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Abstract: Two novel and exciting avenues of neuroscientific research involve the study of task-driven
dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in
real-time. While the former is a well-established field within neuroscience and has received considerable
attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI
studies have focused on a single brain region at a time. This is due in part to the many challenges faced
when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel
methodology with which to accurately track changes in time-varying functional connectivity networks in
real-time. The proposed method is shown to perform competitively when compared to state-of-the-art
offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to
motor task data from the Human Connectome Project as well as to data obtained from a visuospatial
attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in
network structure in real-time. Hum Brain Mapp 38:202–220, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The notion that the brain is a network consisting of spatially
distributed and functionally connected regions is well estab-
lished in neuroimaging [Bullmore and Sporns, 2009]. Until
recently, the vast majority of studies involving functional con-
nectivity assumed the underlying networks were static. As a
result, a single underlying network was typically estimated
and assumed to summarize the connectivity structure.While
such an approach reliably recovers intrinsic functional con-
nectivity networks that exhibit satisfactory intra-indiviudal
stability across scans [Pinter et al, 2016; Song et al, 2012], such
a simplified assumption has been strongly contested in recent
years [Chang and Glover, 2010; Sako�glu et al., 2010]. There is
a growing body of evidence to suggest that functional connec-
tivity networks are in fact time-varying (see Hutchison et al.
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[2013] and references therein). The study of so called
dynamic functional connectivity, therefore, constitutes a
rapidly emerging and novel avenue of neuroscience
research. Since its inception, the study of dynamic connec-
tivity has lead to crucial insights into the functional organi-
zation of the human connectome both during rest [Allen
et al., 2014] as well as during cognitive tasks [Elton and Gao,
2014; Fornito et al., 2012; Monti et al., 2015]. From a technical
perspective, a wide range of statistical methodologies have
been used to study dynamic connectivity. These range from
the use of change point detection [Cribben et al., 2012; Rob-
inson et al., 2010] to regularized likelihood methods [Allen
et al., 2014; Monti et al., 2014], state-space models [Robinson
et al., 2015], projection-based methods such as principal
component analysis [Leonardi et al., 2013] and linear dis-
criminant analysis [Monti et al., 2015]. However, all of the
aforementioned methods have focused on studying connec-
tivity in an offline setting; that is to say that networks are
only estimated once all data has been collected and prepro-
cessed. In this work, we focus on the related but fundamen-
tally different challenge of accurately estimating functional
connectivity networks in real-time.

The study of fMRI in real-time is another rapidly
expanding avenue of neuroscience research. A dominant
application of real-time (rt) fMRI has been centered
around neurofeedback [deCharms, 2008; Weiskopf, 2012] in
which participants learn to modulate blood-oxygen-level
dependent (BOLD) activity within a specified brain region.
However, such region of interest (ROI)-based neurofeed-
back does not take into consideration the above mentioned
notion of the brain as functionally connected network
[Bressler and Menon, 2010; Ruiz et al., 2014; Sporns et al.,
2004]. Another pertinent application of rt-fMRI is in real-
time brain decoding [LaConte, 2011]. Such methods use
multivariate classification techniques to predict brain states
“on the fly” based on BOLD measurements across a large
number of nodes (voxels or regions). To date, techniques
such as support vector machines [LaConte et al., 2007] and
neural nets [Eklund et al., 2009] have been used. It is rea-
sonable to suggest that the performance of these classifica-
tion algorithms could be further boosted by providing
them with additional information relating to functional
connectivity. It, therefore, follows that the next frontier for
rt-fMRI studies involves accurately estimating brain con-
nectivity in real-time. So far there have been only a limited
number of studies focusing on estimating functional con-
nectivity in real-time and their primary focus has been on
neurofeedback [Koush et al., 2013, 2016; Liew et al., 2015;
Ruiz et al., 2014; Zilverstand et al., 2014]. A limitation of
those studies however is that it only provides real-time
neurofeedback based on changes in connectivity between a
very small number of ROIs. Methods that would allow
instantaneous neurofeedback based on entire networks
could drastically boost the relevance of such an approach
by providing a far richer description of the brain state as
can be achieved with state-of-the-art offline methods.

Developing novel methodologies to estimate functional
connectivity between many ROIs in real-time although
presents considerable theoretical and practical challenges.
First, due to the nature of neurofeedback the resulting
time series are expected to vary significantly over time.
The accurate estimation of dynamic functional connectivity
networks in an offline setting is a difficult problem in its
own right and has recently received considerable attention
[Allen et al., 2014; Davison et al., 2015; Monti et al., 2014,
2016]. In this work, we look to address this issue by
extending recently proposed methods from the offline
domain to the real-time domain. Second, due to potentially
rapid changes that may occur in a subjects’ functional con-
nectivity the proposed method must be both computation-
ally efficient as well as highly adaptive to change. To
satisfy the latter, the proposed method must be capable of
accurately estimating functional connectivity networks
using only a reduced (and adequately re-weighted) subset
of current and past observations.

To address these challenges, we first propose the use of
exponentially weighted moving average (EWMA) models
[Lindquist et al., 2014] as well as more general adaptive
forgetting techniques. This decision is motivated by the
superior statistical properties of such approaches as well
as the need to ensure that the proposed methods are as
adaptive as possible. Through several simulations, we pro-
vide exhaustive evidence to suggest such methods should
be preferred to sliding windows. We then extend the
recently proposed Smooth Incremental Graphical Lasso
Estimation (SINGLE) algorithm [Monti et al., 2014] to the
real-time scenario. Here, functional relationships between
pairs of nodes are estimated using partial correlations (as
opposed to Pearson’s correlation) as they have been shown
to be better suited to detecting changes in network struc-
ture [Smith et al., 2011; Marrelec et al., 2009]. The rt-
SINGLE algorithm encourages two desirable properties in
estimated functional connectivity networks: sparsity and
temporal homogenity. We are able to re-cast the estimation
of a new functional connectivity network as a convex opti-
mization problem which can be quickly and efficiently
solved in real-time. In addition to an extensive set of simu-
ations, we also apply the proposed method to two differ-
ent fMRI data sets: motor task data from the Human
Connectome Projects (HCPs) as well as data obtained from
a visuospatial attention task. We demonstrate that the
algorithm is able to accurately estimate task-related
changes in network structure in real-time and discuss
important applications. To our knowledge, this is the first
work to propose and validate estimating functional con-
nectivity networks consisting of a high number of ROIs in
real-time.

METHODS

In this section, we introduce and describe the proposed
method. We begin by defining notation in Notation
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section, then a high-level overview of the proposed meth-
od is provided in Overview of Proposed Method section
followed by a detailed description of the proposed method
in First Step: Real-Time, Adaptive Covariance Estimation
and Second Step: Real-Time Network Estimation sections.
Finally, the selection of relevant parameters is discussed in
Parameter Tuning section.

Notation

We assume we have access to a stream of multivariate
fMRI measurements across p nodes where each node rep-
resents a ROI. We write Xt 2 R1 3p to denote the BOLD
measurements at the tth time point across p ROIs; thus Xt;i

corresponds to the BOLD measurement of the ith node at
time t. In this work, we are interested in sequentially using
all observations up to and including Xt to recursively learn
the underlying functional connectivity networks. At time
t 1 1 it is assumed we receive a new observation Xt11,
which we use to update our network estimates according-
ly. Throughout the remainder of this manuscript, it is
assumed that each Xt follows a multivariate Gaussian dis-
tribution, Xt � N lt;

P
t

� �
, where both the mean and

covariance structure are assumed to vary over time.
The functional connectivity network at time t can be

estimated by learning the corresponding precision (inverse
covariance) matrix,

P21
t 5Kt. Such approaches have been

used extensively in neuroimaging applications [Ryali
et al., 2012; Smith et al., 2011; Varoquaux et al., 2010;] and
have also recently been proposed to estimate time-varying
estimates of functional connectivity networks [Allen et al.,
2014; Cribben et al., 2012; Monti et al., 2014]. Here, Kt enc-
odes the partial correlations as well as the conditional
independence structure at time t. We then encode Kt as a
graph, Gt, where the presence of an edge implies a non-
zero entry in the corresponding entry of the precision
matrix [Lauritzen, 1996].

Therefore, our aim is to estimate an increasing sequence of
functional connectivity networks, Gf g5 G1; . . . ; Gt; . . .f g
where each Gt captures the functional connectivity structure
at the tth observation.

