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Resting-state prefrontal EEG 
biomarkers in correlation with 
MMSE scores in elderly individuals
Jungmi Choi1, Boncho Ku   2, Young Gooun You3, Miok Jo3, Minji Kwon3, Youyoung Choi3, 
Segyeong Jung3, Soyoung Ryu3, Eunjeong Park3, Hoyeon Go4, Gahye Kim2, Wonseok Cha1 & 
Jaeuk U. Kim   2

We investigated whether cognitive decline could be explained by resting-state electroencephalography 
(EEG) biomarkers measured in prefrontal regions that reflect the slowing of intrinsic EEG oscillations. 
In an aged population dwelling in a rural community (total = 496, males = 165, females = 331), we 
estimated the global cognitive decline using the Mini-Mental State Examination (MMSE) and measured 
resting-state EEG parameters at the prefrontal regions of Fp1 and Fp2 in an eyes-closed state. Using 
a tertile split method, the subjects were classified as T3 (MMSE 28–30, N = 162), T2 (MMSE 25–27, 
N = 179), or T1 (MMSE ≤ 24, N = 155). The EEG slowing biomarkers of the median frequency, peak 
frequency and alpha-to-theta ratio decreased as the MMSE scores decreased from T2 to T1 for both 
sexes (−5.19 ≤ t-value ≤ −3.41 for males and −7.24 ≤ t-value ≤ −4.43 for females) after adjusting for 
age and education level. Using a double cross-validation procedure, we developed a prediction model 
for the MMSE scores using the EEG slowing biomarkers and demographic covariates of sex, age and 
education level. The maximum intraclass correlation coefficient between the MMSE scores and model-
predicted values was 0.757 with RMSE = 2.685. The resting-state EEG biomarkers showed significant 
changes in people with early cognitive decline and correlated well with the MMSE scores. Resting-state 
EEG slowing measured in the prefrontal regions may be useful for the screening and follow-up of global 
cognitive decline in elderly individuals.

With the rapid aging of the population, the number of patients with cognitive impairment is quickly increasing1; 
over 46 million people were reported to be living with dementia worldwide in 2015, and this number is estimated 
to increase to 131.5 million by 20502. Among the many causes of dementia, Alzheimer’s disease (AD) is the most 
prevalent form in elderly individuals, accounting for approximately 60–80% of cases3. The two competing pathol-
ogies of AD include the progressive accumulation of beta-amyloid plaques outside neurons and tau tangles inside 
neurons in the brain. The prevalence of AD doubles for each 5-year increase in age from 65 to 90 years4.

At the clinical manifestation stage of dementia, irreversible brain damage is already present. Currently, no cure 
for AD dementia exists. Therefore, detecting cognitive impairment due to AD at its early stages is urgently needed 
for therapeutic treatment to slow or halt disease progression. The key to this success is discovering biomarkers 
that can distinguish mild cognitive impairment (MCI) from normal cognitive aging5. The general diagnostic 
procedures for dementia include clinical interviews with neuropsychological tests, imaging techniques such as 
structural and functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). MRI is 
widely available but costly, and it is not suitable for patients who are claustrophobic, while PET scans are expen-
sive, not readily available, and invasive because they involve intravenous access and exposure to radiation6,7.

The use of electroencephalography (EEG) for the diagnosis of dementia is a viable option; it is widely available 
in neurological clinics, inexpensive, noninvasive, and potentially portable8–12. EEG has shown potential in iden-
tifying the earliest signs of brain dysfunction in subjects with MCI or dementia13. Among the diverse approaches 
of EEG, quantitative analysis of EEG rhythms in subjects who are awake and at rest, which is the simplest method 
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in terms of experimental design, is widely studied and is an easily accessible neurophysiological method for 
examining dementia12–22.

While most previous studies have compared EEG biomarkers in dementia patients, healthy controls and 
patients with MCI12,23–25, the focus of the present study was to observe changes in EEG biomarkers and corre-
late them with Mini-Mental State Examination (MMSE) scores in an elderly population. The MMSE is used to 
evaluate the global cognitive status and has been routinely used in clinical settings, particularly for screening for 
dementia and MCI26.

Three major effects of cognitive decline have been observed in the EEG data of AD patients: EEG slowing 
in terms of a shift in the power spectrum to lower frequencies27–31, reduced complexity and reduced coher-
ence32–38. Moreover, advances in EEG technology have resulted in single, wireless prefrontal electrode systems 
with improved usability and portability while maintaining data quality39,40. If few-channel EEG systems with dry 
electrodes that can preferably perform measurements at the prefrontal region with wireless data communication 
show reliable data quality and significant clinical results, their use will rapidly increase, especially in primary clin-
ics and healthcare-related businesses. The objective of this study was to investigate whether the severity of cog-
nitive decline could be explained by resting, eyes-closed prefrontal EEG biomarkers, with the aim of identifying 
low-cost, easily accessible, portable, and noninvasive biomarkers that could aid in the early detection of cognitive 
decline and in the prevention of dementia. To this end, in this study, we tested the hypothesis that three promising 
biomarkers of resting EEG rhythms are correlated with global cognitive status, as estimated by the MMSE.

Materials and Methods
Subjects.  From September 2017 to January 2018, a total of 496 elderly participants of age 50 years or older 
were recruited from 13 public health centers and two long-term care hospitals located in Uiryeong County, Korea. 
This observational study was conducted as part of the Brain Aging Map Project (BAMP), which is a community 
welfare project conducted in Uiryeong (a summary of BAMP can be found at http://uiryeong.org, in Korean)41. 
Participants were volunteering County dwellers who could participate approximately 90 minutes of measure-
ment program in which the MMSE, GDS, EEG, PPG and Bio-impedance were included. Individuals who were 
not in the appropriate condition for the measurement were excluded from the study: who ate food or did inten-
sive physical exercise within an hour of the measurement program, slept less than four hours, had a deformity 
on electrode contact sites, or who were considered inappropriate by the research nurses. Four clinical research 
nurses were adequately trained for the measurement of EEG and other devices, which were all portable, and 
they moved in a team around the public health centers and hospitals by a given program schedule. Participants 
were recruited through a flyer, brochure, poster advertisement, and phone-call. Written informed consent was 
obtained from each subject or his/her caregiver prior to study participation. The Institutional Review Board of 
Semyung University (IRB number: SMU-EX-2017-11-001) approved the study protocol.

After recording basic demographic information, the participants were examined with the MMSE-DS42, an 
extensively used Korean version of the MMSE to assess global cognitive decline, and EEG and other devices were 
conducted. The MMSE-DS is composed of 19 grouped questions (30 individual questions) and 6 categories: (1) 
orientation to time (5 points) and place (5 points), (2) attention and calculation (5 points), (3) memory registra-
tion (3 points) and recall (3 points), (4) language (6 points), (5) visual construction (1 point), and (6) decision 
making (2 points). The study was performed in accordance with the principles outlined in the Declaration of 
Helsinki. Our data are available upon request for the reproduction of the results presented in this study.

