
GigaScience, 8, 2019, 1–8

doi: 10.1093/gigascience/giz084
Technical Note

TE CHNICAL NO TE

CWL-Airflow: a lightweight pipeline manager
supporting Common Workflow Language
Michael Kotliar 1,†, Andrey V. Kartashov 1,† and Artem Barski 1,2,*

1Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of
Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA and 2Division of Human
Genetics, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine,
University of Cincinnati, Cincinnati, OH, USA
∗Correspondence address. Artem Barski, 3333 Burnett Ave, Cincinnati, OH, 45229, USA ; E-mail:
Artem.Barski@cchmc.org http://orcid.org/0000-0002-1861-5316
†Joint first author.

Abstract

Background: Massive growth in the amount of research data and computational analysis has led to increased use of
pipeline managers in biomedical computational research. However, each of the >100 such managers uses its own way to
describe pipelines, leading to difficulty porting workflows to different environments and therefore poor reproducibility of
computational studies. For this reason, the Common Workflow Language (CWL) was recently introduced as a specification
for platform-independent workflow description, and work began to transition existing pipelines and workflow managers to
CWL. Findings: Herein, we present CWL-Airflow, a package that adds support for CWL to the Apache Airflow pipeline
manager. CWL-Airflow uses CWL version 1.0 specification and can run workflows on stand-alone MacOS/Linux servers, on
clusters, or on a variety of cloud platforms. A sample CWL pipeline for processing of chromatin immunoprecipitation
sequencing data is provided. Conclusions: CWL-Airflow will provide users with the features of a fully fledged pipeline
manager and the ability to execute CWL workflows anywhere Airflow can run—from a laptop to a cluster or cloud
environment. CWL-Airflow is available under Apache License, version 2.0 (Apache-2.0), and can be downloaded from
https://barski-lab.github.io/cwl-airflow, https://scicrunch.org/resolver/RRID:SCR 017196.

Keywords: Common Workflow Language; workflow manager; pipeline manager; Airflow; reproducible data analysis;
workflow portability

Background

Modern biomedical research has seen a remarkable increase in
the production and computational analysis of large datasets,
leading to an urgent need to share standardized analytical tech-
niques. However, of the >100 computational workflow systems
used in biomedical research, most define their own specifica-
tions for computational pipelines [1, 2]. Furthermore, the evolv-
ing complexity of computational tools and pipelines makes it
nearly impossible to reproduce computationally heavy studies
or to repurpose published analytical workflows. Even when the

tools are published, the lack of a precise description of the op-
erating system environment and component software versions
can lead to inaccurate reproduction of the analyses—or anal-
yses failing altogether when executed in a different environ-
ment. To ameliorate this situation, a team of researchers and
software developers formed the Common Workflow Language
(CWL) working group [3] with the intent of establishing a speci-
fication for describing analysis workflows and tools in a way that
makes them portable and scalable across a variety of software
and hardware environments. The CWL specification provides a
set of formalized rules that can be used to describe each com-

Received: 13 February 2019; Revised: 21 May 2019; Accepted: 21 June 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-6486-3898
http://orcid.org/0000-0001-9102-5681
http://orcid.org/0000-0002-1861-5316
mailto:Artem.Barski@cchmc.org
http://orcid.org/0000-0002-1861-5316
http://orcid.org/0000-0002-1861-5316
https://barski-lab.github.io/cwl-airflow
http://doi.org/10.5281/zenodo.2852870
http://creativecommons.org/licenses/by/4.0/


2 CWL-Airflow pipeline manager

mand line tool and its parameters, and optionally a container
(e.g., a Docker [4] or Singularity [5] image) with the tool already
installed. CWL workflows are composed of ≥1 such command
line tools. Thus, CWL provides a description of the working envi-
ronment and version of each tool, how the tools are “connected”
together, and what parameters were used in the pipeline. Re-
searchers using CWL are then able to deposit descriptions of
their tools and workflows into a repository (e.g., dockstore.org)
upon publication, thus making their analyses reusable by others.

