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Translationally controlled tumor protein
(TCTP) plays a pivotal role in cardiomyocyte
survival through a Bnip3-dependent
mechanism
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Masanari Umemura1, Utako Yokoyama1, Junichi Sadoshima4 and Yoshihiro Ishikawa1

Abstract
Prevention of cardiomyocyte death is an important therapeutic strategy for heart failure. In this study, we focused on
translationally controlled tumor protein (TCTP), a highly conserved protein that is expressed ubiquitously in
mammalian tissues, including heart. TCTP plays pivotal roles in survival of certain cell types, but its function in
cardiomyocytes has not been examined. We aimed to clarify the role of TCTP in cardiomyocyte survival and the
underlying mechanism. Here, we demonstrated that downregulation of TCTP with siRNA induced cell death of
cardiomyocytes with apoptotic and autophagic features, accompanied with mitochondrial permeability transition
pore (mPTP) opening. TCTP loss did not induce cell death of cardiac fibroblasts. Bcl-2/adenovirus E1B 19-kDa
interacting protein 3 (Bnip3) was found to mediate the TCTP-loss-induced cardiomyocyte death. In exploring the
clinical significance of the TCTP expression in the heart, we found that DOX treatment markedly downregulated the
protein expression of TCTP in cultured cardiomyocytes and in mouse heart tissue. Exogenous rescue of TCTP
expression attenuated DOX-induced cardiomyocyte death. In mice, cardiomyocyte-specific overexpression of TCTP
resulted in decreased susceptibility to DOX-induced cardiac dysfunction, accompanied with attenuated induction of
Bnip3. Dihydroartemisinin, a pharmacological TCTP inhibitor, induced development of heart failure and cardiomyocyte
death in control mice, but not in mice with cardiomyocyte-specific TCTP overexpression. Our findings revealed TCTP
has a pivotal role in cardiomyocyte survival, at least in part through a Bnip3-dependent mechanism. TCTP could be
considered as a candidate therapeutic target to prevent DOX-induced heart failure.

Introduction
Prevention of cardiomyocyte death is an important

therapeutic strategy for heart failure1,2. The loss of car-
diomyocytes induced by various stresses is a major cause

of reduced cardiac performance. Numerous studies have
revealed the involvement of several pathways, including
catecholamine and p53-mediated signaling, in stress-
induced cardiomyocyte death and subsequent develop-
ment of heart failure2–11. However, the major signaling
pathway involved in the survival of cardiomyocytes has
not been established.
In this study, we focused on translationally controlled

tumor protein (TCTP), a highly conserved protein that is
expressed ubiquitously in mammalian tissues including
heart12,13. Recent reports, including our own, have
revealed that TCTP plays important roles in various
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cellular functions including cell survival, cell proliferation,
tumorigenesis, allergic response, and pulmonary vascular
remodeling14–18. However, to our knowledge, there is no
report on TCTP function in cardiomyocytes.
TCTP exerts its functions in a cell-type-dependent

manner. It promotes cell survival and inhibits apoptosis in
some types of normal cells12,19 and cancer cells15,20.
Several studies have demonstrated that TCTP deficiency
results in early embryonic lethality characterized by
increased apoptosis12,21. In addition, TCTP silencing
caused induction of DNA damage or apoptosis in several
normal19 and cancer cell lines22–24. These findings indi-
cate that TCTP is a pro-survival molecule. However, the
significance of TCTP in cell survival depends on the cell
type and conditions. On the other hand, TCTP deficiency
does not affect apoptotic sensitivity or proliferation of
mouse embryonic fibroblasts21. The percentage of
TUNEL-positive cells in embryos at day 5.5 showed no
difference between wild-type and TCTP-deficient mice21.
TCTP deletion in T cells caused no reduction in thymo-
cyte numbers25. In addition, an inverse relationship
between TCTP expression and growth rate was found
with an epithelial cell line26.
In this study, we examined the role of TCTP in cardi-