Overview of Proposed Method

The objective of this work is to obtain estimates of func-
tional connectivity networks which display the following
properties:

1. Real-time: first and foremost, the primary objective of
this work is to estimate functional connectivity net-
works in real-time. It follows that in any rt-fMRI
application it is crucial that estimated functional con-
nectivity networks are available in a timely manner.

2. Adaptivity: we are particularly interested in the
changes caused by the direct interaction with subjects
while they are in the scanner. As such, it is crucial to

be able to rapidly quantify changes in functional con-
nectivity structure once these have occurred. The
need for highly adaptive estimation methodologies is
further exacerbated by the lagged nature of the
hemodynamic response function, where changes in
functional measurements typically occur 6 s after per-
forming a task [LaConte et al., 2007].

3. Accuracy: we also wish to accurately estimate network
structure over time. This involves both the accurate
estimation of network connectivity at each time point
as well as the temporal evolution of pairwise relation-
ships between nodes over time. That is to say, estimat-
ed networks should provide accurate representations
of the true underlying functional connectivity structure
at any point in time as well as accurately describing
how networks evolve over time.

The task of estimating Kt in real time can be broken into
two independent steps. First, an updated estimate of the
sample covariance, St, is calculated. We propose two meth-
ods with which an adaptive and accurate estimate of St

can be obtained: EWMA models and adaptive forgetting
(discussed in First Step: Real-Time, Adaptive Covariance
Estimation section). In a second step, the corresponding
precision matrix, Kt, is estimated given the sample covari-
ance. This is achieved by extending the recently proposed
SINGLE algorithm [Monti et al., 2014] from the offline to
the real-time domain (discussed in Second Step: Real-Time
Network Estimation section).

First Step: Real-Time, Adaptive Covariance

Estimation

The estimation of functional connectivity networks is
fundamentally a statistical challenge which is often stud-
ied by quantifying the pairwise correlations across various
ROIs [Friston, 1994]. Such approaches correspond directly
to estimating and studying the covariance structure. When
the functional time series is assumed to be stationary, this
coincides with studying the sample covariance matrix for
the entire dataset. However, in the case of rt-fMRI studies
we are faced with data that is inherently non-stationary.
Moreover, we have the additional constraint that data
arrives sequentially over time, implying that information
from new observations must be efficiently incorporated to
update network estimates.

In this section, we describe how adaptive estimates of
the sample covariance can be obtained in real-time via the
use of EWMA models or adaptive forgetting techniques.

Sliding windows and EWMA models

Arguably the dominant approach used to obtain adap-
tive functional connectivity estimates involves the use of
sliding windows [Hutchison et al., 2013] and this also
holds true in the rt-fMRI setting [Esposito et al., 2003;
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Gembris et al., 2000; Ruiz et al., 2014; Zilverstand et al.,
2014]. Such methods are able to obtain adaptive functional
connectivity estimates in real-time by only considering a
fixed number of past observations, defined as the window.
Using only the observations within the predefined win-
dow, a local (i.e., adaptive) estimate of functional connec-
tivity is obtained. A sliding window may be used to
obtain a local estimate of the sample covariance, St, at
time t as follows:

St 5
1

h

Xh21

i50

Xt2i2 �xtð ÞT Xt2i2 �xtð Þ (1)

where �xt is the mean of all observations falling within the
sliding window and parameter h is the length of the slid-
ing window.

A natural extension of sliding windows is the use of an
EWMA, first introduced by Roberts [1959]. Here, observa-
tions are re-weighted according to their chronological
proximity. The rate at which past information is discarded
is determined by a fixed forgetting factor, r 2 0; 1ð �. In this
way, EWMA models are able to give greater importance to
more recent observations thus increasing the adaptivity of
the resulting algorithm. Moreover, as described in Lind-
quist et al. [2014], these methods enjoy superior statistical
properties when compared to sliding window algorithms.
EWMA models thereby provide a conceptually simple and
robust method with which to handle a wide range of non-
stationary processes. They are also particularly well suited
to the real-time setting as we discuss below.

For a given forgetting factor, r 2 0; 1ð �, the estimated
mean at time t can be recursively defined as:

�xt5 12
1

xt

� �
�xt211

1

xt
Xt (2)

where xt is a normalizing constant which is calculated as:

xt5
Xt

i51

rt2i5r xt2111: (3)

The sample covariance at time t is subsequently defined as1:

Y
t
5 12

1

xt

� �Y
t21

1
1

xt
XtX

T
t (4)

St 5
Y

t
2 �xt �xT

t (5)

From Eqs. (2) and (4), we note that past observations grad-
ually receive less importance. This is a contrast to sliding
windows, where all observations within the window
receive equal weighting. It follows that the choice of

parameter r determines the rate at which information from
previous observations is discarded and is directly related
to the adaptivity of the proposed method. This can be
seen by considering the extreme cases where r 5 1. Here,
we have that xt5t and consequently that �xt and St corre-
spond to the sample mean and covariance estimated in an
offline setting (using all observations up to time t). As a
result equal importance is given to all observations, lead-
ing to reduced adaptivity to changes. As the value of r is
reduced, greater importance is given to more recent obser-
vations resulting in an increasingly adaptive estimate. Of
course, as the value of r decreases the estimated mean and
covariance become increasingly susceptible to outliers and
noise. The choice of r therefore constitutes a trade-off
between adaptivity and stability. Much like the length of
the sliding window, h, the choice of r essentially deter-
mines the effective sample size used to estimate both �xt

and St . Therefore, the same logic applies when choosing
both r and h: the value must be sufficiently large so as to
allow robust estimation of the sample covariance without
becoming too large [Sakoglu et al., 2010].

Adaptive forgetting models

It is important to note that for any non-stationary data
the optimal choice of both r and h may depend on the
location within the dataset. By this, we mean that in the
proximity to a change-point it would clearly be desirable
to have smaller choice of h and r; thereby reducing the
influence of old, irrelevant observations. Whereas within a
locally stationary region, we wish to have a larger choices
of h and r to effectively learn from a wide range of perti-
nent observations. This concept is demonstrated pictorially
in the top panel of Figure 1. In the case of real-time fMRI,
we inherently expect the statistical properties of a subject’s
functional connectivity networks to vary depending on a
wide range of factors (e.g., varying task demands). There-
fore, the choice of a fixed window length, h, or forgetting
factor, r, may be inappropriate.

To address this issue, we propose the use of an adaptive
forgetting methodology [Haykin, 2008]. This corresponds to
a selection of methods where the magnitude of the forget-
ting factor is adjusted directly from the data in real-time.
This is achieved by approximating the derivative of the like-
lihood for every new observation with respect to the forget-
ting factor. We are, therefore, able to update the forgetting
factor in a stochastic gradient descent framework [Bottou,
2004]. As a result, the value of the forgetting factor has a
direct dependence on the time index, t. To make this rela-
tionship explicit, we write rt to denote the adaptive forget-
ting factor at time t. The bottom panel of Figure 1 provides
an illustration of desirable behavior for an adaptive forget-
ting factor. We note that immediately after a change occurs
the forgetting factor drops. This helps discard past informa-
tion which is no longer relevant and gives additional
weighting to new observations. Moreover, it is also impor-
tant to note that in the presence of piece-wise stationary

1We note that Eqs. (4) and (5) are equivalent to estimating the sample
covariance in the more intuitive manner St 5 12 1

xt

� �
St211 1

xt
Xt2�xtð Þ Xt2�xtð ÞT ; however, we choose to follow this param-

eterization in order to simplify future discussion.
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data the value of the adaptive forgetting factor increases,
allowing for a larger number of observations to be leveraged
and yielding more accurate and stable estimates.

Moreover, the use of adaptive forgetting also provides an
additional monitoring mechanism. By considering the esti-
mated value of the forgetting factor rt at any given point in
time, we can gain an understanding as to the current degree
of non-stationarity in the data [Anagnostopoulos et al., 2012].
This follows from the fact that the estimated forgetting factor
quantifies the influence of recent observations on the sample
mean and covariance. Therefore, large values of rt are indica-
tive of piece-wise stationarity whereas small values of rt pro-
vide evidence for changes in the network structure.