After version 1.0 of the CWL standard [6] and the refer-
ence executor, cwltool, were finalized in 2016, developers began
adapting the existing pipeline managers to use CWL. For exam-
ple, companies such as Seven Bridges Genomics and Curoverse
are developing the commercial platforms Rabix [7] and Arvados
[8], whereas academic developers (e.g., Galaxy [9], Toil [10], and
others) are adding CWL support to their pipeline managers (see
Discussion).

Airflow [11] is a lightweight workflow manager initially devel-
oped by AirBnB, which has now graduated from Apache Incu-
bator, and is available under a permissive Apache license. Air-
flow executes each workflow as a directed acyclic graph (DAG)
of tasks. The tasks are usually atomic and are not supposed
to share any resources with each other; therefore, they can be
run independently. The DAG describes relationships between
the tasks and defines their order of execution. The DAG objects
are initiated from Python scripts placed in a designated folder.
Airflow has a modular architecture and can distribute tasks to an
arbitrary number of workers and across multiple servers while
adhering to the task sequence and dependencies specified in
the DAG. Unlike many of the more complicated platforms, Air-
flow imposes little overhead, is easy to install, and can be used
to run task-based workflows in various environments ranging
from stand-alone desktops and servers to Amazon or Google
cloud platforms. It also scales horizontally on clusters managed
by Apache Mesos [12] and may be configured to send tasks to
the Celery [13] task queue. Herein, we present an extension of
Airflow, allowing it to run CWL-based pipelines. Altogether, this
gives us a lightweight workflow management system with full
support for CWL, the most promising scientific workflow de-
scription language.

Methods

The CWL-Airflow package extends Airflow’s functionality with
the ability to parse and execute workflows written with the CWL
version 1.0 (v1.0) specification [6]. CWL-Airflow can be easily in-
tegrated into the Airflow scheduler logic as shown in the struc-
ture diagram in Fig. 1. The Apache Airflow code is extended with
a Python package that defines 4 basic classes—JobDispatcher,
CWLStepOperator, JobCleanup, and CWLDAG. Additionally, the
automatically generated cwl dag.py script is placed in the DAGs
folder. While periodically loading DAGs from the DAGs folder, the
Airflow scheduler runs the cwl dag.py script and creates DAGs
on the basis of the available jobs and corresponding CWL work-
flow descriptor files.

In order to run a CWL workflow in Airflow, a file describ-
ing the job should be placed in the jobs folder (Fig. 1). The jobs
are described by a file in JSON or YAML format that includes
workflow-specific input parameters (e.g., input file locations)
and 3 mandatory fields: workflow (absolute path to the CWL de-
scriptor file to be run with this job), output folder (absolute path
to the folder where all the output files should be moved after
successful pipeline execution), and uid (unique identifier for the

run). CWL-Airflow parses every job file from the jobs folder, loads
the corresponding CWL workflow descriptor file, and creates a
CWLDAG-class instance on the basis of the workflow structure
and input parameters provided in the job file. The uid field from
the job file is used to identify the newly created CWLDAG-class
instance.

CWLDAG is a class for combining the tasks into a DAG that re-
flects the CWL workflow structure. Every CWLStepOperator task
corresponds to a workflow step and depends on others on the
basis of the workflow step inputs and outputs. This implements
dataflow principles and architecture that are missing in Airflow.
Additionally, the JobDispatcher and JobCleanup tasks are added
to the DAG. JobDisptacher is used to serialize the input param-
eters from the job file and provide the pipeline with the input
data; JobCleanup returns the calculated results to the output
folder. When the Airflow scheduler executes the pipeline from
the CWLDAG, it runs the workflow with the structure identical
to the CWL descriptor file used to create this graph.

Although running CWL-Airflow on a single node may be suf-
ficient in most cases, it is worth switching to the multi-node con-
figuration (Fig. 2) for computationally intensive pipelines. Air-
flow uses the Celery task queue to distribute processing over
multiple nodes. Celery provides the mechanisms for queueing
and assigning tasks to multiple workers, whereas the Airflow
scheduler uses Celery executor to submit tasks to the queue.
The Celery system helps not only to balance the load over the
different machines but also to define task priorities by assigning
them to the separate queues.