EEG recordings.  All subjects underwent EEG recordings for five minutes in an upright seated position in a 
resting state with their eyes closed. A series of other tests were also conducted. These additional tests were beyond 
the scope of the present study and thus were not reported here. Noninvasive monopolar scalp electrodes recorded 
the electrical brain activity of the prefrontal regions (Fp1 and Fp2 in the International 10/20 electrode system) 
with a reference on the right earlobe. The band-pass frequency of the neuroNicle amplifier (LAXTHA Inc., Korea) 
was 3 to 43 Hz, and the input range was +/−393 µV (Input noise <0.6 µVrms); All filters were digital, and IIR 
Butterworth filters were applied. Band-stop: 2nd order with f1 = 55 Hz and f2 = 65 Hz. High-pass filter: 1st order 
with fc = 2.6 Hz. Low-pass filter: 8th order with fc = 43 Hz43. All contact impedances were kept below 10 kΩ. All 
data were digitized in continuous recording mode (5 minutes of EEG; 250 Hz sampling rate; 15-bit resolution).

To minimize ocular, muscular, and other types of artifacts, a trained operator monitored the subject and 
EEG traces, instructed the subject to remain in a state with their eyes closed and muscles relaxed in a quiet envi-
ronment and alerted the subject whenever he/she showed signs of behavioral or EEG drowsiness. None of the 
resting-state, eyes-closed EEG data were rejected due to artifacts in this study.

EEG biomarker and computation.  The frequency-domain (or spectral-domain) features are typically 
used in the quantitative analysis of EEG rhythms. To transform the EEG signal from the time domain to the fre-
quency domain, a Fourier transform of the autocorrelation function was employed to provide the power spectral 
density.

In resting-state eyes-closed EEG, intrinsic oscillations reflecting an idling cortical state become dominant, and 
the dominant peak frequency usually occurs in the 5–12 Hz band. Previous reports have commonly shown that 
the dominant oscillatory frequencies that appear in the alpha band during normal aging become lower in patients 
with cognitive disorder12,13,25.

The present study focused on the following EEG biomarkers (EEG variables) to explain the slowing of brain 
rhythms in a resting eyes-closed state: median frequency (MDF), peak frequency (PF) and the alpha-to-theta 
ratio (ATR), which have been reported to be suitable classification biomarkers for Alzheimer’s disease and 
mild cognitive impairment17,18. These biomarkers were derived from a frequency-domain analysis of EEG data 
measured for 5 minutes; the MDF measures the median frequency, and the PF measures the frequency at the 
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maximum peak in the dominant intrinsic oscillatory frequency band of 4–13 Hz of the EEG power spectrum. The 
ATR measures the power ratio of alpha rhythms (8–13 Hz) to theta rhythms (4–8 Hz). The variables were aver-
aged over the left and right EEG signals. Both of the MDF and PF are in units of Hz and the ATR is in unitless; the 
MDF ranged between 4.31 and 10.80 Hz, the PF ranged between 5.71 and 12.89 Hz, and the ATR ranged between 
0.43 and 2.72 for the study participants.

The EEG power spectrum was obtained by fast Fourier transform (FFT) of the EEG signals within a rectan-
gular window. The MDF was calculated in two steps: (1) All the spectral power values in the 4–13 Hz frequency 
domain were summed and divided by two. (2) The frequency at which the cumulative power in the 4–13 Hz 
first exceeded the value calculated in step (1) was selected. The PF was determined by the frequency at which 
the power of the EEG spectrum was the largest in the 4–13 Hz frequency domain. To obtain the ATR, the alpha 
power and theta power were calculated as follows. (1) Alpha power: The spectral power values in the frequency 
range from 8 to 13 Hz were summed and converted to the natural logarithmic scale. (2) Theta power: The spectral 
power values in the frequency range from 4 to 8 Hz were summed and converted to the natural logarithmic scale.

Reliability of prefrontal EEG biomarkers.  To examine the quality of resting-state EEG slowing measured 
in the prefrontal region, we conducted two tests. First, we compared the MDF, PF and ATR values between the 
prefrontal and occipital regions using a multichannel EEG device prior to the clinical study (between Fp1 and O1 
and between Fp2 and O2) for 31 subjects. We calculated the intra-class correlation coefficients (ICC) and mean 
differences of the MDF, PF and ATR between Fp1 and O1 and between Fp2 and O2 (Table A1 in the appendix). 
Between Fp1 and O1, the ICCs were 0.865, 0.936 and 0.541 for the MDF, PF and ATR, respectively. Between Fp2 
and O2, the ICCs were 0.690, 0.951 and 0.440 for the MDF, PF and ATR, respectively. Details were shown in 
Table S1 in Supplementary Materials. These findings indicate that the variables related to the alpha peak, such as 
MDF and PF, contain the same clinical information and are interchangeable between the prefrontal and occipital 
regions. However, the ATR, which reflects the relative power between the alpha and theta bands, behaved slightly 
differently between the two regions, which implies that the clinical interpretations of power-related quantities 
may not be interchangeable. Despite this difference in ICC for the ATR, we did not observe significant differences 
in the mean values in any of the variables between the prefrontal and occipital regions. To maintain the same data 
processing protocol with the main results of this manuscript, none of the resting-state eyes-closed EEG data were 
rejected for artifacts.

Next, we tested for the data contamination due to muscle and eye movement of the (Fp1, Fp2)-prefrontal EEG 
signals as we did not reject any artifact in the signal processing. First, we checked that none of the EEG data of 
all of the participants was contaminated by a large amount of artifacts. Specifically, none of 496 participants con-
tained more than 10% of EEG amplitude exceeding 200 μV; this value is a common exclusion threshold for serious 
artifacts44. When applying more strict voltage threshold, we found still none with 10% of amplitude exceeded 
150 μV, and only 2 samples in Fp1 and 1 sample in Fp2 with 100 μV as a threshold.

Second, we randomly selected 45 samples from the entire data set of 496 participants. From each EEG signal, 
we selected a data slice of one-minute interval where the EEG amplitude confined within ±80 μV, which was a 
strict condition for least contamination from muscle and eye movements compared to a common threshold of 
±200 μV44, and calculated the MDF, PF and ATR. Finally, we compared the resulting three variables obtained 
from the entire EEG recording of 5 minutes and the artifact-free slice. As a result, the mean ± standard devia-
tion was 8.53 ± 0.87 for MDF, 8.69 ± 1.32 for PF and 1.26 ± 0.32 for ATR with full-length EEG recordings, and 
8.56 ± 0.85 for MDF, 8.45 ± 1.46 for PF and 1.28 ± 0.34 for ATR with the artifact-free slices. The mean ± standard 
deviation of differences was 0.03 ± 0.47 for MDF, 0.24 ± 1.26 for PF and 0.03 ± 0.14 for ATR, and the paired t-test 
showed no statistical difference (p > 0.2) in each variable. Therefore, we concluded that the three EEG variables 
of MDF, PF and ATR behaved rather stationary during the 5 minutes of EEG recording and the interference due 
to artifacts could be ignored.