To effectively learn the forgetting factor in real-time, we
require a data-driven approach. One popular solution is to
empirically measure performance of current estimates by cal-
culating the likelihood of incoming observations. In this way,
we are able to measure the performance of an estimated
mean, �xt, and sample covariance, St , when provided with
unseen data. This provides the basis on which to update our
choice of forgetting factor. Under the assumption that all
observations follow a multivariate Gaussian distribution, this
likelihood of a new observation Xt11 is given by:

Lt115L Xt; �xt; Stð Þ5 2
1

2
log det St

2
1

2
Xt112�xtð ÞTS21

t Xt112�xtð Þ:
(6)

While it would be possible to maximize Lt11 using a
cross-validation framework in an offline setting, such an
approach is challenging in a real-time setting. Cross-
validation approaches typically consider general perfor-
mance over many subsets of past observations; therefore,
incurring a high computational cost. Moreover, due to the
highly autocorrelated nature of fMRI time series, splitting
past observations into subsets is itself non-trivial. Here, we
build on the work of Anagnostopoulos et al. [2012] and
use adaptive forgetting methods to maximize this quantity
in a computationally efficient manner. This is achieved by
approximating the derivative of Lt11 with respect to rt.
This derivative can subsequently be used to update rt in a
stochastic gradient ascent framework [Bottou, 2004].

From Eqs. (2), (4), and (5), we can see the direct depen-
dence of estimates �xt and St on a fixed forgetting factor r.
This suggests that the likelihood is itself a function of the
forgetting factor, allowing us to calculate its derivative
with respect to r as follows:

L0t115
oLt11

or
5

1

2
Xt112�xtð ÞT 2S21

t �x0t2 S21
t S0tS

21
t Xt112�xtð Þ

� �

2
1

2
trace S21

t S0t
� �

(7)

where have written A0 to denote the derivative of A with
respect to r (i.e., oA

or ). Full details are provided in the Sup-
porting Information A.

Given the derivative, L0t11, we can subsequently update
our choice of forgetting factor using gradient ascent:

rt115rt1 hL0t11; (8)

where h is a small step-size parameter. Equation (8) serves
to highlight the strengths of adaptive forgetting; by calcu-
lating L0t11 we are able to learn the direction along rt

which maximizes the log-likelihood of unseen observa-
tions. It follows that if L0t11 is positive, rt should be
increased, while the converse is true if L0t11 is negative.
Moreover, in calculating L0t11 we also learn a magnitude.
This implies that all updates in Eq. (8) will be of a differ-
ent order of magnitude. This is fundamental as it allows
for rapid adjustments in the presence of abrupt changes
together with small adjustments in the presence of gradual
drifts.

Finally, once rt11 has been calculated, we are able to
learn estimates �xt and St using the same recursive Eqs.
(2–5) with the minor amendment that the effective sample
size, xt is calculated as:

xt5rt21xt2111: (9)

Second Step: Real-Time Network Estimation

To ensure estimated networks provide an accurate rep-
resentation of true functional connectivity networks, we

Figure 1.

Top: Measurements of a non-stationarity univariate random vari-

able, Xt , are shown in grey together with the true mean in blue.

This figure serves to highlight how the optimal choice of a forget-

ting factor or window length may depend on location within a

dataset. It follows that in the proximity of the change-point we

wish r to be small in order for it to adapt to change quickly.

However, when the data is itself piece-wise stationary, we wish

for r to be large in order to be able to fully exploit all relevant

data.Bottom: An illustration of how an ideal adaptive forgetting

factor would behave; decreasing directly after a change occurs

and quickly recovering thereafter. [Color figure can be viewed at

wileyonlinelibrary.com.]
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encourage two properties in estimated functional connec-
tivity networks: sparsity and temporal homogenity.

Sparsity and temporal homogenity

While functional connectivity networks are theorized to
have evolved to achieve high efficiency of information
transfer at a low connection cost [Bullmore and Sporns,
2009], the main motivation behind the introduction of
sparsity here is based on statistical considerations. Formal-
ly, the introduction of sparsity ensures the estimation
problem remains feasible when the number of relevant
observations falls below the number of parameters to esti-
mate [Michel et al., 2011; Ryali et al., 2012]. In the presence
of rapid changes, the number of relevant observations falls
drastically. In such a scenario, sparse methods are able to
guarantee the accurate estimation of functional connectivi-
ty networks without compromising the adaptivity of the
proposed method.

The second property we wish to encourage is temporal
homogeneity; from a neuroscientific perspective, we expect
changes in functional connectivity structure to occur pre-
dominantly when paradigm changes occur (e.g., a subject
begins performing a different task). Thus, we expect net-
work structure to remain constant within a neighborhood
of any observation but to vary over a longer period of
time. We, therefore, encourage sparse innovations in net-
work structure over time, ensuring that a change in con-
nectivity is only reported when strongly substantiated by
evidence in the data. Finally, real-time performance is
achieved by casting the estimation Gt as a convex optimi-
zation problem which can be efficiently solved.

Algorithmic details of real-time SINGLE

In this section, we describe how we can extend the SIN-
GLE algorithm [Monti et al., 2014] in such a manner that we
can obtain an estimated precision matrix that is both sparse
and temporally homogeneous in real time.

Given a sequence of estimated sample covariance matri-
ces Stf g5 S1 ; . . . ;STf g, the SINGLE algorithm is able to esti-
mate corresponding precision matrices, Ktf g5 K1 ; . . . ;KTf g,
by solving the following convex optimization problem:

Ktf g5 argmin
Ktf g

�XT

i51

2log det Ki1trace SiKið Þ

1 k1

XT

i51

jjKijj11k2

XT

i52

jjKi2Ki21jj1
	
:

(10)

The first sum in Eq. (10) corresponds to a likelihood term
while the remaining terms, parameterized by k1 and k2,
respectively, enforce sparsity and temporal homogeneity
constraints. Estimated precision matrices, Ktf g, therefore
balance a trade-off between adequately describing
observed data and satisfying sparsity and temporal homo-
geneity constraints.

However, in the real-time setting, a new St is constantly
obtained implying that the dimension of the solution to
Eq. (10) grows over time. It follows that iteratively re-
solving Eq. (10) is both wasteful and computationally
expensive. In particular, valuable computational resources
will be spent estimating past networks which are no lon-
ger of interest. To address this issue, the following objec-
tive function is proposed to estimate the functional
connectivity network at time t:

f Kð Þ5 2log det K1trace StKð Þ1 k1jjKjj11 k2jjK2Kt21jj1 (11)

where Kt21 corresponds to the estimate of the precision
matrix at time t 2 1 and is assumed to be fixed. The pro-
posed real-time SINGLE (rt-SINGLE) algorithm is thus
able to accurately estimate Kt by minimizing Eq. (11)—in
doing so the proposed method must find a balance
between goodness-of-fit and satisfying the regularization
constraints. The former is captured by the likelihood term:

‘ Kð Þ5 2log det K1trace StKð Þ; (12)

and provides a measure of how precisely Kt describes the
current estimate of the sample covariance, St. The latter
two terms of the objective correspond to regularization
penalty terms:

gk1;k2
Kð Þ5 k1jjKjj11 k2jjK2Kt21jj1 (13)

The first of these, parameterized by k1, encourages sparsi-
ty while the second, parameterized by k2, determines the
extent of temporal homogeneity. By penalizing changes in
functional connectivity networks, the second penalty
encourages sparse innovations in edge structure over time.
As a result, network changes are only reported when
heavily substantiated by evidence in the data. Moreover,
the addition of regularization of this form serves to vastly
reduce the number of parameters. Such an approach is
often advocated in neuroimaging studies [Ryali et al.,
2012; Varoquaux and Craddock, 2013]. Further details of
the proposed optimization algorithm are discussed in Sup-
porting Information B.

Parameter Tuning

Parameter estimation is challenging in the real-time set-
ting. Approaches such as cross-validation, which are
inherently difficult to implement due to the non-
stationarity of the data, are further hampered by the limit-
ed computational resources. As an alternative, information
theoretic approaches such as minimizing the AIC or BIC
may be taken but these too may incur a high computation-
al burden. In this section, we discuss the three parameters
required in the proposed method and provide a clear
interpretation as well as a general overview on how each
should be set.