omyocyte survival. We found that TCTP downregulation
induced cardiomyocyte death, indicating that TCTP is a
key player in cardiomyocyte survival. In addition, we
identified Bcl-2/adenovirus E1B 19-kDa interacting pro-
tein 3 (Bnip3) as a mediator of TCTP-loss-induced cell
death. Further, TCTP-loss-induced cardiomyocyte death
had apoptotic and autophagic features accompanied with
mPTP opening, which are features of Bnip3-induced cell
death27–29. TCTP and Bnip3 are both expressed in
mitochondria30. Recent studies have demonstrated that
Bnip3 is involved in cardiomyocyte death in response to
clinically important pathogenic stresses, including treat-
ment with anthracycline antibiotics27,28,31,32.
In exploring the clinical significance of TCTP expres-

sion in the heart, we found that doxorubicin (DOX)
treatment markedly suppressed the protein expression of
TCTP in cultured cardiomyocytes and mouse heart tissue.
DOX is an anthracycline antibiotic, and is widely used in
cancer therapy. However, its clinical usage has been lim-
ited by its serious cardiotoxicity. Approximately 10% of
patients are reported to suffer cardiac side effects33, which
not only limit their activities of daily life, but also require
dose reduction, reducing the effectiveness of treatment for
malignancies. Thus, there is an urgent need for a strategy
to prevent DOX-induced cardiac dysfunction.
Based on the above findings, we hypothesized that the

maintenance of TCTP expression level could be an
effective strategy to prevent DOX-induced cardiomyocyte
death and cardiac dysfunction. Here, we tested this

hypothesis by examining the role of TCTP in
cardiomyocyte-specific TCTP-overexpressing mice, and
by investigating the effect of dihydroartemisinin (DHA), a
pharmacological TCTP inhibitor16,34,35. Our results indi-
cate a pivotal role of TCTP in cardiomyocyte survival, and
also suggest that TCTP can prevent DOX-induced cardiac
dysfunction.

Materials and methods
An expanded Materials and methods section is available

in the Supplementary Materials and Methods.

Cell culture
Primary cultures of neonatal rat ventricular myocytes

(NRVMs) and neonatal rat cardiac fibroblasts (NRCFs)
were prepared from the heart of 3-day-old Wistar rats as
previously described4,36. H9C2 cells were seeded and
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS) and a 1% solu-
tion of penicillin-streptomycin at 37 °C in 5% CO2. The
next day, the medium was replaced with serum-free
medium.

Immunofluorescence microscopy
Primary NRVMs were seeded on coverslips. Mito

Tracker Red (Thermo Fisher) was added to the medium
45 min before fixation. Cells were then fixed in 4%
paraformaldehyde at room temperature for 15 min,
permeabilized with 0.2% Triton X-100 for 5 min, and
blocked with 5% BSA in PBS for 1 h. Cells were incu-
bated with primary antibodies at 4 °C overnight, fol-
lowed by 1 h incubation with secondary antibody (goat
anti-rabbit AlexaFluor 488) and 5 min incubation with
DAPI. Images were analyzed by deconvolution micro-
scopy (Nikon).

Cell death assay
The staining solution contained 2 μM Calcein-AM

(Dojindo) and 2 μM ethidium homodimer-1 (Takara
Bio) in serum-free medium. Cells were gently washed
twice and then incubated with the staining solution under
5% CO2 in humidified air at 37 °C for 45 min. The live
cells were stained with Calcein-AM (green) and dead cells
with ethidium homodimer-1 (red). Cell death (%) was
calculated from the numbers of live and dead cells29,32.

Flow cytometry
Cells were washed twice with cold PBS and resuspended

in Binding Buffer (BD). After incubation with APC
Annexin V (BD) and 7-amino-actinomycin D (7-AAD)
(BD) for 15min at room temperature in the dark, apop-
totic cells were quantified by flow cytometry. Annexin V-
stained cells were considered to be apoptotic37.
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Mitochondrial permeability transition pore (mPTP)
opening
Neonatal rat ventricular myocytes were incubated for

20min with acetoxymethyl ester of Calcein-AM (1 μM)
and then washed in the presence of CoCl2 (1 mM) for a
further 20min to remove the dye from the cytosolic
compartment30,32. The loss of Calcein-AM fluorescence
was used as an indicator of mPTP opening.