Statistical analysis.  Overview.  The significance level was set to α = 0.05 for all statistical tests. Statistical 
analysis was conducted using the R statistical software (version 3.4.4, released at 2018-03-15)45. The demograph-
ics of the participants in Uiryeong County were summarized as the means and standard deviations for continuous 
variables or as the frequencies and proportions for categorical variables, in accordance with the MMSE cognitive 
stages. The cognitive stages are divided by the MMSE tertiles (T3: 28 ≤ MMSE ≤ 30; T2: 25 ≤ MMSE ≤ 27; T1: 
MMSE ≤ 24)46–49 to obtain the balanced subgroups (Table 1).

Association between EEG variables and MMSE tertiles.  To investigate the association between the cognitive 
stages of the MMSE and each EEG variable, namely, the MDF, PF, and ATR, a generalized linear model (GLM) 
with the identity function and normal distribution was used to estimate marginal means in accordance with sex 
and the level of cognitive decline by including the interaction term between sex and cognitive status and other 
covariates (age and education level). The analysis of variance test for each GLM for the corresponding EEG vari-
able was conducted to examine the general effects of terms included in the model. The consecutive contrasts for 
the MMSE tertiles (T2 vs. T3 and T1 vs. T2) were tested by t-statistics. The p-values related to multiple tests for 
the consecutive MMSE tertiles were adjusted by Bonferroni correction. Similarly, Bonferroni’s 95% simultaneous 
confidence intervals (CI) were also obtained for each contrast with respect to the GLMs (Fig. 1).

Correlation/association analysis between EEG variables and MMSE total and domain scores.  Pearson correlation 
coefficients (PCCs) were obtained to examine the relationship between the EEG variables and other measures 
including demographics and the MMSE scores. Estimated correlation coefficients and their corresponding 95% 
CIs and p-values were summarized in tables (Tables 2–5) and in Fig. 2. The statistical difference between any two 
correlation coefficients was investigated by several statistical tests provided in the cocor package50. Conventional 
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Fisher’s Z transformation to correlation coefficients was employed to perform the Z-test for the comparisons 
from two independent groups. Zou’s 95% CIs51 for the difference of two independent correlation coefficients 
were obtained. To test two dependent correlation coefficients overlapped with common covariates (e.g. age and 
education level), Meng’s Z-tests and 95% CIs were employed52.

Partial PCCs, controlled for sex, age, and education level, were also obtained to examine the relationship 
among the EEG variables, MMSE total and domain scores. The statistical difference between two partial PCCs 
for each EEG variable and the MMSE domain scores was also investigated by employing the identical statistical 
tests used in the correlation analyses described above (Fig. 3). Similarly, we performed multiple linear regression 
(MLR) analyses to assess the association between each of the EEG variables and the MMSE total and domain 
scores adjusted for sex, age, and education level. For the relative comparisons among regression coefficients for 
each EEG variable, standardized regression coefficients were also included in MLR analyses (Table 6).

Development of the predictive models for the MMSE total score.  Finally, we developed a predictive model for the 
MMSE total score. For the preprocessing, all continuous predictors were standardized with 0 for the mean and 1 
for the standard deviation. The ordinary weighted least squares (WLS) method was used to estimate the MMSE 
total score. Stepwise variable selection through both forward and backward searches based on Akaike informa-
tion criterion53 was applied to the ordinary WLS model to reduce the model complexity. In addition, we applied 
a penalized regression model related to the L1 norm penalty, such as the least absolute shrinkage selection oper-
ator (LASSO)54 and elastic net55 methods. Another penalized regression approach, ridge regression56,57 with L2 
norm penalty was additionally used as a candidate model to address multicollinearity of EEG and demographic 
varibles. All penalized regression approaches were conducted using the glmnet package58 with changing mixing 
parameter of L1 and L2 norm penalty α (ridge regression: α = 0; elastic net: 0 < α < 1; LASSO: α = 1). Two major 
hyperparameters for penalized regressions in this study were initialized as follows: the regularization parameter 
λ was set to 300 values ranged from exp[log(10)] to exp[log(0.0001)], and the mixing parameter α has a value 
between 0 and 1 in 0.1 intervals (a total of 11). Each candidate model contains identical components: three EEG 
variables and demographics including sex, age, and education level. Quadratic terms of continuous predictors 
and the second order interaction terms corresponding to sex (1 for female and 0 for male) were also included in 
each model.

The total dataset of 496 samples was randomly divided into 80% of the training set (n = 396) and 20% of the 
test set (n = 100) for the model validation. The training (including nested training and validation sets in each fold 
of cross-validation) and test sets had approximately identical distributions to the total dataset in the result of strat-
ification by the MMSE tertiles. The test set was not included in the validation procedure; it was only used for the 
final assessment of the predictive models. For the 10-fold cross-validation, similarly, the training set was divided 
into 90% (356 to 357) for model development and 10% (39 to 40) for the valiation in each fold. The root mean 
square error (RMSE) was used to evaluate the performance of the validation set for candidate models including 
the ordinary WLS and penalized regression models. For each penalized regression model, hyperparamters λ and 
α with the minimum RMSE were selected through the 10-fold cross-validation. Among the four candidate mod-
els (ordinary WLS, ridge, elastic net, and LASSO), the model with the smallest value of RMSE was finally selected 
as the predictive model for the MMSE total score. Although only one model was selected as a result of validation, 
the final four models were developed based on the common training set and were applied to the predicted MMSE 
scores for the test set, for the purpose of the overall comparison (Tables 6 and 7).

To assess the agreement between the true MMSE total score and predicted MMSE total score in the test set, 
several statistics were provided in the results. PCCs between the predicted and true MMSE scores were calculated 
according to each candidate model. The mean difference between those values was also obtained to verify the 
concordance between the true and predicted MMSE scores. Additionally, the ICC was calculated to determine 
the reliability of the predicted models. A Bland-Altman plot59 for the final model was employed to investigate the 
limit of agreement (LOA) between the true and predicted MMSE values.

Results
This section is organized as follows. In Section 3.1, we examined the demographic (sex, age, education level) and 
neuropsychological characteristics (MMSE total and domain scores) of the participants. Sequentially in Section 
3.2, we tested for the association between each EEG variable and the cognitive stage of the MMSE tertiles for each 
sex. Next, we investigated in-depth the correlations between the MMSE (total) score, EEG variables and demo-
graphic variables such as age and education level in Section 3.3, and investigated the association of EEG variables 
with the MMSE cognitive domains in Section 3.4. Finally, in Section 3.5, we suggested predictive models for the 
MMSE total score using the three resting-state biomarkers of EEG slowing.