In this work, we advocate the use adaptive forgetting
factors which provide a more elegant and flexible solution
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when compared to sliding window approaches or EMWA
with fixed forgetting. These methods designate the choice
of rt to the data. As a result, only the stepsize parameter,
h, must be specified. The choice of h in this context can be
interpreted as a step-size parameter for tuning the forget-
ting factor in a stochastic gradient descent paradigm [Bot-
tou, 2004]. As a result, the effect of parameter h can be
intuitively understood. Selecting h to be too large will
result in estimates of rt which are volatile and potentially
dominated by noise. Conversely, selecting small h may
lead to slow convergence. In practice, we find that select-
ing h between 0.001 and 0.05 is adequate.

Parameters k1 and k2 enforce sparsity and temporal
homogeneity respectively. The choice of these parameters
affects the degrees of freedom of estimated networks, sug-
gesting the use of information theoretic approaches such
as AIC. However, in a real-time setting, choosing k1 and
k2 in such a manner presents a computational burden. As
a result, we propose two heuristics for choosing appropri-
ate values of k1 and k2, respectively. One potential
approach involves studying a previous scan of the subject
in question. If this is available, then the regularization
parameters may be chosen by minimizing AIC over this
scan. Alternatively, the burn-in phase may be used to
choose adequate parameters. Such an approach would
involve choosing k1 and k2 which minimized AIC over the
burn in period. Moreover, it is worth noting that tuning k1

and k2 adaptively in a similar manner to the forgetting
factor presents theoretical and computational challenges
due to the non-differentiable nature of the regularization
penalties.

SIMULATION STUDY

In this section, we evaluate the performance of the rt-
SINGLE algorithm through a series of simulation studies.
The purpose of our simulation is twofold. First, we look to
demonstrate the properties of adaptive forgetting methods.
As such, throughout this section we compare results for
the rt-SINGLE algorithm for which either sliding win-
dows, fixed forgetting factors (corresponding to an EWMA
model) or adaptive forgetting techniques are used. Second,
we also look to quantify the ability of the rt-SINGLE algo-
rithm to accurately estimate time-varying networks in real-
time. For this purpose, we consider the performance of the
offline SINGLE algorithm as a benchmark. Naturally we
expect the rt-SINGLE algorithms to generally perform
below its offline counterpart; however, the difference in
performance will be indicative of how well the proposed
methods work. We provide extensive details of the exact
simulation settings as well as performance measures in
Supporting Information C.

In Simulation 1, we study the quality of estimated
covariance matrices over time. This simulation serves as a
clear example of the advantages obtained via the use of
adaptive filtering methods. In Simulations 2 and 3, we

consider the overall performance of the proposed method
by generating connectivity structures according to scale-
free and small-world networks respectively. Finally, in
Simulation 4, we look to quantify the computational cost
of the proposed method as the number of nodes, p,
increases; a crucial aspect to study given the objectives of
this work.

Simulation 1 — Covariance Tracking

In this simulation, we look to assess how accurately we
are able to track changes in covariance structure via the
use of sliding windows, fixed (i.e., EWMA models) and
adaptive forgetting factors.

Datasets were simulated as follows: each dataset con-
sisted of five segments each of length 100 (i.e., overall
duration of 500). The network structure within each seg-
ment was simulated according to either the Barab�asi and
Albert [1999] preferential attachment model or using the
Watts and Strogatz [1998] model. The use of each of these
models was motivated by the fact that they are able to
generate scale-free and small-world networks respectively;
two classes of networks which are frequently encountered
in the analysis of fMRI data [Bassett and Bullmore, 2006;
Eguiluz et al., 2005; Sporns et al., 2004]. In this simulation,
the estimated sample covariances from the proposed meth-
ods were compared to the results when using a symmetric
Gaussian kernel, as in the offline SINGLE algorithm.

Figure 2 shows results when scale-free (top) and small-
world (bottom) network structures are simulated over 500
independent simulations. We note that the quality of the
estimated covariances drops in the proximity of a change-
point for all three real-time algorithms. In the case of the
offline SINGLE algorithm, this drop is symmetric due to
the symmetric nature of the Gaussian kernel used. Howev-
er, in the case of the real-time algorithms the drop is high-
ly asymmetric and occurs directly after the change-point,
as is to be expected. Due to the sudden change in covari-
ance structure, these methods suffer immediately after
abrupt changes in covariance structure, but are able to
quickly recover. It is important to note the difference in
behavior of each of the algorithms directly after a change-
point occurs. The use of fixed and adaptive forgetting fac-
tors results in rapid improvement compared to sliding
windows. This is to be expected as sliding windows do
not down-weight past observations. Studying changes in
covariance structure directly after a change occurs is of
fundamental importance in neuroscientific research. In this
context, the use of fixed and adaptive forgetting yields sig-
nificant advantages. This is especially true for adaptive
forgetting methods as highlighted in Figure 2.

For both scale-free and small-world networks, adaptive
forgetting outperforms both fixed forgetting factors and
sliding windows. These results, therefore, serve to clearly
advocate the use of adaptive forgetting methods. More-
over, from Figure 2 we note that the covariance tracking
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capabilities of the proposed methods are not adversely
affected by the choice of underlying network structure.

Simulation 2 — Scale-Free Networks

In this simulation, we look to empirically quantify the
capability of the proposed method to recover sparse
covariance structure. As a benchmark, we compare the
results of the rt-SINGLE algorithm with the offline
algorithm.

Datasets were simulated as described in Simulation 1,
using the Barab�asi and Albert [1999] preferential attach-
ment model. This generated scale-free networks, implying
that the degree distribution follows a power law. This
implies the presence of a reduced number of hub nodes
which have access to many other regions, while the
remaining majority of nodes have a small number of edges

[Eguiluz et al., 2005]. In this simulation, the entire dataset
was simulated a priori. In the case of the rt-SINGLE algo-
rithms, one observation was provided at time, thereby
treating the dataset as if it was a stream arriving in real-
time. The offline SINGLE algorithm was provided with
the entire dataset and this was treated as an offline task.

In the left panel of Figure 3, we see the average Ft scores
for each of the real-time algorithms as well as the offline
algorithm over 500 simulations. We note that all algo-
rithms experience a drop in F-score in the proximity of
change-points. The offline SINGLE algorithm is based on a
symmetric Gaussian kernel, as a result, we note that there
it has a symmetric drop in performance in the vicinity of a
change-point before quickly recovering. Alternatively, the
drop in performance of the rt-SINGLE algorithms is asym-
metric. This is due to the real-time nature of these algo-
rithms. In line with the results provided in Simulation 1,
we note that when either the adaptive and fixed forgetting
factor is used the performance of the algorithm after a
change point increases rapidly. In contrast, when a sliding
window is used a larger number of observations are
required before an accurate estimate of the sample covari-
ance can be obtained, resulting in poor recovery of the
covariance structure.

Furthermore, we note that while the rt-SINGLE algo-
rithm performs worse than its offline counterpart directly
after change-points, it is able to quickly recover to the lev-
el of the offline SINGLE algorithm. Specifically, in the case
where adaptive forgetting is used, the real-time algorithm
is able to outperform its offline counterpart in sections
where the data remains piece-wise stationary for long peri-
ods of time. This is because it is able to increase the value
of the adaptive forgetting factor accordingly. This allows
the algorithm to exploit a larger pool of relevant informa-
tion compared to its offline counterpart. This is demon-
strated on the right panel of Figure 3 where the mean
value of the adaptive forgetting factor is plotted. We see
there is a drop directly after changes occur; this allows the
algorithm to quickly forget past information which is no
longer relevant. We also note that the estimated value of
the forgetting factor increases quickly after changes occur.

Simulation 3 — Small-World Networks

While in Simulation 2 scale-free networks were studied,
it has been reported that brain networks follow a small-
world topology [Bassett and Bullmore, 2006]. Such net-
works are characterized by their high clustering coeffi-
cients which has been reported in both anatomical as well
as functional brain networks [Sporns et al., 2004].

Datasets were simulated as described in Simulations 1
and 2, with the difference that individual networks were
generated according to the Watts and Strogatz [1998] mod-
el. The Watts and Strogatz [1998] model works as follows:
starting with a regular lattice, the model is parameterized
by b 2 0; 1½ � which quantifies the probability of randomly

Figure 2.