An example of a CWL-Airflow Celery cluster of 4 nodes is
shown in Fig. 2. The tasks are submitted to the queue by Node
1 and executed by any of the 3 workers (Nodes 2, 3, and 4).
Node 1 runs 2 mandatory components—the Airflow database
and scheduler. The latter schedules the task execution by adding
tasks to the queue. All Celery workers are subscribed to the same
task queue. Whenever an arbitrary worker pulls a new task from
the queue, it runs the task and returns the execution results.
For the sequential steps, the Airflow scheduler submits the next
tasks to the queue. During the task execution, intermediate data
are kept in the temp folder. Upon successful pipeline comple-
tion, all output files are moved to the output folder. Both the
temp and output folders, as well as the dags and jobs folders, are
shared among all the nodes of the cluster. Optionally, Node 1 can
also run the Airflow web server (Fig. 3) and the Celery monitoring
tool Flower (Fig. 4) to provide users with the pipeline execution
details.

Results
ChIP-Seq analysis with CWL-Airflow

As an example, we used a workflow for basic analysis of chro-
matin immunoprecipitation sequencing (ChIP-Seq) data (Fig. 5,
Research object: Additional file 1). This workflow is a CWL ver-
sion of a Python pipeline from BioWardrobe [14, 15]. It starts by
using BowTie [16] to perform alignment to a reference genome,
resulting in an unsorted SAM file. The SAM file is then sorted and
indexed with SAMtools [17] to obtain a BAM file and a BAI index.
Next MACS2 [18] is used to call peaks and to estimate fragment
size. In the last few steps, the coverage by estimated fragments
is calculated from the BAM file and is reported in bigWig format
(Fig. 5). The pipeline also reports statistics, such as read qual-
ity, peak number, and base frequency, and other troubleshoot-
ing information using tools such as FASTX-Toolkit [19] and Bam-
Tools [20]. The directions for how to run a sample pipeline can



Kotliar et al. 3

Figure 1: CWL-Airflow diagram.The job file contains information about the CWL workflow and inputs. CWL-Airflow creates a CWLDAG-class instance on the basis of

the workflow structure and executes it in Airflow. The results are saved to the output folder.

Node 1

dags
folder

jobs
folder

temp
folder

output
folder

Airflow Scheduler
with 

Celery Executor

celery tasks shared resources

Airflow Database

Airflow Web Server

Node 2

Airflow 
Celery Worker

Node 3

Airflow 
Celery Worker

Node 4

Airflow 
Celery Worker

Airflow Flower
Celery Monitoring Tool

Figure 2: Structure diagram for scaling out CWL-Airflow with a Celery cluster of 4 nodes. Node 1 runs the Airflow database to save task metadata and the Airflow

scheduler with the Celery executor to submit tasks for processing to the Airflow celery workers on Nodes 2, 3, and 4. The Airflow and Flower (Celery) web servers allow
for monitoring and controlling of the task execution process. All nodes have shared access to the dags, jobs, temp, and output folders.

be found on the CWL-Airflow web page [21]. Execution time in
CWL-Airflow was similar to that of reference implementation
(Table 1).

The CWL-Airflow package includes 2 additional demonstra-
tion workflows: (i) an identification of super-enhancers [22] and
(ii) a simplified version of the Xenbase [23] RNA sequencing
(RNA-Seq) pipeline. More pipelines can be found elsewhere. In
particular, BioWardrobe’s [14] pipelines for analysis of single-
read and paired-end ChIP-Seq and of stranded and un-stranded,
single and paired RNA-Seq are available on GitHub [24]. Addi-
tional collections of tools are available in Rabix Composer [7], a
graphical CWL editor from Seven Bridges and at the Dockstore
[25].