Demographics and neuropsychological characteristics.  The overall demographic information and 
neuropsychological characteristics of the 496 subjects are summarized in Table 1. The percentages of female/male 
participants were 66.73%/33.27%, and the mean age ± SD was 67.84 ± 9.77 years. According to the severity of 
cognitive decline, as estimated by the MMSE (MMSE-DS) scores with tertile splitting, we classified subjects into 
the three cognitive stages: T3 (N = 162), T2 (N = 179) and T1 (N = 155). This classification showed that as age 
increased and education level decreased, the cognitive status declined. For a detailed analysis, we categorized the 
MMSE into 8 cognitive domains, namely, orientation to time, orientation to place, memory registration, attention 
and calculation, memory recall, language, visual construction, and decision making42. As shown in Table 1, the 
scores in each cognitive domain monotonically declined as the MMSE cognitive scores declined from T3 to T1.
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Association of resting-state EEG slowing according to the MMSE cognitive stages.  We tested 
for the association between each EEG variable and the cognitive stages of the MMSE tertiles for each sex using 
a generalized linear model, which was adjusted for age and education level and contains the interaction term 
between sex and cognitive stage (Fig. 1). As shown in the left panels of Fig. 1, the marginal mean of each EEG 
variable decreased monotonically as the MMSE cognitive stages declined from T3 to T1, and there was no inter-
action between sex and cognitive status in the MDF and PF, while the interaction was marginal in the ATR. In 
the analysis of the difference of the marginal means between adjacent cognitive stages, significant differences 
remained between T1 and T2 for both male and female subjects (t-value equals to −3.41, −3.49, −5.19 for males 
and −7.24, −4.94 and −4.43 for females in the MDF, PF and ATR, respectively), while no such differences were 
found between T2 and T3 (the right panels of Fig. 1). The ATR showed relatively strong difference between T1 
and T2 (t = −5.19) for males, reflecting the marginal interaction between sex and cognitive status. The strongest 
association was shown in females between the MDF and the MMSE cognitive score.

Correlations between the MMSE score, EEG biomarkers and demographic variables.  There 
were correlations between the MMSE score, EEG variables (PF, MDF and ATR) and demographic variables (age 
and education level), as summarized in Table 2 to Table 5 and pictorially presented in Fig. 2. Table 2 presents 
PCCs of the MMSE score and each EEG variable with age and education level for the total, male and female par-
ticipants, and Table 3 presents differences between pairs of PCCs in Table 2. It shows moderate to strong correla-
t ions  of  the  MMSE score  with  age  ( ρ− . ≤ ≤ − .ˆ0 61 0 40MMSE,age )  and with  educat ion level 
( ρ. ≤ ≤ .ˆ0 50 0 62MMSE,edu ). The correlation with age was stronger in females than in males while no such gender 
difference was observed in the correlation with the educational level (ρ ρ− = − .ˆ ˆ 0 21F M(age) (age) ; 95% CI: −0.42 to 
−0.01; p = 0.026). On the other hand, moderate or weak correlations were found between each EEG variable, and 
age or education level ( ρ− . ≤ ≤ − .ˆ0 43 0 19i ,age , where i = {MDF, PF, ATR}). For the EEG variables, there was 
weak or no gender difference in the correlations with age (correlations in females were marginally stronger), while 
no gender difference was found in the correlation with education level. As shown in Table 3, the correlations of 
the MMSE score with both age and education level were stronger than that of any EEG variable with age and 
education level for females, but such differences were reduced or diminished for males. For the interested reader, 
we offered some representative EEG spectra with the MDF, PF and ATR for decreasing MMSE scores, education 
level, and advancing age in Fig. S1 in Supplementary Materials.

Repeatedly, Table 4 presents PCCs between the MMSE score and each EEG variable, and Table 5 presents 
differences between pairs of PCCs. It shows weak to moderate correlations of the MMSE score with EEG variables 
( ρ. ≤ ≤ .ˆ0 26 0 52i ,MMSE , where i = {MDF, PF, ATR}), and no difference was found between genders. As shown in 

Total

MMSE tertiles

T3: 28–30 T2: 25–27 T1: ≤24

N (%) 496 (100.0%) 162 (32.7%) 179 (36.1%) 155 (31.2%)

Sex

    Male 165 (33.27%) 68 (41.98%) 64 (35.75%) 33 (21.29%)

    Female 331 (66.73%) 94 (58.02%) 115 (64.25%) 122 (78.71%)

Age [yr] 67.84 ± 9.77
[50.00, 98.00]

63.05 ± 8.37
[50.00, 88.00]

66.54 ± 8.24
[50.00, 89.00]

74.34 ± 9.31
[53.00, 98.00]

Education level [yr] 7.03 ± 4.33
[0.00, 18.00]

9.81 ± 3.35
[0.00, 18.00]

7.45 ± 3.63
[0.00, 18.00]

3.65 ± 3.66
[0.00, 16.00]

MMSE score (total) 24.85 ± 4.69
[4.00, 30.00]

28.73 ± 0.80
[28.00, 30.00]

26.03 ± 0.82
[25.00, 27.00]

19.43 ± 4.71
[4.00, 24.00]

MMSE domains

    Orientation to time 4.38 ± 1.22
[0.00, 5.00]

4.94 ± 0.23
[4.00, 5.00]

4.78 ± 0.49
[3.00, 5.00]

3.34 ± 1.68
[0.00, 5.00]

    Orientation to place 4.71 ± 0.83
[0.00, 5.00]

4.99 ± 0.11
[4.00, 5.00]

4.96 ± 0.19
[4.00, 5.00]

4.13 ± 1.28
[0.00, 5.00]

    Registration 2.89 ± 0.35
[0.00, 3.00]

2.99 ± 0.11
[2.00, 3.00]

2.97 ± 0.17
[2.00, 3.00]

2.70 ± 0.55
[0.00, 3.00]

    Attention and calculation 2.88 ± 1.71
[0.00, 5.00]

4.44 ± 0.70
[3.00, 5.00]

3.03 ± 1.18
[0.00, 5.00]

1.07 ± 1.18
[0.00, 5.00]

    Recall 1.88 ± 0.99
[0.00, 3.00]

2.55 ± 0.57
[1.00, 3.00]

1.92 ± 0.81
[0.00, 3.00]

1.12 ± 1.01
[0.00, 3.00]

    Language 5.61 ± 0.76
[1.00, 6.00]

5.92 ± 0.27
[5.00, 6.00]

5.80 ± 0.42
[4.00, 6.00]

5.06 ± 1.06
[1.00, 6.00]

    Visual construction 0.60 ± 0.49
[0.00, 1.00]

0.90 ± 0.30
[0.00, 1.00]

0.60 ± 0.49
[0.00, 1.00]

0.27 ± 0.45
[0.00, 1.00]

    Decision making 1.91 ± 0.33
[0.00, 2.00]

2.00 ± 0.00
[2.00, 2.00]

1.97 ± 0.18
[1.00, 2.00]

1.74 ± 0.51
[0.00, 2.00]

Table 1.  Demographic characteristics. Variables are summarized as the mean ± SD and range [min, max] 
values in accordance with the MMSE cognitive stages of T3 to T1. The MMSE was further divided into 8 
cognitive domains for a detailed score distribution for each cognitive stage from T3 to T1.
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Table 5, the MDF showed marginally stronger correlation with the MMSE score than PF or ATR. In summary, 
Tables 2 to 5 indicate that the MMSE score and EEG variables decreased with advancing age and less-educated 
participants, and the tendency was stronger for females.