In this simulation, we study the capability of the proposed algo-

rithm to accurately track changes to covariance structure over

time. In order to quantify this, we consider the distance defined

by the trace inner product, given in the supplementary material

(Eq. (17)). We note that the symmetric Gaussian kernel used for

the offline SINGLE algorithm outperforms the online algorithms

as expected. However, when the covariance structure remains

piece-stationary for extended periods of time the online algo-

rithms are able to outperform their offline counterparts. More-

over, the results demonstrate that adaptive filtering methods

outperform both fixed forgetting factors as well as sliding win-

dows.Top: Covariance tracking results when underlying network

structure is simulated according to the scale-free preferential

attachment model of [Barab�asi and Albert, 1999]. A change

occurred every 100 observations.Bottom: Covariance tracking

results when the underlying network structure was simulated

using small-world random networks according to the model of

Watts and Strogatz [1998]. [Color figure can be viewed at

wileyonlinelibrary.com.]
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rewiring an edge. It follows that setting b 5 0 results in a
regular lattice, while setting b51 results in an Erd}os-R�enyi
(i.e., completely random) network structure. Throughout
this simulation we set b5 3

4 as this yielded networks with
sufficient variability but which still displayed the desired
small-world properties.

In the left panel of Figure 4, we see the average Ft scores
for each of the real-time algorithms as well as the offline
SINGLE algorithm over 500 simulations. Due to the
increased complexity of small-world networks, we note
that the performance drops compared to scale-free net-
works considered in Simulation 2. We further note that
the rate at which the real-time networks recover after a
change-point is reduced. As with Simulation 2, we note
that the real-time algorithms are able to reach the same
level of performance as their offline counterpart if given
sufficient time (i.e., if covariance structure is piecewise
constant for sufficiently long periods of time). Moreover,
in the case where adaptive forgetting is used we once

again find that the performance of the real-time algorithm
exceeds that of the offline algorithm when the data
remains piece-wise stationary for a sufficiently long period
of time. In the right panel of Figure 4, we see the estimat-
ed adaptive forgetting factor over each of the 500 simula-
tions. Again, we see the drop in the value of the forgetting
factor directly after change-points; allowing past informa-
tion to be efficiently discarded.

Simulation 4 — Computational Cost

A fundamental aspect of real-time algorithms is that
they must be computationally efficient to be able to update
parameter estimates in the limited time provided. The
main computational cost of the rt-SINGLE algorithm is
related to the eigendecomposition of the K update, which
has a complexity of O p3

� �
[Monti et al., 2014].

Figure 3.

Left: Mean F scores for the offline SINGLE algorithm and the real-

time algorithms using either a sliding window (rt-SW), a fixed for-

getting factor (rt-FF), or adaptive forgetting respectively (rt-AF).

Here, the underlying network structure was simulated using scale-

free random networks according to the preferential attachment

model of Barab�asi and Albert [1999]. A change occurred every

100 time points. We note that all three algorithms experience a

drop in performance in the vicinity of these change-points, howev-

er in the case of the real-time algorithms the drop is asymmetric.

Moreover, we further note that when adaptive forgetting is used

the real-time algorithm is able to outperform its offline counter-

part in sections where the data remains piece-wise stationary for

long periods of time.Right: mean values for the estimated adaptive

forgetting factor, rt, over time. We note there is a sudden drop

directly after changes occurs allowing the algorithm to adequately

discard irrelevant information. [Color figure can be viewed at

wileyonlinelibrary.com.]

Figure 4.

Left: Mean F scores for the offline SINGLE algorithm and the

real-time algorithms using either a sliding window (rt-SW), fixed

forgetting factor (rt-FF), or adaptive forgetting respectively (rt-

AF). Here, the underlying network structure was simulated using

small-world random networks according to the model of Watts

and Strogatz, Nature, 2012, 393, 440–442, reproduced by permis-

sion. A change occurred every 100 time points. We note that all

three algorithms experience a drop in performance in the vicinity

of these change-points, however in the case of the rt-SINGLE

algorithms the drop is asymmetric. Moreover, we further note

that when adaptive forgetting is used the real-time algorithm is

able to outperform its offline counterpart in sections where the

data remains piece-wise stationary for long periods of time.Right:

mean values for the estimated adaptive forgetting factor, rt, over

time. We note there is a sudden drop directly after changes

occurs allowing the algorithm to adequately discard irrelevant

information. [Color figure can be viewed at wileyonlinelibrary.

com.]
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In this simulation, we look to empirically study the com-
putational cost. In this manner, we are able to provide a
rough guide as to the number of ROIs which can be used
in a real-time neurofeedback study while still reporting
network estimates at every point in time. This was
achieved by measuring the mean running time of each
update iteration of the rt-SINGLE algorithm for various
numbers of ROIs, p.

Here, each dataset was simulated as in Simulation 2;
that is the underlying correlation was randomly generated
according to a scale-free network. However, here we
choose to only simulate three segments, each of length 50,
resulting in a dataset consisting of 150 observations. For
increasing values of p, the time taken to estimate a new
precision matrix was calculated. Figure 5 shows the mean
running time for the rt-SINGLE algorithm where either a
sliding window, a fixed forgetting factor (i.e., an EWMA
model) or adaptive forgetting was used. We note that the
difference in computational cost between each of the algo-
rithms is virtually indistinguishable.

Finally, we note that when the number of nodes is
below 20 it is possible to estimate functional connectivity
networks in under 2 s, making the proposed method prac-
tically feasible in real-time studies. This simulation was
run on a computer with an INTEL CORE I5 CPU at 2.8 GHz.

APPLICATION

In this section, we present two applications of the pro-
posed method. First, the proposed method is applied to
motor-task data taken from the HCP. Here, subjects were

asked to perform a range of motor tasks. While this data
was not acquired and analyzed in real-time, it may be
treated as such by only considering a single observation at
a time. In this manner, we are able to compare the perfor-
mance of the rt-SINGLE algorithm to its offline counter-
part using fMRI data as opposed to simulated examples,
as was the case in Simulation Study section. The second
application presented consists of a real-time experiment
where subjects were asked to perform a visuospatial
search task. While the quality of the HCP data is arguable
state-of-the-art, the data generated in this experiment is of
reduced quality. It, therefore, serves to demonstrate the
capabilities of the rt-SINGLE algorithm on a dataset that is
more representative of typical fMRI data used in practice.

HCP Motor-Task

Twenty of the 500 available task-based fMRI datasets
provided by the HCP were selected at random. Here, sub-
jects were asked to perform a simple motor task adapted
from those developed by Buckner et al. [2011] and Yeo
et al. [2011]. This involved the presentation of visual cues
asking subjects to either tap their fingers (left or right),
squeeze their toes (left or right) or move their tongue.
Each movement type was blocked, lasting 12 s, and was
preceded by a 3 s visual cue. Each task was performed
twice together with an additional three fixation blocks
(each of length 15 s). This resulted in a total of 13 blocks
per run.2

While this data is not intrinsically real-time—in that the
preprocessing was conducted after data acquisition—it is
included as a proof-of-concept study. The data was pre-
processed offline as the focus lies on the comparison
between the real-time and offline network estimation
approaches rather than different preprocessing pipelines.
Preprocessing involved regression of Friston’s 24 motion
parameters and high-pass filtering using a cut-off frequen-
cy of 1

130 Hz.
Eleven bilateral cortical ROIs were defined based on the

Desikan-Killiany atlas [Desikan et al., 2006] covering occip-
ital, parietal and temporal lobe (see Supporting Informa-
tion Table 1 and Supporting Information Figure 1). These
regions were selected based on the hypothesis that
changes would occur in the sensory-motor and higher-
level visual areas. The extracted time courses from these
regions were subsequently used for the analysis. By treat-
ing the extracted time course data as if it was arriving in
real-time (i.e., considering one observation at a time), we
can compare the results of the proposed real-time method
to offline algorithms while using the same underlying pre-
processed data.

Figure 5.

Mean running time (seconds) per update iteration of the rt-

SINGLE algorithm when either a sliding window (rt-SW), a fixed

forgetting factor (rt-FF), or adaptive forgetting (rt-AF) was used.

[Color figure can be viewed at wileyonlinelibrary.com.]

2For further details, please see http://www.humanconnectome.
org/documentation/Q1/task-fMRI-protocol-details.html
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Results

Both the SINGLE as well as the rt-SINGLE algorithms
where applied to the motor-task fMRI dataset. Our prima-
ry interest here is to report task-driven changes in func-
tional connectivity. In this way, we are able to examine if
the rt-SINGLE algorithm is capable of reporting the
changes functional connectivity induced by the motor task.