Portability of CWL analyses

The key promise of CWL is the portability of analyses. Porta-
bility refers to the ability to seamlessly run a containerized
CWL pipeline developed for one CWL platform on another CWL
platform, allowing users to easily share computational work-
flows. To check whether CWL-Airflow can use pipelines devel-
oped by others, we downloaded an alternative workflow for
the analysis of ChIP-Seq data developed by the Encyclopedia of
DNA Elements (ENCODE) Data Coordination Center [26, 27] us-
ing a test dataset (CCAAT/enhancer-binding protein β [CEBPB]
ChIP-Seq in A549 cells, ENCODE accession: ENCSR000DYI). CWL-
Airflow was able to run the pipeline and produced results



4 CWL-Airflow pipeline manager

Figure 3: Airflow web interface. The DAGs tab shows the list of the available pipelines (a) and their latest execution dates (c) and number of active, succeeded, and

failed runs (d) and workflow step statuses (b). The buttons on the right (e) allow a user to control pipeline execution and obtain additional information on the current
workflow and its steps.

Figure 4: Dashboard of the Celery monitoring tool Flower. Shown are the 3 Celery workers, their current status, and load information.

identical to those obtained with the reference cwltool. The
execution time is shown in Table 1. Notably, running the
tested pipelines on the single-node CWL-Airflow system in-
creased execution time by 18%, whereas running them on the
3-node CWL-Airflow cluster reduced execution time by 41%
per workflow compared to the reference cwltool. These re-

sults confirm that CWL-Airflow complies with the CWL spec-
ification, supports portability, and performs analysis in a re-
producible manner. Additional testing of pipeline portability is
currently being conducted as a part of the Global Alliance for
Genomics and Health (GA4GH) workflow portability challenge
[28].



Kotliar et al. 5

Figure 5: Using CWL-Airflow for analysis of ChIP-Seq data. (a) ChIP-Seq data analysis pipeline visualized by Rabix Composer. (b) Drosophila melanogaster embryo histone
3, lysine 4 trimethylation (H3K4me3) ChIP-Seq data (SRR1198790) were processed by our pipeline and CWL-Airflow. University of California Santa Criz genome browser

view of tag density and peaks at the trx gene is shown. View via the Common Workflow Language Viewer permalink here: https://w3id.org/cwl/view/git/f28d47bd0911
e5e7210c4dc83f75653a1e0297c9/biowardrobe chipseq se.cwl. ATDP: Average Tag Density Profile.

Table 1: CWL-Airflow and cwltool mean execution time

Pipeline

Mean ± SEM (seconds), n = 3

CWL-Airflow Cwltool

1 Node, 1 workflow at a
time

3 Nodes, 3 workflows
at a time

1 Node, 1 workflow at a
time

BioWardrobe ChIP-Seq Workflow 1,141 ± 18 1,231 ± 3 955 ± 1
ENCODE ChIP-Seq Mapping Workflow 3,784 ± 10 3,824 ± 28 3,245 ± 7

ChIP-Seq, chromatin immunoprecipitation sequencing; CWL, common workflow language; SEM, standard error of the mean.

CWL-Airflow in multi-node configuration with Celery
executor

To demonstrate the use of CWL-Airflow in a multi-node config-
uration, we set up a Celery cluster of 3 nodes with 4 CPUs and
94 GB of RAM each, with each node running an instance of the
Airflow Celery worker. Tasks were queued for execution by the
Airflow scheduler that was launched on the first node. Commu-
nication between the Celery workers was managed by the mes-
sage queueing service RabbitMQ. RabbitMQ, as well as the Air-
flow database and web server, were run on the first node. Execut-
ing the 2 tested pipelines on the Airflow Celery cluster demon-
strated only a slight slowdown on a per-run basis (Table 1).

Discussion

CWL-Airflow is one of the first pipeline managers supporting
version 1.0 of the CWL standard and provides a robust and
user-friendly interface for executing CWL pipelines. Unlike more
complicated pipeline managers, the installation of Airflow and
the CWL-Airflow extension can be performed with a single pip
install command. Compared to the competing pipeline man-
agers, Airflow has multiple advantages (Table 2). Specifically,
Airflow provides a wide range of tools for managing the work-
flow execution process, such as pausing and resuming the work-
flow execution, stopping and restarting the individual workflow
steps, restarting the workflow from a certain step, and skipping

https://w3id.org/cwl/view/git/f28d47bd0911e5e7210c4dc83f75653a1e0297c9/biowardrobe_chipseq_se.cwl


6 CWL-Airflow pipeline manager

Ta
b

le
2:

C
om

p
ar

is
on

of
th

e
op

en
so

u
rc

e
w

or
kfl

ow
m

an
ag

er
s

an
d

en
gi

n
es

w
it

h
ex

is
ti

n
g

or
p

la
n

n
ed

su
p

p
or

t
fo

r
C

W
L

Fe
at

u
re

A
ir

fl
ow

an
d

C
W

L-
A

ir
fl

ow
R

ab
ix

To
il

C
ro

m
w

el
l

R
EA

N
A

G
al

ax
y

A
rv

ad
os

C
W

LE
X

EC

So
ft

w
ar

e
in

st
al

la
ti

on

co
m

p
le

xi
ty

Si
n

gl
e

Py
th

on
p

ac
ka

ge
JA

R
Si

n
gl

e
Py

th
on

p
ac

ka
ge

JA
R

G
ro

u
p

of
Py

th
on

p
ac

ka
ge

s

G
ro

u
p

of
Py

th
on

p
ac

ka
ge

s

M
u

lt
ip

le
co

m
p

on
en

ts
fo

r

m
in

im
u

m
7

n
od

es

sy
st

em

JA
R

El
ec

tr
on

ap
p

li
ca

ti
on

n
od

e.
js

ap
p

li
ca

ti
on

Li
ce

n
se

ty
p

e
A

p
ac

h
e

Li
ce

n
se

v2
.0

A
p

ac
h

e
Li

ce
n

se
v2

.0
A

p
ac

h
e

Li
ce

n
se

v2
.0

B
SD

-3
-C

la
u

se
M

IT
Li

ce
n

se
A

ca
d

em
ic

Fr
ee

Li
ce

n
se

v3
.0

A
p

ac
h

e
Li

ce
n

se
v2

.0
,

A
G

PL
v3

.0
,C

C
-B

Y-
SA

v3
.0

A
p

ac
h

e
Li

ce
n

se
v2

.0

W
or

kfl
ow

d
es

cr
ip

ti
on

la
n

gu
ag

e

C
W

L
v1

.0
C

W
L

v1
.0

C
W

L
v1

.0
C

W
L

v1
.0

C
W

L
v1

.0
X

M
L

to
ol

fi
le

C
W

L
v1

.0
C

W
L

v1
.0

Py
th

on
co

d
e

W
D

L
v1

.0
W

D
L

v1
.0

Se
ri

al
JS

O
N

w
or

kfl
ow

fi
le

Py
th

on
co

d
e

Y
ad

ag
e

D
oc

ke
r

co
n

ta
in

er
iz

at
io

n
+

+
+

+
+

+
+

+
Si

n
gu

la
ri

ty

co
n

ta
in

er
iz

at
io

n

+
−

+
+

−
+

−
−

C
lo

u
d

/c
lu

st
er

p
ro

ce
ss

in
g

+
−

+
+

+
+

+
+

W
or

kfl
ow

ex
ec

u
ti

on
lo

ad

ba
la

n
ci

n
g1

+
−

+
+

+
+

+
+

Pa
ra

ll
el

w
or

kfl
ow

st
ep

ex
ec

u
ti

on

+
+

+
+

+
+

+
+

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

G
U

I
R

ES
T

A
PI

C
LI

A
d

d
n

ew
w

or
kfl

ow
2

−
−

+
+

∅
+

∅
∅

+
∅

+
+

∅
+

+
+

+
∅

+
+

+
∅

∅
+

Se
t

w
or

kfl
ow

in
p

u
ts

3
−

+
+

+
∅

+
∅

∅
+

∅
+

+
∅

+
+

+
+

∅
+

+
+

∅
∅

+
St

ar
t/

st
op

w
or

kfl
ow

ex
ec

u
ti

on

+
+

+
+

∅
+

∅
∅

+
∅

+
+

∅
+

+
+

+
∅

+
+

+
∅

∅
+

M
an

ag
e

w
or

kfl
ow

ex
ec

u
ti

on
p

ro
ce

ss
4

+
+

+
−

∅
−

∅
∅

+
∅

−
−

∅
+

+
+

+
∅

−
+

+
∅

∅
+

G
et

ex
ec

u
ti

on
re

su
lt

s
of

th
e

sp
ec

ifi
c

w
or

kfl
ow

5

+
−

−
+

∅
−

∅
∅

+
∅

+
−

∅
+

+
+

+
∅

+
+

+
∅

∅
−

V
ie

w
w

or
kfl

ow
ex

ec
u

ti
on

lo
gs

+
−

+
+

∅
+

∅
∅

+
∅

+
+

∅
+

+
+

+
∅

+
+

+
∅

∅
+

V
ie

w
w

or
kfl

ow
ex

ec
u

ti
on

h
is

to
ry

an
d

st
at

is