Association of EEG biomarkers with MMSE cognitive domains.  To investigate the association 
between the resting-state EEG variables and the MMSE domain scores, we performed unadjusted and partial 
Pearson correlation tests (Fig. 3(A)). The unadjusted PCC results showed that all MDF, PF and ATR variables 
were weak to moderately correlated with the total MMSE scores and the 8 cognitive domain scores: 
ρ = .ˆ 0 474MDF,OT  (95% CI: 0.359 to 0.576; p = 9.08E-28, highest correlation) and ρ = .ˆ 0 199ATR,RG  (95% CI: 0.061 
to 0.329; p = 2.15E-4, lowest correlation), where OT and RG are abbreviations of “orientation to time” and “regis-
tration”, respectively. As expected from the above results, the partial PCC, controlled for sex, age and education 
level, was reduced with lowered confidence intervals. Specifically, the MDF remained correlated with most of the 
MMSE cognitive domains, except for the domains of visual construction and decision making. In the case of the 
PF and ATR, correlations became insignificant with additional domains such as attention and calculation, and 

Figure 1.  (Left panels) Estimated marginal means of each EEG variable according to sex and (right panels) its 
consecutive contrasts in the sequence of the MMSE cognitive stages, based on a GLM with the identity function 
and normal distribution. Each model was adjusted for age and education level and contains the interaction 
term between sex and cognitive stage. Lines across the squares represent the 95% CIs for the marginal means. 
Statistics (obtained from the ANOVA table of each GLM: test statistics, degrees of freedom, and p-values) 
related to the effects of MMSE tertiles, sex, and the interaction term are presented at the left-bottom of each 
panel on the left. At the top-left of each panel on the right, test statistics (t-values) and p-values related to 
consecutive contrasts of the MMSE cognitive stage are indicated (with 488 degrees of freedom). P-values and 
simultaneous 95% CIs for the differences between sequential cognitive stages were corrected by Bonferroni’s 
adjustment (right panels).
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recall. The highest partial PCC and significance level was observed between the MDF and orientation to time: 
ρ = .ˆ 0 354MDF,OT  (95% CI: 0.226, 0.470; p = 1.19E-14).

To test the relative strength of correlation between cognitive domains and each EEG variable, in Fig. 3(B), we 
presented the difference of pairs of unadjusted and partial PCCs between the OT domain ρ̂i OT,  and other domains 
(ρ̂i j, ), with i = {MDF, PF, ATR} and j={domain indices other than OT}. It shows that, for all of the MDF, PF and 
ATR, the correlation with orientation to time and place were equally strong in terms of the unadjusted PCC and 
partial PCC which was adjusted for sex, age and education level.

The results of the multiple linear regression analyses performed to examine the association between EEG 
variables and the total MMSE and domain scores are shown in Table 6. The regression model used sex, age and 
education level as common covariates of each EEG variable (MDF, PF and ATR). Positive associations (β̂) were 
obtained in all regression models for the three EEG variables. The standardized regression coefficient (β̂

⁎
) indi-

cate the relative contribution of the associated variable to predict the total MMSE and cognitive domain scores; 
each EEG variable was moderately associated with the total MMSE, orientation to time and orientation to place 
scores (0.30, 0.33 and 0.31, respectively, for the MDF; 0.19, 0.21 and 0.21 for the PF; and 0.18, 0.20 and 0.18 for the 
ATR). Consistently, the adjusted R2 of each regression model moderately explained the variances in the total 
MMSE (R2 = 0.49 for MDF, 0.44 for both PF and ATR), orientation to time (R2 = 0.36 for MDF, 0.31 for both PF 
and ATR) and orientation to place scores (R2 = 0.30 for MDF, 0.25 for PF and 0.24 for ATR).

Predictive models for the MMSE using the EEG and demographic variables.  Predictive model 
for the MMSE total score.  Finally, we developed predictive models for the MMSE using the EEG variables to 
examine the possibility of replacing or supplementing the MMSE with resting EEG slowing combined with 

Total Male Female

ρ ρ−ˆ ˆi age MMSE age, , ρ ρ−ˆ ˆi edu MMSE edu, , ρ ρ−ˆ ˆi age MMSE age, , ρ ρ−ˆ ˆi edu MMSE edu, , ρ ρ−ˆ ˆi age MMSE age, , ρ ρ−ˆ ˆi edu MMSE edu, ,

i = MDF
0.18
(0.03, 0.43)
1.23E-02

−0.32
(−0.60, −0.20)
3.00E-08

0.17
(−0.15, 0.53)
1.00E + 00

−0.26
(−0.65, 0.04)
1.34E-01

0.18
(0.00, 0.50)
4.41E-02

−0.31
(−0.65, −0.16)
1.68E-05

i = PF
0.21
(0.06, 0.46)
1.83E-03

−0.39
(−0.68, −0.28)
1.43E-11

0.21
(−0.11, 0.57)
7.34E-01

−0.35
(−0.74, −0.05)
1.10E-02

0.20
(0.03, 0.52)
1.35E-02

−0.36
(−0.71, −0.22)
2.93E-07

i = ATR
0.25
(0.11, 0.51)
6.63E-05

−0.32
(−0.61, −0.21)
1.49E-08

0.14
(−0.18, 0.50)
1.00E + 00

−0.13
(−0.51, 0.18)
1.00E + 00

0.28
(0.12, 0.61)
1.93E-04

−0.41
(−0.76, −0.27)
5.99E-09

Table 3.  The difference between pairs of Pearson correlation coefficients in Table 2. Difference between a pair of 
Pearson correlation coefficients ρ̂i j,  and ρ̂ jMMSE,  for the total, male and female group, where i = {MDF, PF, ATR} 
and j = {age, edu}. The statistical test was performed based on the Z test suggested by Meng et al.52, for testing 
the difference between two dependent correlation coefficients overlapped with common demographic variables. 
Meng’s 95% confidence intervals52 for the differences are noted inside of parentheses. Each cell contains the 
difference between two correlation coefficients according to the column label (the first row), 95% confidence 
interval (the second row), and p-value (the third row). Obtained p-values and 95% CIs are corrected by 
Bonferroni adjustment.

