and in
plant–microbe interactions (Knief, 2014). To integrate and analyse
these data in a productive way, molecular plant pathologists need
not just one model, or even a single overarching model frame-
work, but many models—predictive, quantitative, qualitative and
expository—for a range of systems and interactions. Influential as
the zigzag model has been, it cannot be the whole story for
plant–microbe interactions.

WHAT OTHER MODELS MIGHT BE USEFUL?

Molecular plant pathology has been relatively underserved in
terms of modelling effort, particularly when compared with
studies associated with similar human–microbial pathosystems.
The current representation of models associated with plant
pathology in the BioModels repository (http://www.ebi.ac.uk/
biomodels-main/; Li et al., 2010), for example, is disappointingly
sparse. This is surprising given the many natural advantages of
working in this area for model validation and hypothesis genera-
tion. Plants and their pathogens, particularly microbial pathogens,
are of much less ethical concern than are animal models of
disease. Also, there are some well-understood pathosystems, such

as Arabidopsis thaliana with Pseudomonas syringae or
Hyaloperonospora arabidopsidis, that have a wide range of useful
genomic resources and experimental toolkits for targeted and
genome-wide knockout and RNA interference studies, and also
large collections for investigation of the effects of both host and
pathogen diversity. Plant pathosystems offer unparalleled oppor-
tunities for large-scale validation of biological modelling, systems
biology and translation of the resulting insights into solutions to
problems of food security that could potentially benefit many
across the globe.

Contributions of existing modelling and systems biology to
plant–microbe interactions include: mathematical modelling
of subcellular metabolic pathways in A. thaliana (Nägele
and Weckwerth, 2013); flux-balance analysis and Boolean
modelling of plant–pathogen interactions (Pinzón et al., 2010);
metabolic reconstruction and modelling of nitrogen fixation
(Resendis-Antonio et al., 2007); kinetic modelling of mitogen-
activated protein kinase signalling in response to biotic stress
(Pathak et al., 2013); and semi-quantitative models of plant
signalling (Sankar et al., 2011). We have also previously proposed
a quantitative framework for understanding plant–pathogen
molecular interactions as changes of ‘state’ of the pathosystem
(Pritchard and Birch, 2011), which is capable of integrating multi-
ple sources of high-throughput experimental data and may also
enable falsification and hypothesis generation for the complete
interacting system and its interaction with the environment. Sig-
nificant progress has been made in modelling (and subsequent
experimental validation) of the interplay of ethylene, salicylic acid
and jasmonic acid signalling pathways in PTI (e.g. Kim et al.,
2014).

For this discussion, we have prepared a dynamic and quanti-
tative model of the plant immune system. This model was depos-
ited in the BioModels database (Li et al., 2010) and assigned the
identifier MODEL1408280000. The model abstracts key features
of the plant–pathogen molecular interactions that feature in the
zigzag model: PAMP detection and PTI; effector action to sup-
press PTI, with corresponding effector detection by an R protein
and ETI (Figure 1, Figure S1 in Supporting Information). This
model is clearly not a highly detailed, or perhaps even very accu-
rate, representation of the plant immune system; nor are the
model parameters optimized in any way to represent any bio-
logical system or reproduce experimentally acquired data. It is
noted that although this model contains only nine differential
equations (Figure S2) and is extremely simple in relation to the
actual complexities of plant–pathogen molecular interactions,
it still contains 15 reactions with 19 kinetic parameters and
would require some effort to parameterize to any particular
pathosystem.

Despite its relative simplicity, and the complete lack of
parameterization to a real system, the model broadly reproduces
the expected features of interaction between a host cell and an
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Fig. 1 (a) Schematic diagram of the model plant immune system (BioModels: MODEL1408280000). The system is divided into two ‘compartments’: extracellular
(external to the cell wall) and intracellular (internal to the cell wall). In the extracellular compartment the local microbial population is drawn from a remote bulk
population and is also ‘destroyed’, as indicated by the arrow pointing to the empty set symbol (ϕ). The rate at which the microbe is ‘destroyed’, which may be
interpreted, for example, as microbial movement or death, is enhanced by pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). While local to the
plant, the microbe produces two species: pathogen-associated molecular patterns (PAMP) and effector; both species can be lost (e.g. by diffusion or destruction) in the
extracellular compartment. The PAMP may interact reversibly with plant pattern-recognition receptor (PRR) to produce an activated PRR* species. The effector may be
internalized to the cell (translocation), where it may interact reversibly with plant R protein to produce an activated R protein* species. Within the cell compartment, if
there is activated PRR*, the plant also produces callose, as a proxy for PTI activity. This is degraded within the plant cell. As a proxy for PTI, callose also increases the
rate at which local microbe populations decline, and acts to reduce the rate at which effector is translocated into the cell. Activated R protein* also increases the rate
at which the local microbial population is depleted, as an abstraction of ETI. (b), (c) Quantitative output of the immune system model. (b) Levels of callose and
pathogen (arbitrary units) over 200 time units of simulation, for systems where the host shows: no resistance response: PTI, host shows PTI only; PTI+ETS, host shows
PTI only but the pathogen suppresses PTI by effector production; PTI+ETS+ETI, host exhibits PTI and ETI, but the pathogen suppresses PTI by effector production.
(c) Levels of callose and pathogen (arbitrary units) after 200 time units, when a steady state has been reached, demonstrating the influence of PTI, ETI and effector
action with respect to the absence of a host immune response. The profile of steady-state pathogen levels resembles the profile of the expository zigzag model.
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invading pathogen (Figure 1). In the absence of a host immune
response, the pathogen reaches an arbitrary level of one unit, and
no callose deposition occurs. If only PTI is active, callose deposition
occurs and the pathogen fails to reach as high a level. If the
pathogen is able to introduce an effector to suppress callose
deposition, the steady-state level of pathogen is increased and the
amount of callose deposition reduced. Finally, a host having both
PTI and ETI systems active supports the presence of the pathogen
even if it introduces a PTI-suppressing effector—but in this case
the amount of callose deposition is also reduced with respect to
the system in which the host does not have an active ETI response.
In all cases where there is a host immune response, the pathogen
briefly reaches elevated levels in the locality of the cell before this
level is seen to fall (due to the action of resistance mechanisms).
Each alternative scenario above leads to a different steady-state
level of the pathogen as an outcome. These predictive outcomes
represent falsifiable hypotheses that cannot be suggested by a
purely expository model such as the zigzag.