Detection of Ad-LC3-GFP
NRVMs were transduced with adenovirus harboring

LC3-GFP (Ad-LC3-GFP) as previously described38,39. The
fluorescence of GFP-LC3 was observed under a fluores-
cence microscope. The number of GFP dots was deter-
mined by counting fluorescent puncta from at least three
independent myocyte preparations. At least 60 cells were
scored for each group.

Mice
We generated TCTP transgenic mice (TCTP TG) with

cardiac-specific overexpression of TCTP using α-myosin
heavy chain (α-MHC) promoter on a C57BL/6 back-
ground (TCTP TG; Accession No. CDB0532T: http://
www2.clst.riken.jp/arg/TG%20mutant%20mice%20list.
html)40.
p53 knockout mice (p53 KO) (on a C57BL/6 back-

ground) were purchased from RIKEN BRC.
All animal experiments were conducted in accordance

with the guidelines of the animal experiment committee
of Yokohama City University and of Institutional Animal
Care and Use Committee (IACUC) of RIKEN Kobe
Branch.

Mouse models
DOX-induced heart failure
Two- to three-month-old male mice were given intra-

peritoneal injection of 3 mg/kg DOX three times a week
up to a total dose of 24 mg/kg41,42. At 5 weeks after the
first injection, cardiac morphology and function were
evaluated by echocardiography and catheterization.

ISO-induced heart failure model
Two- to three-month-old male C57BL/6 mice were

given chronic ISO (Sigma–Aldrich) infusion via an
osmotic mini-pump (DURECT Corporation) at a dose of
60 mg/kg/day for 2 or 7 days4.

Transverse aortic constriction (TAC)-induced heart failure
model
Two- to three-month-old male C57BL/6 mice were

anesthetized with isoflurane vapor titrated to maintain the
lightest anesthesia possible. On average, 1.5% vol/vol
isoflurane vapor was required to maintain adequate
anesthesia. The animals were ventilated via tracheal

intubation with a tidal volume of 0.5 ml and a respiratory
rate of 90 breaths per minute. The left side of the chest
was opened at the second intercostal space, and TAC or
sham operation was performed4.

Echocardiography
Mice were anesthetized with inhaled isoflurane (1.5%)

using an induction chamber. Echocardiography was per-
formed as previously described4,9.

Cardiac catheterization
Mice were anesthetized with inhaled isoflurane (1.5%)

and a 1.4F catheter (Millar) was inserted into the LV
through the carotid artery. Hemodynamic measurements
were performed as previously described4.

Histological analysis
Heart specimens were fixed with formalin, embedded in

paraffin, and sectioned at 3.5 μm. Sections were depar-
affinized and fibrosis was evaluated by Masson-trichrome
staining using the Accustatin Trichrome Stain Kit
(Sigma–Aldrich)4,5. Apoptosis was determined by TUNEL
staining using the DeadEnd fluorometric TUNEL system
(Promega). Nuclei were stained with DAPI4,5. The num-
bers of TUNEL-positive nuclei and total nuclei were
counted.

Statistics
All data were expressed as mean ± standard error of the

mean (S.E.M.). Comparison of data was performed using
Student’s t-test for two groups. Multiple comparisons
were made using one-way analysis of variance (ANOVA)
followed by Tukey’s test or two-way ANOVA followed by
Bonferroni’s post hoc test. For all analytical studies, the
criterion of significance was assigned as P < 0.05.

Results
TCTP expression in cardiomyocytes
We examined the TCTP protein expression level in

cardiomyocytes and cardiac fibroblasts. The TCTP
expression level per total protein was 1.8-fold greater in
NRVMs than in NRCFs (Fig. 1a). In addition, the
expression level in NRVMs was similar to those in the
cancer cell lines for which a pivotal role of cardiomyocyte
in cell survival has been reported22,24 (Fig. 1b). TCTP was
widely localized in nucleus, mitochondria, and cytoplasm
of cardiomyocytes (Fig. 1c).