Age Education level

ρ̂T ρ̂M ρ̂F ρ ρ−ˆ ˆF M ρ̂T ρ̂M ρ̂F ρ ρ−ˆ ˆF M

MMSE
−0.55
(−0.63, −0.46)
2.26E-39

−0.40
(−0.56, −0.20)
8.91E-07

−0.61
(−0.69, −0.50)
6.86E-34

−0.21
(−0.42, −0.01)
2.58E-02

0.60
(0.52, 0.68)
1.24E-49

0.50
(0.32, 0.64)
6.20E-11

0.62
(0.52, 0.70)
1.68E-35

0.12
(−0.06, 0.32)
5.64E-01

Median frequency
−0.37
(−0.47, −0.26)
1.10E-16

−0.23
(−0.42, −0.02)
2.53E-02

−0.43
(−0.54, −0.30)
3.95E-15

−0.20
(−0.44, 0.03)
1.64E-01

0.29
(0.17, 0.40)
5.67E-10

0.24
(0.03, 0.43)
1.73E-02

0.31
(0.17, 0.44)
6.81E-08

0.07
(−0.16, 0.32)
1.00E + 00

Peak frequency
−0.34
(−0.45, −0.23)
3.54E-14

−0.19
(−0.38, 0.03)
1.27E-01

−0.40
(−0.52, −0.27)
1.89E-13

−0.22
(−0.46, 0.02)
1.07E-01

0.22
(0.10, 0.33)
7.99E-06

0.16
(−0.06, 0.36)
3.71E-01

0.25
(0.11, 0.39)
2.15E-05

0.10
(−0.15, 0.35)
1.00E + 00

Alpha-to-theta ratio
−0.30
(−0.41, −0.18)
9.07E-11

−0.26
(−0.44, −0.05)
7.28E-03

−0.33
(−0.46, −0.19)
5.67E-09

−0.07
(−0.32, 0.16)
1.00E + 00

0.28
(0.16, 0.39)
1.63E-09

0.37
(0.17, 0.54)
9.52E-06

0.21
(0.06, 0.35)
1.26E-03

−0.16
(−0.39, 0.08)
5.30E-01

Table 2.  Pearson correlation coefficients between the MMSE, EEG and demographic variables. ρ ρ ρˆ ˆ ˆ, , andT M F 
are the Pearson correlation coefficients for the total, male and female group, respectively. The difference of two 
independent correlation coefficients between female and male groups (ρ ρ−ˆ ˆF M) is tested by Fisher’s Z test. 
Zou’s 95% confidence intervals for correlation differences between sexes are noted inside of parentheses. Each 
cell contains the estimated correlation coefficient or the difference between two correlation coefficients 
according to the column label (the first row), 95% confidence interval (the second row), and p-value (the third 
row). Obtained p-values and 95% CIs are corrected by Bonferroni adjustment.
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demographic information. As details were described in Section 2.5, we adopted a double cross-validation proce-
dure for a realistic estimation of prediction errors of each model.

Table 7 shows the best prediction results of the four approaches (the 10-fold validation results for penalized 
regression models are presented in Fig. S3 in Supplementary Materials). As a result, all four regression models 

Figure 2.  Scatterplots (a) between MMSE and demographic variables (age and education levels), (b) between 
MDF and demographic variables, and (c) between the MMSE scores and EEG variables (MDF, PF, ATR), 
according to sex. The simple linear regression curves for MMSE and each EEG variable are denoted on figures 
according to sex. Pearson correlation coefficients and p-values are noted on each panel according to sex. The 
rest of the scatterplots are provided in Fig. S2 in Supplementary Materials.

MMSE

ρ̂T ρ̂M ρ̂F ρ ρ−ˆ ˆF M

Median frequency
0.49
(0.40, 0.56)
2.16E-30

0.40
(0.24, 0.55)
2.20E-07

0.52
(0.42, 0.61)
8.82E-24

−0.01
(−0.21, 0.19)
1.00E + 00

Peak frequency
0.36
(0.26, 0.45)
7.70E-16

0.26
(0.08, 0.42)
2.46E-03

0.40
(0.28, 0.50)
1.20E-13

0.12
(−0.06, 0.31)
3.78E-01

Alpha-to-theta ratio
0.37
(0.27, 0.46)
8.28E-17

0.37
(0.20, 0.52)
2.60E-06

0.36
(0.24, 0.47)
6.43E-11

0.14
(−0.06, 0.35)
2.92E-01

Table 4.  Pearson correlation coefficients between the MMSE score and EEG variables. The details are identical 
with Table 2.
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(WLS, LASSO, elastic net and ridge) predicted the true MMSE score with the RMSE ranging between 2.767 
(WLS) and 2.685 (LASSO). Relatedly, the associated PCCs (ρ̂ ˆy y( , )test test

) were between 0.746 (WLS) and 0.758 

(LASSO), with 95% confidence intervals between 0.644 and 0.830, and ICCs were between 0.746 (WLS) and 0.757 
(Elastic net, LASSO), and with 95% confidence intervals between 0.647 and 0.828. These results imply moderate 
to good agreement of the regression models. The finally chosen model was LASSO with the minimum RMSE of 
2.685. The detailed model equation was described in Table 8 and a Bland-Altman plot for the final model was 

Total Male Female

ˆ ˆρ ρ−i PFMMSE ,MMSE, ˆ ˆρ ρ−i ATR,MMSE ,MMSE ˆ ˆρ ρ−i PF,MMSE ,MMSE ρ ρ−ˆ ˆi ATR,MMSE ,MMSE ˆ ˆρ ρ−i PF,MMSE ,MMSE ρ ρ−ˆ ˆi ATR,MMSE ,MMSE

i = MDF
0.13
(−0.03, 0.35)
1.51E-01

0.12
(−0.04, 0.34)
2.47E-01

0.15
(−0.16, 0.49)
1.00E + 00

0.03
(−0.29, 0.37)
1.00E + 00

0.12
(−0.08, 0.39)
5.67E-01

0.16
(−0.03, 0.44)
1.21E-01

i = PF —
−0.01
(−0.20, 0.18)
1.00E + 00

—
−0.11
(−0.45, 0.20)
1.00E + 00

—
0.04
(−0.18, 0.28)
1.00E + 00

Table 5.  Differences of pairs of Pearson correlation coefficients in Table 4. Difference between a pair of Pearson 
correlation coefficients ρ̂i MMSE,  and j MMSE,ρ̂  for the total, male and female group, where i = {MDF, PF} and 
j = {PF, ATR}. The rest of the details are identical with Table 3.