ti

cs

+
+

+
−

∅
−

∅
∅

+
∅

+
−

∅
+

+
+

+
∅

+
+

+
∅

∅
+

+,
Pr

es
en

t;
–,

ab
se

n
t;

∅,
n

ot
ap

p
li

ca
bl

e;
A

G
PL

:
A

ff
er

o
G

en
er

al
Pu

bl
ic

Li
ce

n
se

;
B

SD
:

B
er

ke
ly

So
u

rc
e

D
is

tr
ib

u
ti

on
;

C
C

-B
Y-

SA
:

C
re

at
iv

e
C

om
m

on
s

A
tt

ri
bu

ti
on

-S
h

ar
e-

A
li

ke
;

C
LI

,
co

m
m

an
d

li
n

e
in

te
rf

ac
e;

G
U

I,
gr

ap
h

ic
al

u
se

r
in

te
rf

ac
e;

M
IT

:
M

as
sa

ch
u

se
tt

s

In
st

it
u

te
of

Te
ch

n
ol

og
y;

R
ES

T
A

PI
,r

ep
re

se
n

ta
ti

on
al

st
at

e
tr

an
sf

er
ap

p
li

ca
ti

on
p

ro
gr

am
in

te
rf

ac
e;

W
D

L,
w

or
kfl

ow
d

es
cr

ip
ti

on
la

n
gu

ag
e.

1
A

ss
ig

n
w

or
kfl

ow
st

ep
s

to
th

e
d

if
fe

re
n

t
p

oo
ls

an
d

q
u

eu
es

;u
se

ot
h

er
re

so
u

rc
e

u
ti

li
za

ti
on

al
go

ri
th

m
s

p
ro

vi
d

ed
by

th
e

co
m

p
u

ti
n

g
en

vi
ro

n
m

en
t.

2
Lo

ad
th

e
w

or
kfl

ow
fr

om
th

e
fi

le
;c

re
at

e
th

e
w

or
kfl

ow
by

co
m

bi
n

in
g

th
e

st
ep

s
in

G
U

I.
3
Se

t
th

e
p

at
h

to
th

e
jo

b
fi

le
;s

et
in

p
u

t
va

lu
es

th
ro

u
gh

th
e

G
U

I
or

C
LI

.
4
Pa

u
se

/r
es

u
m

e
w

or
kfl

ow
ex

ec
u

ti
on

p
ro

ce
ss

;m
an

u
al

ly
re

st
ar

t
w

or
kfl

ow
st

ep
s.

5
G

et
ou

tp
u

t
fi

le
lo

ca
ti

on
s

by
th

e
w

or
kfl

ow
ID

,s
te

p
ID

,e
xe

cu
ti

on
d

at
e,

or
ot

h
er

id
en

ti
fi

er
s.



Kotliar et al. 7

part of the workflow by updating the states of the specific steps
from a web-based GUI. Similar to other workflow management
systems, Airflow can run on clusters and the major cloud ser-
vices. Unlike some of the workflow executors, Airflow supports
both Docker and Singularity containerization technologies. The
latter is particularly important because many clusters do not al-
low the use of Docker for security reasons.

Unlike most of the other workflow managers, Airflow pro-
vides a convenient, web-based GUI that allows a user to moni-
tor and control the pipeline execution. Within this web interface,
a user can easily track the workflow execution history and col-
lect and visualize statistics from multiple workflow runs. Simi-
lar to some of the other pipeline managers, Airflow provides a
REST API that allows a user to access its functionality through
the dedicated end points. The API can be used by other software
to communicate with the Airflow system.