The functional relationships that were modulated by the
motor task were studied; this corresponds to studying the
edges in the estimated networks which are significantly cor-
related with task onset. This was achieved by first estimat-
ing time-varying functional connectivity networks using
both the offline SINGLE algorithm as well as the proposed
real-time algorithm. In the case of the SINGLE algorithm,
parameters where chosen as described in Monti et al. [2014].
This involved estimating the width of the Gaussian kernel
via leave-one-out cross validation and estimating regulari-
zation parameters via minimizing AIC. In the case of the

real-time algorithm, adaptive forgetting was used with
h 5 0.005. The sparsity and temporal homogeneity parame-
ters where set to the same values as the offline SINGLE algo-
rithm as the focus here was to study differences induced by
estimating networks in real-time as opposed to differences
resulting from different parameterizations.

To determine which edges where modulated by task a
non-parametric statistical test was performed. Formally,
Spearman’s rank correlation coefficient was estimated
between the time-varying estimated partial correlation val-
ues for each edge and the task-evoked HRF function. It
follows that edges which are modulated by the task will
display strong correlations with the task HRF, thus allow-
ing us to network of edges which are modulated by the
motor task. Each estimated correlation coefficient was sub-
sequently tested to determine if the correlation was statis-
tically significant. The resulting P-values (one for each
edge) were then corrected for multiple comparisons via
the Holm–Bonferroni method [Holm, 1979]. This allowed

Figure 6.

Task activation networks for rt-SINGLE (top) and SINGLE (bot-

tom) algorithms, respectively. Present edges had statistically sig-

nificant correlations with task HRF after correction for multiple

comparisons. Red edges indicate edge strength increased during

task while blue edges indicate edge strength decreased during

task. Eleven bilateral regions where used as described in Table I.

In order to facilitate interpretation of the plot, only the

right-hemispheric coordinates are shown here. We note there is

consistent activation pattern across both algorithms, particularly

across nodes nodes corresponding to the motorsensory areas.

Associated summary graph statistics of the task positive and

task negative networks estimated with rt-SINGLE and SINGLE

are provided in Supporting Information Table 2. [Color figure

can be viewed at wileyonlinelibrary.com.]
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us to obtain an activation network, summarizing which
edges are statistically activated by the motor task for each
algorithm.

Figure 6 shows task activation networks for both the
SINGLE and rt-SINGLE algorithms. Edges are only pre-
sent if they were reported as being significantly correlated
with task-evoked HRF function. Red edges indicated the
strength of the edge increase during task while blue edges
indicate the strength of the edge decrease during task (i.e.,
a negative correlation). Furthermore, edge thickness is
indicative of the magnitude of the correlation. Figure 6
shows clear similarities across each of the algorithms, with
84% of edges reported by both the rt-SINGLE and SINGLE
algorithms. This would suggest that the rt-SINGLE algo-
rithm is accurately detecting task-modulated changes in
functional connectivity. In particular, we observe increased
functional coupling between the motor-sensory and visual
regions in the occipital cortex as well as inferior and mid-
dle temporal heteromodal regions. These results are plau-
sible with regard to the task that involved high-level
visual and heteromodal processing of the preceding visual
cues and the execution of the actual movement and have
been previously reported [Hein and Knight, 2008; Zilver-
stand et al., 2014].

While Figure 6 serves to visually demonstrate that the
rt-SINGLE algorithm is accurately detecting task-
modulated changes in connectivity, we also studied graph
theoretic properties to quantify if there are significant dif-
ferences in the graph structure of networks estiamted
using offline SINGLE and rt-SINGLE algorithms. While
there are many candidate graph statistics which can be
studied, in this work we look to study the three key prop-
erties; the mean degree centrality across nodes,3 the mean
betweenness centrality over edges in the network4 and the
transitivity of the network.5 Furthermore, the changes in
network statistics where studied in the context of task pos-
itive and task negative modulation, thereby allowing us to
study in detail if significant differences occurred in the
estimated network structure. As such, graph statistics
were calculated for the network of positively and negative-
ly task-modulated edges respectively (that is the networks
corresponding to the red and blue edges in Fig. 6, respec-
tively). The results of this supporting analysis are provid-
ed in Supporting Information Table 2. We note we found
no significant differences between each of the two algo-
rithms in each of the selected graph statistics. These results
serve as evidence that the proposed method can perform

comparably with offline methods despite facing the addi-
tional challenge of estimating networks “on-the-fly.”

Moreover, in a rt-fMRI study it is also crucial to be able
to accurately estimate functional connectivity networks for
individual subjects. While the true underlying functional
connectivity networks are unknown (and may vary for
each subject), we are able to quantify how closely the net-
works estimated in real-time recreate the results of an off-
line analysis. As a result, the correlation was studied
between the estimated edges using both the rt-SINGLE
and the offline SINGLE algorithms. This was performed
on a subject-by-subject basis. For each edge, the correlation
between the estimated edge values using each of the two
algorithms was quantified using Spearman’s rank correla-
tion coefficient and the corresponding P-values were cor-
rected for multiple comparisons. Figure 7 shows the
subject-specific networks containing only edges that were
significantly correlated across both algorithms. As before,
red edges indicate a positive correlation with task while
blue edges are indicative of negative correlations and the
thickness of the edges is proportional to the strength of
the correlation. We note the resulting networks are dense
across all subjects and the vast majority of edges indicate
positive correlations. In particular, an average of 74% of
edges were positively correlated across all subjects.6

As noted previously, it is also important to study graph
theoretic properties of the estimated networks to quantita-
tively study wethere there are signficant differences in the
network structure across subjects. As a result, we computed
the three aforementioned graph statistics over the subject-

TABLE I. Regions and MNI coordinates used in the

study of HCP data described in HCP Motor-Task section

Name Right hem. Left hem.

Lateral occipital 31 284 1 229 287 1
Inferior parietal 43 262 30 239 268 30
Superior parietal 22 262 48 221 264 47
Precuneus 11 256 37 210 257 37
Fusiform 34 239 220 234 243 219
Lingual 15 266 23 214 267 23
Inferior temporal 49 226 225 249 231 223
Middle temporal 57 222 214 256 227 212
Precentral 39 28 43 238 29 43
Postcentral 42 221 44 242 223 44
Paracentral 9 226 58 28 228 59

Here, the MNI coordinates correspond to the center of gravity of
each of the respective regions.

3The degree centrality of a node is defined as the sum of its weighted
edges.
4Betweenness centrality of an edge is a measure of the importance of
the edge. Briefly, it measures the proportion of shortest paths
between any two nodes which include the edge.
5The transitivity of a network is a measure of the clustering of the net-
work which studies how likely it is that nodes in the network will
cluster together.

6Under the null hypothesis that the edges of dynamic networks esti-
mated using the rt-SINGLE and SINGLE algorithms respectively are
uncorrelated, we would expect zero edges to be present (i.e., an emp-
ty graph) with 95% probability. This is because by implementing the
Holm–Bonferroni method we have controlled the family wise error
rate at the a55% level.
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specific estimated networks shown in Figure 7. Furthermore,
as discussed previously, the graph statistics were considered
for the task positive and task negative networks (that is the
networks corresponding to the red and blue edges in Fig. 7

respectively). In this manner, we were able to study if signifi-
cant differences occured across subjects in a detailed fashion.
The results, provided in Supporting Information Table 3,
show that the estimated graph statistics are stable and

Figure 7.

Subject specific networks visualizing edges that were significantly

correlated across both the rt-SINGLE algorithm and its offline

counterpart. Red edges indicate positive correlations while blue

edges indicate negative correlations. We note that networks are

dense across all subjects, indicating that the rt-SINGLE algorithm

is able to accurately recover network structures similar to an

offline study. Associated summary graph statistics of the task

positive and task negative networks across all subjects are pro-

vided in Supporting Information Table 3. [Color figure can be

viewed at wileyonlinelibrary.com.]
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consistent across the cohort of subjects. This serves as an indi-
cation that graph statistics such as the betweenness centrality
are robust across a cohort of subjects and therefore suitable
candidates for neurofeedback applications.