Figure 3.  Unadjusted and partial correlation coefficients between EEG variables and MMSE total and 
subdomain scores. (A) Unadjusted (black circles) and partial (red circles) PCCs between EEG variables and 
MMSE total and domain scores. Partial PCCs are controlled for sex, age, and education level. The lengths of 
each shaded area represent Bonferroni corrected 95% confidence intervals. The statistical significance for each 
coefficient can be determined whether the shaded area crosses zero (the red dashed line). (B) Difference of pairs 
of Pearson correlation coefficients between ρ̂i j,  and ρ̂i OT, , where i = {MDF, PF, ATR} and j = {OP, RG, AC, RC, 
LG, VC, DM}. The x-axis label, δ ρ ρ= −ˆ ˆ ˆi j i j i OT( , ) ( , ) ( , ), with the given EEG variables for i = MDF (top panel), 
i = PF (middle panel), and i = ATR (bottom panel). Statistical tests for the difference between two dependent 
correlation coefficients are performed by the Z test suggested by Meng et al.52. Meng’s 95% confidence intervals52 
for the two correlation difference are represented with shaded bars with different colors: black for unadjusted 
PCCs and red for partial PCCs. Values below the lower limit of each 95% confidence interval indicates δ̂ i j( , ) for i 
and j. Abbreviation: OT, orientation to time; OP, orientation to place; RG, registration; AC, attention and 
calculation; RC, recall; LG, language; VC, visual construction; DM, decision making.
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MDF PF ATR

β̂ (95% CI) 
p-value β̂

⁎
 (95% CI)

Adj 
R2

β̂ (95% CI) 
p-value β̂

⁎
 (95% CI)

Adj 
R2

β̂ (95% CI) 
p-value β̂

⁎
 (95% CI)

Adj 
R2

MMSE score (total)
1.05
(0.81, 1.29)
5.04E-17

0.30
(0.23, 0.37) 0.49

0.75
(0.47, 1.02)
1.80E-07

0.19
(0.12, 0.26) 0.44

2.36
(1.43, 3.29)
8.07E-07

0.18
(0.11, 0.25) 0.44

Orientation to time
0.29
(0.23, 0.36)
5.41E-16

0.33
(0.25, 0.40) 0.36

0.21
(0.13, 0.29)
2.81E-07

0.21
(0.13, 0.29) 0.31

0.68
(0.42, 0.95)
7.84E-07

0.20
(0.12, 0.28) 0.31

Orientation to place
0.19
(0.14, 0.24)
7.18E-14

0.31
(0.23, 0.39) 0.30

0.15
(0.09, 0.20)
4.58E-07

0.21
(0.13, 0.29) 0.25

0.42
(0.23, 0.61)
1.72E-05

0.18
(0.10, 0.26) 0.24

Registration
0.05
(0.03, 0.07)
5.73E-05

0.19
(0.10, 0.28) 0.10

0.04
(0.02, 0.07)
1.24E-03

0.15
(0.06, 0.24) 0.08

0.13
(0.04, 0.22)
4.77E-03

0.13
(0.04, 0.22) 0.08

Attention and calculation
0.18
(0.08, 0.28)
5.56E-04

0.14
(0.06, 0.22) 0.31

0.12
(0.00, 0.23)
4.21E-02

0.08
(0.00, 0.16) 0.30

0.30
(−0.08, 0.68)
1.26E-01

0.06
(−0.02, 
0.14)

0.30

Recall
0.12
(0.06, 0.18)
2.80E-04

0.16
(0.08, 0.25) 0.15

0.08
(0.01, 0.16)
2.29E-02

0.10
(0.01, 0.19) 0.14

0.30
(0.06, 0.54)
1.56E-02

0.11
(0.02, 0.19) 0.14

Language
0.16
(0.11, 0.20)
2.33E-10

0.28
(0.19, 0.36) 0.22

0.07
(0.02, 0.12)
1.22E-02

0.11
(0.02, 0.20) 0.17

0.33
(0.15, 0.51)
3.88E-04

0.15
(0.07, 0.24) 0.18

Visual construction
0.03
(−0.00, 0.06)
7.48E-02

0.07
(−0.01, 
0.15)

0.31
0.03
(−0.00, 0.06)
6.26E-02

0.07
(−0.00, 0.15) 0.31

0.08
(−0.03, 0.18)
1.66E-01

0.06
(−0.02, 
0.13)

0.31

Decision-making
0.03
(0.01, 0.06)
2.13E-03

0.14
(0.05, 0.23) 0.11

0.04
(0.02, 0.06)
1.44E-03

0.14
(0.06, 0.23) 0.11

0.13
(0.04, 0.21)
2.61E-03

0.14
(0.05, 0.22) 0.11

Table 6.  Association of EEG variables with the total MMSE and cognitive domain scores. Regression 
coefficients β̂  corresponding to each EEG variable were obtained from multiple linear regression (MLR) models 
for each of the MMSE total and sub-domain scores. All MLR models include demographic covariates (sex, age, 
and education level). The first column (β̂) of each EEG variable contains the estimated slope, 95% confidence 
interval for β̂ , and p-values obtained from t-distribution with the 491 degrees of freedom. The second (β̂

⁎
) and 

third column (Adj R2) of each EEG variable indicates standardized regression coefficients and adjusted R2, 
respectively.

Model λ
RMSE* 
(10-CV)

RMSE# 
(test) ( )y ytest test,ˆ ˆρ ¶ (95% CI) δ̂test† ICC‡ (95% CI)

WLS NA 3.423 2.767 0.746
(0.644, 0.822) 0.355 ± 2.758 0.746

(0.647, 0.823)

Ridge (α = 0.0) 0.003 3.421 2.699 0.756
(0.657, 0.829) 0.282 ± 2.698 0.756

(0.655, 0.833)

Elastic net (α = 0.9) 0.007 3.410 2.687 0.757
(0.659, 0.830) 0.319 ± 2.681 0.757

(0.665, 0.827)

LASSO (α = 1.0) 0.007 3.408 2.685 0.758
(0.659, 0.830) 0.327 ± 2.678 0.757

(0.660, 0.828)

Table 7.  Model evaluation results of the predictive models. The penalized models shown in the table are the 
best models selected from all possible models (a total of 3300) generated with λ (exp[log(10)] to 
(exp[log(0.0001)], a total of 300) and α (0.0 to 1.0, a total of 11) grids, where λ is the regularization parameter 
for the penalized regression (selected from the 10-fold cross-validation) and α is the mixing parameter for the 
elastic net (ridge: α = 0; LASSO: α = 1). *Root mean squared error (RMSE) resulting from the 10-fold cross-
validation based on the training set. ¶Pearson correlation coefficients (ρ̂) and their 95% confidence intervals 
(95% CI). †Mean difference (δ̂test) between the true and predicted MMSE scores and their standard deviations. 
‡Intra-class correlation coefficients (ICC) and their 95% confidence intervals estimated through 1000 bootstrap 
samples. The 10-fold validation results for penalized regression models are presented in Fig. S3 in 
Supplementary Materials.

Predicted 
MMSE Equation

=MMSEMale
24.597 + 7.216 MDF − 6.318 MDF2 − 0.013 PF + 0.913 ATR − 0.93 
ATR2 + 4.192 Age − 5.06 Age2 + 4.725 Edu − 2.523 Edu2

=MMSEFemale
24.597 + 7.216 MDF − 6.343 MDF2 + 0.008 PF + 0.4 PF2 + 1.525 
ATR − 0.939 ATR2 + 4.192 Age − 5.502 Age2 + 3.277 Edu − 1.476 Edu2

Table 8.  The final model (LASSO). Equations are obtained from the LASSO with λ = 0.007 (α = 1).
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employed to investigate the LOA between the true and predicted MMSE values in Fig. 4; a lower LOA of −4.922 
and an upper LOA of 5.576 was obtained. The two equations in Table 8 were derived from a single equation (1 for 
female and 0 for male). For both the male and female equations, the MDF was the primary predictor.