TCTP downregulation resulted in cardiomyocyte death
In order to investigate the role of TCTP in cardio-

myocyte survival, we downregulated TCTP expression
with two different siRNAs (TCTP siRNA #1 and #2) in
NRVMs. The dose-dependent effect of these TCTP siR-
NAs was confirmed by western blotting (Fig. 2a, c). Both
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TCTP siRNA #1 and #2 induced cardiomyocyte death in a
dose-dependent manner (Fig. 2b, d). Furthermore, DHA,
a pharmacological TCTP inhibitor, induced cardiomyo-
cyte death accompanied by TCTP downregulation (Fig.
2e, f). Interestingly, however, TCTP siRNA did not reduce
the viability of NRCFs (Fig. S1), suggesting that the role of
TCTP in cell survival is cell-type-dependent.

TCTP downregulation caused cardiomyocyte death
through a Bnip3-dependent mechanism
To investigate the mechanism of TCTP-loss-induced

cardiomyocyte death, we examined the characteristics of
cardiomyocyte death, including annexin V expression,
DNA fragmentation, mPTP opening, autophagosome
accumulation, and LC3B II expression, in NRVMs after
siRNA silencing of TCTP (Fig. 3d–g; Figs. S2b, S3d–f). All
of these features were induced by TCTP silencing, sug-
gesting that the TCTP-loss-induced cardiomyocyte death
shows apoptotic and autophagic features, accompanied
with mPTP opening. Recent reports indicate that Bnip3-
induced cell death shows the same features27–29. Here, we
found that TCTP downregulation increased Bnip3
expression at both the mRNA (1.8-fold) and protein levels
(1.9-fold) in NRVMs (Fig. 3a, b; Fig. S3a).
Therefore, to examine the role of Bnip3 induction in the

TCTP-loss-induced cardiomyocyte death, we down-
regulated Bnip3 expression in NRVMs by treatment with
siRNAs (Figs. S2a, S3b). Bnip3 silencing significantly
attenuated TCTP-loss-induced cardiomyocyte death
(TCTP siRNA vs. TCTP+Bnip3 siRNA: 22.8% vs. 14.3%),

apoptosis (TCTP siRNA vs. TCTP+Bnip3 siRNA: 32.5%
vs. 15.6%), mPTP opening (Relative fluorescence inten-
sity/cell: TCTP siRNA vs. TCTP+Bnip3 siRNA: 0.1 vs.
0.5), and autophagosome accumulation (LC3-GFP
puncta/cell: TCTP siRNA vs. TCTP+Bnip3 siRNA: 101.0
vs. 58.4; Relative expression levels of LC3B II normalized
to GAPDH: TCTP siRNA vs. TCTP siRNA
+Bnip3 siRNA: 4.7 vs. 1.8) (Fig. 3c–g; Fig. S2b). Similar
results were obtained with another Bnip3 siRNA
(Bnip3 siRNA #2) (Fig. S3c, d, f). These findings suggested
that Bnip3 induction is a major step in the pathway of
TCTP-loss-induced cardiomyocyte death.
In this experiment, we did not observe significant

attenuation of TCTP siRNA #2-induced mPTP opening
by Bnip3 siRNA #2 (Fig. S3e). TCTP siRNA #1 down-
regulated TCTP expression more effectively than TCTP
siRNA #2. Consistently with this, induction of mPTP
opening by TCTP siRNA #1 was greater than that by
TCTP siRNA #2 (Fig. 3e; Fig. S3e, g). Thus, the difference
of downregulating effect between these two TCTP siR-
NAs may account for the difference in the results. Bnip3
may play a role in TCTP-loss-induced mPTP opening
when TCTP is highly suppressed.
Among several proteins that are reported to regulate

Bnip3 expression43–45, we found NF-kB protein expres-
sion was 54% decreased by TCTP siRNA (Fig. S4a). On
the other hand, no significant change was observed in the
expression of p53, Bax, E2F1, or FOXO3a (Fig. S4b–f).
These findings suggested that NF-kB may be involved in
the TCTP-loss-induced increase of Bnip3 expression.
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Overall, our results indicate that TCTP loss caused
cardiomyocyte death at least in part through a Bnip3-
dependent mechanism.
Since there is controversy regarding the role of autop-