Real-Time Visuospatial Attention Task

While the HCP dataset introduced in HCP Motor-Task
section serves to demonstrate the reliability of the real-time
network estimates, our proposed method was also tested
using data that was processed and studied alongside data
acquisition. The data used here corresponds to fMRI data
acquired over 20 subjects during the visuospatial attention
task described in Braga et al. [2013]. Briefly, the task corre-
sponded to a visual attention task explicitly designed to
engage subjects with continuous top-down visual monitor-
ing of stimuli. Subjects where shown complex and natural-
istic moving scenes and where required to detect a 1 s
change in color of the target stimuli (from red to green)
[Braga et al., 2013]. The target consisted of a red rectangle
which appeared in two possible locations of the screen
(top-left or bottom-right). The task, therefore, consisted of a
pre-target phase where subjects were attentively viewing
the color video footage as well as a post-target phase,
where subjects had reported the target change and were no
longer required to attentively watch the video. A total of
twenty trials were performed for each subject, however in
selected trials no target stimuli was presented. Note that
the stimuli that subjects perceived in the two conditions
(pre- and post-target) were exactly identical; the only differ-
ence consisted in the attentional state of the subject.

In terms of data quality, the HCP dataset used in HCP
Motor-Task section was acquired using state-of-the-art par-
allel imaging which resulted in higher temporal resolution
(TR 5 0.72 s) and increased signal-to-noise ratio [Elam and
Van Essen, 2014]. In contrast, the data used here is of far
lower quality; having a TR of 3 s. Furthermore, unlike the
HCP dataset, preprocessing was not performed offline
here, posing further limitations on the quality of the data.

While the entire dataset was collected and studied in
Braga et al. [2013], in this work it was treated in a real-
time fashion. The rt-fMRI pipeline used is described in
Simulated real-time fMRI pipeline section below. Given
that we are trying to capture differences in hidden atten-
tional states (in contrast to overt motor movements as in
the case of the HCP data), this data corresponds to a far
more complicated cognitive task. This, therefore, serves to
validate the capabilities of the proposed method with a
dataset that is representative of data typically used in rt-
fMRI studies.

As we look to corroborate previous results relating to
the top-down visuospatial attention networks, we created
spheres of 10 mm radius positioned at the center of gravi-
ty of 11 activation clusters derived from a spatially con-
strained independent component analysis (ICA) on the
data (as reported in Braga et al. [2013]) in addition to three

subregions of the dorsal attention network (DAN)
obtained from Capotosto et al. [2009] and Dosenbach et al.
[2007] (also reported in Braga et al. [2013]). The regions,
summarized in Supporting Information Table 4, showed
significant differences between pre- and post-target phase
in the original study and where, therefore, used to study
the reliability of the proposed rt-SINGLE algorithm.

Simulated real-time fMRI pipeline

Whole-brain coverage images were acquired by a Philips
Intera 3.0 T MRI system with an 8-element phased array
head coil and sensitivity encoding using an echoplanar
imaging (EPI) sequence (T2*: FOV 5 220 3 143 3 190 mm,
time repetition (TR)/time echo (TE): 3,000/45 ms, 44 axial
slices with slice thickness of 3.5 mm). A total of 335 EPI
images were acquired for each subject. In addition, a high-
resolution (1 mm 3 1 mm 3 1 mm) T1-weighted whole-
brain structural image (reference anatomical image, RAI)
was obtained for each participant. Prior to the simulated
online preprocessing of the data, the first EPI volume (ref-
erence functional image, RFI) was used for spatial co-
registration. The first step comprised the brain extraction
of the RAI and RFI using BET [Smith, 2002], followed by
an affine co-registration of the RFI to RAI and subsequent
nonlinear registration to a standard brain atlas (MNI)
using FNIRT [Andersson et al., 2007]. The resulting trans-
formation matrix was used to register the 14 ROIs (as
described in Real-Time Visuospatial Attention Task section
and Supporting Information Table 4) from MNI to the
functional space of the respective subject. For simulated
online processing, incoming raw EPI images were motion
corrected in simulated real-time using MCFLIRT [Jenkin-
son et al., 2002] with the previously obtained RFI acting as
reference. In addition, images were spatially smoothed
using a 5 mm FWHM Gaussian kernel. ROI means for
each TR were simultaneously extracted using a general lin-
ear model approach and written into a text file that was
accessed by the rt-SINGLE algorithm. Based on these time
courses, rt-SINGLE estimated time-varying functional con-
nectivity networks for each TR. In total, the full processing
of the data in simulated real-time took under 1 s per
observation, leaving considerable time for the optimization
required of the rt-SINGLE algorithm.

Results

The rt-SINGLE algorithm was applied to fMRI data cor-
responding to the visuospatial task. As in HCP Motor-
Task section, our primary interest here was to demonstrate
that the proposed real-time algorithm was able to accu-
rately report changes in functional connectivity.

The real-time pipeline described in Simulated real-time
fMRI pipeline section was used to estimate time-varying
functional connectivity networks for each subject indepen-
dently. A burn-in period of 10 observations was used. This
allowed the sparsity and temporal homogeneity
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parameters to be selected by minimizing AIC over this
burn-in period. Finally, adaptive filtering was used to esti-
mate subject covariance matrices with tuning parameter
h 5 0.005.

To report the functional networks (i.e., edges) modulat-
ed by the task, we report the edges which are significantly
correlated with task HRF function. For each edge, the cor-
relation between the mean estimated partial correlation
across subjects and the HRF was computed using Spear-
man’s rank correlation coefficient. As with the HCP task,
resulting P-values where corrected for multiple compari-
sons, resulting in a network containing only statistically
significant edges.

Figure 8 shows the task activation network as estimated
by the rt-SINGLE algorithm. Edges are only present if
they were reported as being statistically correlated with
the task HRF function. The edge color is indicative of the
behavior of a particular edge: red edges are upregulated
during the pre-attention phase (attentive visual search)
while blue edges are upregulated during the post-
attention phase (passive viewing).

We note there is stronger coupling for the visual top-
down attention condition between the right superior parie-
tal lobe (SPL) and the right frontal eye fields (FEF), the
right occipital fusiform as well as the right middle tempo-
ral gyrus. In addition, for the same condition we observe
stronger coupling between the right occipital fusiform and
the right FEF as well as the left SPL. Furthermore, func-
tional connectivity between the right inferior temporal
gyrus and right middle frontal gyrus is increased for the
top-down attention. These results are in line with a previ-
ous, non real-time analysis of this data [Braga et al., 2013],
as well as accounts of visual top-down attention regulation
in the literature. Typically, during visual top-down atten-
tion the visual cortices become functionally connected
with higher-order frontoparietal regions the SPL and FEF,

making up what is known as the DAN [Corbetta and
Shulman, 2002; Corbetta et al., 2008].

Finally, we also study functional connectivity networks
estimated on a subject-by-subject basis. As in HCP Motor-
Task section, we study some of the graph theoretic proper-
ties obtained across subjects to verify if the estimated net-
works are robust across subjects. Subject-specific functional
connectivity networks were estimated as described above
and three measures of graph structure where collected; the
mean degree centrality across nodes, the mean betweenness
centrality across edges and the transitivity (i.e., clustering
coefficient) of the network. Moreover, as discussed in HCP
Motor-Task section, the graph statistics were estimated for
the network of upregulated edges associated with attentive
visual search (red edges in Fig. 8) as well as the network of
upregulated edges associated with passive viewing (blue
edges in Fig. 8). The results, provided in Supporting Infor-
mation Table 5, indicate that networks estimated across
subjects show robust and reproducible properties for both
the attentive visual search and the passive viewing net-
work. These results are reassuring in the context of real-
time fMRI neurofeedback as they validate the potential use
of graph statistics.

DISCUSSION

In this work, we introduce a novel methodology with
which to estimate dynamic functional connectivity net-
works in real-time. The contributions of the proposed
method can be summarized as follows. First, we propose
the use of adaptive forgetting methods to obtain highly
adaptive estimates of the sample covariance over time.
Such methods designate that choice of the forgetting factor
to the data, making them highly adaptive as well as flexi-
ble. The latter point is of particular importance in the rt-
fMRI setting; since changes in functional connectivity may
occur abruptly and at varying intervals, the assumptions
behind the use of fixed forgetting factors or sliding win-
dows do not necessarily hold true. Second, by extending
the recently proposed SINGLE algorithm we are able to
accurately estimate functional connectivity networks based
on precision matrices in real-time.