Airflow supports parallel workflow step execution. Step par-
allelization can be convenient when the workflow complexity is
not high and the computational resources are not limited. How-
ever, when running multiple workflows, especially on a multi-
node system, it becomes reasonable to limit parallelism and bal-
ance load over the available computing resources. Besides the
standard load-balancing algorithms provided by the computing
environment, Airflow supports pools and queues that allow for
even distribution of tasks among multiple nodes.

Addition of the CWL capability to Airflow has made it more
convenient for scientific computing, in which the users are more
interested in the flow of data than the tasks being executed. Al-
though Airflow itself (and most of the pipeline managers [28])
only define workflows as sequences of steps to be executed (e.g.,
DAGs), the CWL description of inputs and outputs leads to bet-
ter representation of data flow, which allows for a better un-
derstanding of data dependencies and produces more readable
workflows.

Furthermore, as one of the most lightweight pipeline man-
agers, Airflow contributes only a small amount of overhead
to the overall execution of a computational pipeline (Table 1).
We believe that this overhead is an advantageous exchange for
(i) Airflow’s ability to monitor and control workflow execution
and (ii) CWL’s enabling of better reproducibility and portability
of biomedical analyses. In summary, CWL-Airflow will provide
users with the ability to execute CWL workflows anywhere Air-
flow can run—from a laptop to a cluster or cloud environment.

Abbreviations

AGPL: Affero General Public License; ATDP: Average Tag Den-
sity Profile; BSD: Berkely Source Distribution; CC-BY-SA: Creative
Commons Attribution-Share-Alike; CEBPB: CCAAT/enhancer-
binding protein β; ChIP-Seq: chromatin immunoprecipitation
sequencing; CLI: command line interface; CPU: central pro-
cessing unit; CWL: Common Workflow Language; DAG: di-
rected acyclic graph; ENCODE: Encyclopedia of DNA Elements;
GUI: graphical user interface; JSON: JavaScript Object Notation;
MACS: Model-based Analysis of ChIP-Seq; MIT: Massachusetts
Institute of Technology; RAM: random access memory; REST API:
representational state transfer application program interface;
RNA-Seq: RNA sequencing.

Availability of supporting data and materials

No new datasets or materials were generated. The source code
is available under Apache license v2.0 (Apache-2.0) and can

be downloaded from https://barski-lab.github.io/cwl-airflow,
http://doi.org/10.5281/zenodo.2852870, and RRID: SCR 01 7196.
Snapshots and Research Object bundles from the example work-
flow are also available in the GigaScience GigaDB repository [29].
Project name: CWL-Airflow Project home page: https://barski-l
ab.github.io/cwl-airflow/ Operating system: macOS/Linux Pro-
gramming language: Python Other requirements: Docker Li-
cense: Apache license v2.0 (Apache-2.0) RRID: SCR 017196, http:
//doi.org/10.5281/zenodo.2852870.

Competing interests

A.V.K. and A.B. are co-founders of Datirium, LLC. Datirium, LLC,
provides bioinformatics software support services.

Funding

The project was supported in part by the Center for Clinical
& Translational Research and Training (National Institutes of
Health CTSA grant UL1TR001425) and by the NIH NIGMS New In-
novator Award to A.B. (DP2GM119134). The funders had no role
in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Authors’ contributions

A.V.K. and A.B. conceived the project; A.V.K. and M.K. wrote
the software; and M.K., A.V.K., and A.B. wrote and reviewed the
manuscript.

Acknowledgments

The authors thank all members of the CWL working group for
their support and Shawna Hottinger for editorial assistance.

References

1. Leipzig J. A review of bioinformatic pipeline frameworks.
Brief Bioinform 2017;18:530–6.

2. Existing Workflow Systems. https://github.com/common-
workflow-language/common-workflow-language/wiki/Exis
ting-Workflow-systems. Accessed on 6 July 2019.