hagy in cardiomyocyte death46,47, we examined its role in
the TCTP-loss-induced cardiomyocyte death. In our
studies, inhibition of autophagy by 3-MA or Atg5 siRNA
resulted in suppression of TCTP-loss-induced cardio-
myocyte death (Fig. S5a, b), suggesting that the autophagy
under these conditions was maladaptive for cell survival.
Next, we examined the mechanism of the TCTP-loss-

induced autophagosome accumulation. Autophagosome
accumulation can result from either enhancement of
autophagosome formation or inhibition of degradation48.
BFA, an inhibitor of vacuolar H+-ATPase, disrupts
autophagy processing by inhibiting autophagosome-
lysosome fusion. In the presence of BFA, TCTP silen-
cing induced no increase in autophagosome number or
LC3B II protein expression in cardiomyocytes (Fig. 3h, i).
These findings indicate that TCTP-loss-induced autop-
hagosome accumulation was caused by inhibition of
autophagosomal degradation, as has been observed in
DOX-treated cardiomyocytes48.

DOX treatment suppressed cardiac TCTP expression both
in vitro and in vivo
To investigate the clinical significance of TCTP

expression in the heart, we examined the TCTP expres-
sion level in cardiomyocytes and heart tissues after DOX
treatment. We found that DOX treatment markedly
suppressed the TCTP mRNA and protein expression in
cultured NRVMs (Fig. 4a, b). In addition, TCTP expres-
sion was suppressed in the heart tissues after both acute
(22.6%) and chronic (32.4%) DOX treatment (Fig. 4c, d).
These findings indicated that TCTP downregulation may
be involved in DOX-induced heart failure. On the other
hand, conversely, TCTP was upregulated after chronic
isoproterenol (ISO) infusion or chronic pressure overload
induced by transverse aortic constriction (TAC) in mice

(Fig. S6a–d). In accordance with this, TCTP mRNA and
protein expression were increased by ISO treatment in
cultured cardiomyocytes (Fig. S6e–g).
p53, a major tumor suppressor, is involved in the

development of various physiological dysfunctions,
including cardiac diseases such as heart failure2,49,
ischemic heart disease50, and DOX-induced heart fail-
ure41,51,52. It was demonstrated that TCTP and p53
negatively regulate each other’s functions and expression
levels15,53,54. To examine the role of p53 in DOX-induced
TCTP downregulation, we examined cardiac TCTP
expression in the heart of p53-deficient mice (p53 KO)
after DOX treatment. The DOX-induced TCTP down-
regulation was attenuated in p53 KO mice (WT vs.
p53KO: −31.9% vs. −14.8%) (Fig. 4e), indicating that
DOX suppressed TCTP expression at least in part
through a p53-dependent mechanism. In addition, we
found that the DOX-induced increase of Bnip3 expression
was attenuated in p53 KO mouse heart (WT vs. p53KO:
5.8-fold vs. 2.8-fold) (Fig. 4f). Overall, these findings
suggest that p53 is involved in DOX-induced TCTP loss
and enhancement of Bnip3 expression.

Exogenous supplementation of TCTP rescued
cardiomyocytes from DOX-induced death
To investigate the significance of DOX-induced TCTP

loss in relation to DOX’s cardiotoxicity, we examined the
effect of exogenous supplementation of TCTP on DOX-
induced cell death in a cardiomyocyte cell line, H9C2.
DOX treatment induced TCTP downregulation (31%
lower) and cell death (CTRL vs. DOX: 1.6% vs. 11.4%)
(Fig. 5), while exogenous supplementation of TCTP via
plasmid transfection significantly suppressed DOX-
induced cell death (pcDNA vs. mTCTP: 11.4% vs. 5.7%)
(Fig. 5a, b). Importantly, just supplementary exogenous
expression, which rescues the DOX-induced TCTP loss,
was enough to significantly inhibit DOX-induced cell
death, suggesting that TCTP downregulation may play a
key role in DOX-induced cardiomyocyte death.