The toy model additionally overcomes several limitations of
the zigzag model indicated above: the time-scale and nature of
interactions is explicit in the model definition; events take place
concurrently during the interaction; the results are quantitative
(though due to the structure of the model, and in the absence of
parameter optimization, they currently have arbitrarily values).
The molecular scope of the basic assumptions of this toy model,
and treatment of context, is no greater than that for the zigzag
model, but it is clear how further processes (such as production
of host nutrient and its effect on local pathogen levels) can be
integrated into the model by the addition of further terms in the
model, and how parameters might be modified to reflect the
immediate history of either the plant host or pathogen. Most
significantly, unlike the zigzag model, the qualitative and quan-
titative outcomes of interaction, i.e. ETI, ETS and PTI, are not
specified directly in the model description. Instead, these out-
comes are predictions of the model, which may be obtained by
parameterizing the model in different ways to reflect changes in
the system.

There are many opportunities for improvement to the model:
parameterization to reflect a ‘real’ pathosystem; dependency of
pathogen propagation on host nutrient production; introduction
of a panel of effector proteins (possibly with different functions,
such as the promotion of pathogen growth) and corresponding R
genes; competition for resources; spatial elements such as
pathogen mobility and an array of host cells; integration with
more complex models of PTI and signalling; environmental
context and influence; and so on. Even in this simplistic form,
however, it still represents a tangible basis for posing reasonable
hypotheses, some of which may be answered in silico and
some in vitro or in vivo, that cannot be framed at all in
the context of the expository zigzag model. To investigate
complex, dynamic processes we will probably always benefit

from having a dynamic model for the interpretation and guid-
ance of experiment.

Models such as these can guide future research towards the
most critical components of dynamic systems as we best under-
stand them at the current moment. Any reductionist investigation
of a single component of even this simple model cannot give us
more than a focused, fragmentary account of the host response.
Understanding and interpreting the result of a reductionist experi-
ment may itself be dependent on the behaviour of the rest of the
interacting components. The implication is clear: we need to con-
sider the biology of the system, and dynamic modelling can be a
powerful tool for achieving this goal.

CONCLUSION

Dynamic, quantifiable and predictive models of host–pathogen
interactions, like all models, will be wrong. They are bound to be
incomplete, given our current levels of understanding, but they
can form the basis for asking new questions that improve our
understanding and the quality of the models themselves. Exposi-
tory models such as the zigzag model have great value in con-
ceptualizing and communicating aspects of host–pathogen
interactions, but they should not form the limit of our representa-
tion or understanding. In order to understand and investigate
complex dynamic processes like host–microbe interactions suffi-
ciently well, we will need to develop dynamic models of these
systems and move beyond static, expository models.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Figure S1 Systems Biology Graphical Notation (SBGN, http://
www.sbgn.org/) representation of the toy immune system model
(BioModels accession no. MODEL1408280000 http://www.ebi.ac
.uk/biomodels-main/).
Figure S2 Ordinary differential equation (ODE) representa-
tion of the immune system model (BioModels accession no.
MODEL1408280000 http://www.ebi.ac.uk/biomodels-main/). By
convention, the terms in square brackets (e.g. [PRR]) represent
a nominal concentration—or, if modelled stochastically, a
count—of the entity represented within the brackets. For the
simulations represented in this paper, kinetic parameters (k1, k2,
etc. for each model step) were set to an arbitrary value of 0.1. In
this model, time, volume and concentration were set to be dimen-
sionless, so these parameters also have no units.
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