3. Common Workflow Language. http://www.commonwl.org/.
4. Why Docker? https://www.docker.com/why-docker.
5. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific con-

tainers for mobility of compute. PLoS One 2017;12:e0177459.
6. Amstutz P, Crusoe MR, Tijanić N, et al. Common Workflow

Language, v1.0. 2016. https://www.commonwl.org/v1.0/Wo
rkflow.html.

7. Kaushik G, Ivkovic S, Simonovic J, et al. RABIX: an open-
source workflow executor supporting recomputability and
interoperability of workflow descriptions. Pac Symp Biocom-
put 2016;22:154–65.

8. Arvados. https://arvados.org/.
9. Giardine B, Riemer C, Hardison RC, et al. Galaxy: a plat-

form for interactive large-scale genome analysis. Genome
Res 2005;15:1451–5.

10. Vivian J, Rao A, Nothaft FA, et al. Toil enables reproducible,
open source, big biomedical data analyses. Nat Biotechnol
2017;35:314–6.

11. Airflow. http://airflow.apache.org/
12. Hindman B, Konwinski A, Zaharia M, et al. Mesos: A platform

for fine-grained resource sharing in the data center. In: Pro-

https://barski-lab.github.io/cwl-airflow
http://doi.org/10.5281/zenodo.2852870
https://scicrunch.org/resolver/RRID:
https://barski-lab.github.io/cwl-airflow/
http://doi.org/10.5281/zenodo.2852870
https://s.apache.org/existing-workflow-systems
http://www.commonwl.org/
https://www.docker.com/why-docker
https://www.commonwl.org/v1.0/Workflow.html
https://arvados.org/
http://airflow.incubator.apache.org/


8 CWL-Airflow pipeline manager

ceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation. 2011:295–308.

13. Celery Project. http://www.celeryproject.org/.
14. Kartashov AV, Barski A. BioWardrobe: An integrated plat-

form for analysis of epigenomics and transcriptomics data.
Genome Biol 2015;16:158.

15. Vallabh S, Kartashov AV, Barski A. Analysis of ChIP-Seq
and RNA-Seq data with BioWardrobe. Methods Mol Biol
2018;1783:343–60.

16. Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-
efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009;10:R25.

17. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25:2078–9.

18. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of
ChIP-Seq (MACS). Genome Biol 2008;9:R137.

19. FASTX Toolkit. http://hannonlab.cshl.edu/fastx toolkit/ind
ex.html.

20. Barnett DW, Garrison EK, Quinlan AR, et al. BamTools: A C++
API and toolkit for analyzing and managing BAM files. Bioin-
formatics 2011;27:1691–2.

21. Barski Lab ChIP-Seq SE Workflow. https://barski-lab.github.
io/cwl-airflow/.

22. Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in
the control of cell identity and disease. Cell 2013;155:
934–47.

23. Karimi K, Fortriede JD, Lotay VS, et al. Xenbase: A genomic,
epigenomic and transcriptomic model organism database.
Nucleic Acids Res 2018;46:D861–8.

24. Barski Lab CWL Workflows on GitHub. https://github.com/B
arski-lab/workflows.

25. O’Connor BD, Yuen D, Chung V, et al. The Dockstore:
Enabling modular, community-focused sharing of Docker-
based genomics tools and workflows. F1000Res 2017;6:
52.

26. Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines
and practices of the ENCODE and modENCODE consortia.
Genome Res 2012;22:1813–31.

27. ENCODE ChIP-Seq pipeline. https://github.com/ENCODE-DC
C/pipeline-container.

28. GA4GH-DREAM Workflow Execution Challenge. https://ww
w.synapse.org/#!Synapse:syn8507133/wiki/415976.

29. Kotliar M, Kartashov AV, Barski A. Supporting data for “CWL-
Airflow: A lightweight pipeline manager supporting Com-
mon Workflow Language.” GigaScience Database 2019. http:
//dx.doi.org/10.5524/100618.

http://www.celeryproject.org/
http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://barski-lab.github.io/cwl-airflow/#running-sample-chip-seq-se-workflow
https://github.com/Barski-lab/workflows
https://github.com/ENCODE-DCC/pipeline-container
https://www.synapse.org/#!Synapse:syn8507133/wiki/415976
http://dx.doi.org/10.5524/100618