The proposed method enforces constraints on both the
sparsity as well as the temporal homogeneity of estimated
functional connectivity networks. The former is required
to ensure the estimation problem remains well-posed
when the number of relevant observations drops, as is
bound to occur when adaptive forgetting is used. Con-
versely, the temporal homogeneity constraint ensures
changes in functional connectivity are only reported when
heavily substantiated by evidence in the data. As we dem-
onstrate through a series of simulation studies, the rt-
SINGLE algorithm is able to both obtain accurate estimates
of functional connectivity networks at each point in time
as well as accurately describe the evolution of networks
over time.

Figure 8.

Task activation networks for rt-SINGLE algorithm shown on the

left panel. Present edges had statistically significant correlations

with task HRF after correction for multiple comparisons. Red

edges were upregulated during attentive visual searching while

blue edges were upregulated during the passive viewing phase.

For clarity, edges corresponding to attentive visual search and

passive viewing are plotted separately in the middle and right

panels. Associated summary graph statistics of the networks

associated with attentive visual search as well as passive viewing

are provided in Supporting Information Table 5. [Color figure

can be viewed at wileyonlinelibrary.com.]
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The rt-SINGLE algorithm is closely related to sliding
window methods which have been used extensively in the
real-time setting [Esposito et al., 2003; Gembris et al., 2000;
Ruiz et al., 2014; Zilverstand et al., 2014]. Extensions of
sliding window methods, such as EWMA models, have
been successfully applied to offline fMRI studies [Lind-
quist et al., 2007] and have been shown to be better suited
to estimating dynamic functional connectivity [Lindquist
et al., 2014]. In this work we considered both sliding win-
dows and EWMA models alongside adaptive forgetting.
We presented an extensive simulation study comparing
these three methods which demonstrates the advantages
of adaptive filtering methods. However, the proposed
method is flexible and can be implemented using either
sliding windows, fixed forgetting factors (corresponding to
an EWMA model) or adaptive forgetting.

The proposed method requires the input of three param-
eters. The first of these parameters, stepsize h, governs the
rate at which an adaptive forgetting factor, rt, varies and
can be interpreted as the stepsize in a stochastic gradient
descent scheme [Bottou, 2004]. The final two parameters
enforce sparsity and temporal homogeneity respectively.
These parameters remain fixed throughout in a similar
manner to the fixed forgetting factor and two heuristic
approaches are proposed to tune these parameters. A
future improvement for the proposed algorithm would
involve adaptive regularization penalties. However, such
approaches are computationally and theoretically challeng-
ing due to the non-differentiable nature of the penalty
terms.

Two applications of the proposed method were provid-
ed. The first involved motor-task data from the HCP. The
results demonstrate that the rt-SINGLE algorithm was able
to accurately detect functional networks which are modu-
lated by motor task. The second application corresponds
to a more complex visuospatial attention task. While the
quality of the HCP data used is arguably state-of-the-art,
this dataset was used to demonstrate the capabilities of
the rt-SINGLE algorithm using fMRI data as opposed to
simulated examples. In contrast, the quality of the second
dataset studied is of similar quality than would be
expected in a typical rt-fMRI study; as it corresponds to a
low temporal resolution (3 s) and a complex cognitive
task. Both datasets were analyzed in real-time and provide
compelling evidence that the proposed method is able to
accurately track functional connectivity “on-the-fly.” More-
over, throughout these two applications networks were
estimated every TR. However, depending on the nature of
the experiment, it would be possible to only obtain an
updated estimate of the functional connectivity networks
every several TRs.

It is well known in the neuroimaging field that the choice
of pre-processing strategy has a significant effect on connec-
tivity estimates [Gavrilescu et al., 2008; Weissenbacher et al.,
2009].This aspect receives even more importance for dynam-
ic FC methods as time-varying connectivity estimates are

based on relatively few TRs [Hutchison et al., 2013]. There-
fore, when conducting dynamic FC analysis, it is suggested
to perform typical pre-processing steps applied to resting-
state fMRI data (such as motion correction, spatial filtering,
nuisance regression and high-pass filtering) in addition to
recording respiration and cardiac events for further de-
noising of the data [Hutchison et al., 2013]. However, these
recommendations have been worked out for dynamic FC
analysis on resting-state data. When looking at task-induced
changes in FC, standard pre-processing strategies have pre-
dominantly been used in the field [Monti et al., 2014] and
high reproducibility of results has been reported when com-
paring minimally pre-processed with highly pre-processed
ROI time-courses [Allen et al., 2014]. So, in case equally dis-
tributed noise can be expected for blocks of task and blocks
of no task performance, dynamic FC methods will be able to
capture the task-induced difference in FC. As reported
above, the HCP data can be considered as an extensively
and (offline) pre-processed dataset while the other dataset
more closely matches the description of a minimally pre-
processed dataset. For both datasets, we obtained results
that are highly consistent with previous findings. Important-
ly although, more exhaustive pre-processing could hypo-
thetically be performed in real-time (such as nuisance
regression, de-spiking etc.), thus not precluding the use of
rt-SINGLE for resting-state data.

Besides the impact of different pre-processing strategies
on time-varying FC results, the ad hoc ROI selection is cru-
cial for the success of the method and interpretation of the
findings. Contrary to offline analyses, in which the ROI
selection itself can be an explorative process (although this
might not be considered as conservative scientific
approach), the real-time nature of our proposed method
requires an adequate consideration of the most suitable
ROIs a priori to the experiment. For our work presented
here, we have selected the respective nodes in a strictly
hypothesis-driven manner. While for the motor task, we
have included nodes within sensory-motor and higher-level
visual areas, for the visuospatial attention task we based on
our node selection on activation clusters derived from a pre-
vious analysis of the same dataset that consisted of core
regions of the top-down visuospatial attention network. We,
therefore, strongly hypothesized these nodes to be modulat-
ed by the respective tasks. Besides such a hypothesis-driven
ROI-based approach, another popular and more data-
driven strategy is to parcellate the brain into large-scale
functional brain network [Smith et al., 2009] and compute
time-varying connectivity estimates based on the extracted
network time-courses [Allen et al., 2014; Calhoun et al.,
2014]. Although the most common approach is to measure
dynamic FC by looking at changes in correlation over time
while assuming fixed ROIs or networks [Calhoun et al.,
2014], recent approaches also take the spatio-temporal
nature of fMRI data into account by studying how the spa-
tial patterns of regions/network changes over time [Karaha-
noglu and Van de Ville, 2015; Ma et al., 2011; Scott et al.,
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2015]. However to date, none of these approached would be
suitable for a real-time application.

In conclusion, the rt-SINGLE algorithm provides a novel
method for estimating functional connectivity networks in
real-time. We present two applications demonstrating that
the rt-SINGLE algorithm is capable of reporting changes in
motor execution as well as internal attentional state of sub-
jects. In future, the proposed method could be incorporated
into rt-fMRI studies, potentially providing neurofeedback
based on functional connectivity. De Bettencourt et al.
[2015] convincingly demonstrated that closed-loop neuro-
feedback can be used to improve sustained attention abili-
ties and reduce the frequency of lapses in attention. The
authors used multivariate pattern analysis and found that
behavioral improvement was the largest when feedback car-
ried information from a frontoparietal attention network.
Especially with regard to our second example, we demon-
strate that rt-SINGLE is able to capture moment-to-moment
fluctuations in the attentional state of subjects and could
potentially be used to boost brain state decoding accuracy
by providing additional information relating to functional
connectivity. Finally, there is great potential to integrate this
work with the recently proposed Automatic Neuroscientist
framework of Lorenz et al. [2016a]. Lorenz et al. [2016a]
combined real-time fMRI with machine learning techniques
to optimize experimental conditions to maximize a given
target brain state [Lorenz et al., 2015, 2016a]. While the tar-
get brain state in their proof-of-principle study was simply
based on BOLD differences, our proposed method can be
utilized to extend the Automatic Neuroscientist to target
entire functional connectivity networks. This could be of
paramount importance for the framework to be pulled
through the translational pathway as various neurological
and psychiatric disorders are characterized by disruption of
functional networks such as attention deficit disorder [Stins
et al., 2005], traumatic brain injury [Whyte et al., 1995], or
bipolar disorder [Clark et al., 2002].
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