(see figure on previous page)
Fig. 3 TCTP downregulation caused cardiomyocyte death through a Bnip3-dependent mechanism. a, b mRNA level (a) (n= 5–6) and protein
expression (b) (n= 8) of Bnip3 in NRVMs transfected with non-targeting siRNA (CTRL siRNA) or siRNA targeting TCTP (TCTP siRNA #1) for 72 h.
c–e NRVMs were transfected with non-targeting siRNA (CTRL siRNA) or siRNA targeting TCTP (TCTP siRNA #1), or Bnip3 (Bnip3 siRNA #1), or a mixture
of both (TCTP siRNA #1 & Bnip3 siRNA #1). Cell death (c) (n= 4) and apoptosis (d) (n= 4–5) were determined by calcein-AM (green)/ethidium
homodimer-1 (red) staining and flow cytometry after siRNA transfection for 72 h. Scale bar, 200 μm. e mPTP opening was assessed by co-loading with
calcein/AM and CoCl2 after siRNA transfection for 24 h. Loss of green fluorescence is indicative of mPTP opening (n= 6). Scale bar, 40 μm. f NRVMs
were infected with Ad-LC3-GFP (30 MOI) for 8 h and then transfected with non-targeting siRNA or siRNA targeting TCTP (TCTP siRNA #1), or Bnip3
(Bnip3 siRNA #1) or a mixture of both (TCTP siRNA #1 & Bnip3 siRNA #1) for 48 h. Green puncta indicate autophagosomes (n= 6). Scale bar, 25 μm.
g Expression of LC3BII and GAPDH proteins in NRVMs transfection with siRNA for 72 h (n= 4). h NRVMs were infected with Ad-LC3-GFP (30 MOI) for
8 h and then transfected with non-targeting siRNA (CTRL siRNA) or siRNA targeting TCTP (TCTP siRNA #1) with or without BFA treatment for 6 h.
Autophagosome formation was evaluated after 48 h. Green puncta indicate autophagosomes (n= 4). Scale bar, 25 μm. i Expression of LC3BII and
GAPDH proteins in NRVMs transfection with siRNA for 72 h (n= 4). *P < 0.05, **P < 0.01, ***P < 0.001. Unpaired, two-tailed Student’s t-test (a, b) or
One-way ANOVA followed by Tukey’s test (c–g) or two-way ANOVA followed by Bonferroni’s test (h, i)
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Cardiomyocyte-specific TCTP overexpression protected
mice against DOX-induced cardiac dysfunction
To examine the role of TCTP in cardiomyocytes in vivo,

we generated TCTP transgenic mice (TCTP TG #1 and
#2) with cardiac-specific overexpression of TCTP using α-
MHC promoter. TCTP expression in the heart was sig-
nificant greater in TCTP TG #1 mice than in WT mice
(Fig. 6b; Fig. S7a–h).
There were no significant differences between WT mice

and TCTP TG #1 mice in cardiac morphology or func-
tions at baseline (Fig. 6a, d–f; Table S2).
We examined the effect of TCTP overexpression in

cardiomyocytes on the DOX-induced cardiac dysfunction
in mice. DOX-induced cardiac dysfunction was sig-
nificantly attenuated in TCTP TG #1 mice (Fig. 6d–f;
Table S2). Indexes of cardiac function, including LVEF
and maximum and minimum dP/dt, were significantly
better in DOX-treated TCTP TG mice than in WT mice
(LVEF: WT vs. TCTP TG: 61.9% vs. 68.2%; Max dP/dt:
WT vs. TCTP TG: 7592mmHg/s vs.10581 mmHg/s; Min
dP/dt: WT vs. TCTP TG: −6962 mmHg/s vs.
−10191mmHg/s). These findings indicate that TCTP
overexpression prevented DOX-induced cardiac dys-
function. The effect of TCTP overexpression on DOX-
induced cardiac dysfunction was confirmed in TCTP TG
#2 mice, another mouse line of TCTP TG with milder
overexpression of TCTP (Fig. S8a–d; Table S3). DOX
treatment caused a significant increase of apoptotic cell
death in the heart (Fig. 6g). Importantly, in accordance
with the results of functional analysis, apoptotic cell death
was significantly attenuated in hearts from TCTP TG #1

compared with WT (WT vs. TCTP TG: 0.49% vs. 0.29%).
In addition, we found that Bnip3 expression was
increased, accompanied with downregulation of TCTP, in
the hearts of both WT and TCTP TG #1 mice. However,
the increase of Bnip3 expression was significantly smaller
in hearts from TCTP TG #1 mice (WT vs. TCTP TG: 2.0-
fold vs. 1.2-fold) (Fig. 6c), suggesting that TCTP loss may
be related to DOX-induced Bnip3 expression.

Treatment with DHA, a pharmacological inhibitor of TCTP,
resulted in cardiac dysfunction in mice
To investigate the effect of TCTP loss on cardiac function

in vivo, we treated mice with DHA, a pharmacological
inhibitor of TCTP (Fig. 2e). DHA suppressed TCTP and
enhanced Bnip3 protein expression in mouse heart. In
addition, the extent of Bnip3 induction by DHA was less in
TCTP TG #1 than in WT mice (Fig. 7a), indicating that
DHA-induced TCTP loss may be involved in the DHA-
induced increase of Bnip3 expression. Importantly, we
found that DHA treatment caused heart failure. In addition,
cardiac overexpression of TCTP significantly attenuated the
DHA-induced left ventricular dysfunction (LVEF: WT vs.
TCTP TG: 58.9% vs. 67.5%; Max dP/dt: WT vs. TCTP TG:
7670mmHg/s vs.10262mmHg/s; Min dP/dt: WT vs. TCTP
TG: −6705mmHg/s vs.−8162mmHg/s) (Fig. 7b–d; Table
S4). DHA also caused a significant increase of apoptotic cell
death in the heart, and this was significantly attenuated by
TCTP overexpression in cardiomyocytes (WT vs. TCTP
TG: 0.11% vs. 0.07%) (Fig. 7e). These findings indicate that
loss of TCTP may cause cardiomyocyte death and cardiac
dysfunction in vivo.
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Discussion
To our knowledge, this is the first report on the function

of TCTP in the heart, although TCTP is known to play
important roles in cell survival in a cell-type-dependent
manner12,15,19,20. Our results here support a pivotal role of

TCTP in the maintenance of cardiomyocyte viability (Fig.
S9). We also identified Bnip3 as a new player in TCTP-
loss-induced cell death. TCTP downregulation by siRNA
resulted in cardiomyocyte death, at least in part through a
Bnip3-dependent mechanism (Fig. 3; Fig. S2 and S3).
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Bnip3 is one of the pro-apoptotic members of the BH-3-
only subfamily of Bcl-2 family proteins. Although there
are several reports on the relationship between TCTP and
Bcl-2 family proteins, such as Bax, Bcl-xL, MCL-1, etc.14,
this is the first report of the involvement of Bnip3 in
TCTP-induced signaling. In accordance with this finding,
TCTP-loss-induced cardiomyocyte death showed apop-
totic and autophagic features accompanied with mPTP
opening, resembling those reported in Bnip3-induced cell
death27,55.
To examine the mechanisms underlying TCTP-loss-

induced cardiomyocyte death, we first investigated p53-
induced signaling. It is reported that TCTP and p53
mutually downregulate each other’s expression in cancer
cells53, and p53 has been reported to play an important
role in cardiac cell death2. However, a positive relation-
ship between the expression levels of TCTP and p53 was
reported in non-cancer tissues56. After TCTP siRNA
treatment in NRVMs, we did not observe significant
induction of p53 (Fig. S4b). In addition, protein expres-
sion of Bax (Fig. S4c), a pro-apoptotic protein, which is
transactivated by p53, was rather suppressed by TCTP
siRNA treatment. Notably, on the other hand, we
observed the induction of Bnip3 in response to loss of
TCTP (Fig. 3a, b; Fig. S3a). In addition, NF-kB, a negative
regulator of Bnip343, was downregulated by TCTP siRNA
treatment, suggesting that attenuation of the inhibitory
effect of NF-kB on Bnip3 expression may be involved in
the TCTP-loss-induced Bnip3 expression. At least in this
experimental system, Bnip3 plays a more important role
than p53 in TCTP-loss-induced cell death.
In exploring the clinical significance of the TCTP

expression in the heart, we found that DOX treatment
suppressed TCTP expression in cultured cardiomyocytes
and mouse heart. In addition, exogenous supplementation
of TCTP significantly inhibited DOX-induced cardio-
myocyte death (Fig. 4). Importantly, just supplementary
exogenous expression to rescue the DOX-induced
reduction of TCTP expression was enough to sig-
nificantly inhibit DOX-induced cardiomyocyte death.
These findings indicate that the TCTP downregulation
itself may contribute the cardiotoxicity of DOX.
In line with these findings, cardiomyocyte-specific

overexpression of TCTP significantly inhibited DOX-
induced Bnip3 expression and the development of cardiac
dysfunction in mice. TCTP overexpression in cardio-
myocytes caused no significant changes in cardiac func-
tion or morphology. However, after DOX treatment,
development of cardiac dysfunction was significantly
attenuated in cardiomyocyte-specific TCTP-over-
expressing mice (Fig. 6; Fig. S8). These findings suggested
that maintenance of TCTP levels in cardiomyocytes may
be a novel therapeutic strategy to ameliorate or prevent
DOX-induced heart failure.

To examine the mechanism of DOX-induced TCTP
loss, we assessed the effect of DOX treatment on cardiac
TCTP and Bnip3 expression in mice. p53 plays an
important role in the development of DOX-induced heart
failure41,51,52, and as mentioned above, TCTP and p53
mutually downregulate each other’s expression53. Our
results support the idea that p53 is involved in the DOX-
induced TCTP loss and enhancement of Bnip3 expression
in mouse heart.
To investigate the effect of TCTP loss on cardiac

function in vivo, we next examined the effect of DHA, a
TCTP pharmacological inhibitor, on cardiac func-
tion16,34,35. As expected, DHA treatment downregulated
TCTP in the heart. In addition, DHA induced heart fail-
ure accompanied with an increase of apoptosis in cardi-
omyocytes, which were rescued by TCTP overexpression
(Fig. 7). These findings indicate that the maintenance of
TCTP expression may be important for cardiomyocyte
survival and preservation of cardiac function. DHA is an
established agent for the treatment of malaria infection57

Recently, mouse and canine studies indicated that long-
term DHA therapy has an anti-tumor effect58,59, which
appears to be due mainly to its pro-apoptotic action. To
our knowledge, this is the first report regarding the effect
of DHA on cardiac function. It may be important to
consider this cardiac side effect, especially in patients
receiving high-dose, long-term treatment with DHA.
These findings suggest that maintenance of TCTP
expression in cardiomyocytes would be important for the
prevention of cardiomyocyte death and heart failure.
Several molecules such as p5353, CREB60, and chro-

modomain helicase/ATPase DNA binding protein 1-like
gene (CHD1L)61 are reported to be involved in the reg-
ulation of TCTP expression. During the treatment of
heart failure, signaling pathways that affect the functions
of these proteins should be borne in mind. cAMP sig-
naling is reported to upregulate TCTP expression in
cancer cells60. CREB-induced transactivation is involved
here. The concentration of catecholamines in blood is
increased in patients with heart failure62. In accordance
with this, cardiac TCTP expression was elevated in several
mouse heart failure models, including a chronic cate-
cholamine infusion model and the TAC model (Fig. S6).
This response may act protectively against the develop-
ment of heart failure by preventing stress-induced cardi-
omyocyte death. On the other hand, we can speculate that
treatment with β-adrenergic receptor blockers, one of the
established therapies for heart failure, may lead to a
reduction of TCTP expression through its inhibitory
effect on CREB function63. Consideration of this possible
adverse effect may be helpful in the development of new
treatments to prevent cardiomyocyte death. Interestingly,
miRNA-27b downregulates TCTP protein expression64,
and the therapeutic utility of miRNA inhibition by
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modified antisense oligonucleotides has been repor-
ted65,66. Induction of TCTP expression in this way could
be a candidate for heart failure therapy.
Our findings indicate that TCTP plays a pivotal role in

cardiomyocyte survival, at least in part through a Bnip3-
dependent mechanism. DOX-induced TCTP loss may be
involved in the cardiotoxicity of DOX. TCTP may be a
candidate therapeutic target to prevent DOX-induced
heart failure.
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