Discussion
The present results complemented previous evidence showing that the alpha rhythms of resting-state EEG consti-
tute an important neural substrate for human cognition60–63. The significant enhancement of scalp alpha rhythms 
in the resting condition is usually considered a sign of wakeful brain idling and inhibitory processes63. These alpha 
rhythms are mainly modulated by thalamo-cortical and cortico-cortical interactions64. Previous studies have 
shown that slowing and attenuation of resting alpha rhythms are correlated with declines in attention and mem-
ory function65–68. In terms of band powers, diverse behaviors were reported. Subjects with good memory per-
formance were reported to have significantly larger upper alpha, but less theta and lower alpha power, and good 
calculation performers have more beta and theta power than bad performers69. On the other hand, Doppelmayr 
et al. reported a positive correlation between intelligence and alpha power; upper alpha was related to the ability 
to process semantic information, whereas the two lower alpha bands were associated with attentional demands 
that dominate during the encoding of new information70. High-power alpha rhythms predict good cognitive 
performance, specifically, completing a specific function or task with few errors and high efficiency71,72. The inter-
pretation needs more caution with event-related paradigms with different levels of task difficulties71,73. To test the 
hypothesis that alpha rhythms are related to cognitive performance, some studies have attempted to enhance the 
relative power of alpha rhythms by alpha-neurofeedback training programs. These studies found that cognitive 
performance was improved only in subjects who showed high-power alpha rhythms74,75.

In this study, we reported moderate correlations between resting EEG biomarkers and neuropsychological 
MMSE scores and examined the possibility that resting EEG biomarkers could replace or supplement the MMSE 
scores. Resting EEG biomarkers reflect the degeneration of the dominant oscillatory frequencies of the alpha or 
alpha-like types, and the MMSE evaluates global cognitive status in aged populations. The results of our analysis 
of 496 local community residents who were 50 years of age or older suggest that the MDF is the best biomarker 
for MMSE cognitive scores among the three tested EEG biomarkers (MDF, PF and ATR). Regarding the tertile 
split categorization of MMSE cognitive stages (T3 (MMSE 28–30), T2 (MMSE 25–27) and T1 (MMSE ≤ 24)), 
resting-state EEG slowing was significant between the cognitive decline stages of T2 → T1 for both sexes (Fig. 2). 
The MMSE is primarily used as a screening tool for dementia, with scores below 24 commonly used to indicate a 
cognitive deficit, and this test has a ceiling effect in young healthy adults76. Therefore, resting-state EEG slowing 
across the T2 → T1 stages was considered an appropriate complementary or alternative tool for the MMSE, par-
ticularly in the early or moderate stages of cognitive decline.

The MMSE is brief and simple and is a popular screening tool used to assess cognitive impairment worldwide. 
The MMSE is influenced by non-explicit cognitive variables, such as age and education level77, as observed in our 
study (Tables 2 and 3). There are still debates as to whether the cutoff value of the MMSE score should be different 
for different ages and education levels, and if so, to what degree77. Similarly to the MMSE score, the resting-state 
EEG results were found to correlate with age and education level (Tables 2 and 3). However, the physiological 
mechanism underlying the association of the EEG results with age and education level are different from that 
of the MMSE results with these two factors; The MMSE tests the cognition but resting-state EEG measurements 
reflect background brain electrical activity in the awake idling state78, In answering to any cognitive questionnaire 
such as the MMSE, complex cognitive processes are involved, such as perception, recognition, comprehension, 
memorizing, reasoning, planning, language usage, and problem solving79. For a more explicit comparison with 
the MMSE, a further study with additional EEG paradigms of event-related potential related to perception, atten-
tion, or memory recall would be useful13,80.

Figure 4.  Bland-Altman plot for the final predictive model (LASSO). Bland-Altman plot of the agreement 
between the true MMSE (MMSEtest) and predicted MMSE scores (MMSEtest) for the test set based on the 
LASSO. Dashed lines between upper and lower value of statistics represented by solid lines indicate the 
approximate 95% confidence intervals for mean difference, upper and lower limits of agreement (LOA), 
respectively.
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In examining the association between the EEG biomarkers and each MMSE cognitive domain, namely, ori-
entation to time and place, memory registration and recall, attention and calculation, language, visual construc-
tion, and decision making, we found the strongest association between EEG variables (either MDF, PF or ATR) 
and the orientation to time and place, and the level of association was affected by sex, age or education level 
(Fig. 3 and Table 6). Previously, cognitive impairment in memory recall was first reported to occur first among 
community-dwelling AD patients, followed by impairments in the orientation to time, attention and concen-
tration, orientation to place, language, visual construction, and memory registration MMSE domain scores81. 
Therefore, our findings suggest that resting-state EEG slowing is most susceptible to the loss of orientation to 
time and place relative to other cognitive domains, which did not coincide with the progression of impairment in 
cognitive domains among AD patients.

Finally, we developed the linear prediction models (WLS, ridge, elastic net and LASSO) for the MMSE using 
the resting EEG biomarkers and cognition-dependent demographic information such as sex, age and education 
level (Table 7), and obtained the RMSEs of 2.767~2.685, PCCs of 0.746~0.758 and ICCs of 0.746~757. It implies 
that the model-dependent effect was minor in the correlation between the EEG biomarkers and the MMSE score. 
In the selected regression model (Table 7, LASSO), the MDF was the leading predictor, and age and education 
level ranked second and third. These results indicate that the resting-state EEG biomarkers of MDF, PF and ATR 
have the potential to replace or supplement the MMSE for cognitive status evaluation. Through the test in classifi-
cation performance between T1 group and (T2,T3)-combined group in the MMSE cognitive stages (Tables S2 and 
S3 and Fig. S4 in Supplementary Materials), the EEG biomarkers showed moderate level of AUC value (0.849) 
and accuracy (0.754), which again confirmed the possibility of the resting-state EEG biomarkers as a substitute 
or supplement of the MMSE82.

Recently, it was suggested that the entropy markers (or complexity) of EEG were correlated with the MMSE 
scores of 79 probable AD subjects. Specifically, some studies reported that reductions in complexity, by means 
of auto-mutual information, spectral entropy, and multiscale entropy, were observed as the MMSE scores 
decreased83. These findings prompt further investigations into correlations with EEG biomarkers in our study 
cohort.

Limitation.  This study has some limitations. First, we compared EEG biomarkers with only MMSE scores. 
The MMSE offers modest accuracy for the screening of dementia, but its specificity and sensitivity in mild cog-
nitive impairment (MCI) are known to be poor82. Since the subjects in this study were mainly in the range of 
cognitive normal – MCI – mild dementia, more sensitive tools for assessing early cognitive declines, such as the 
Addenbrooke’s Cognitive Examination84 or the CERAD instrument85, would have been beneficial. Second, it is 
a cross-sectional study; a follow-up study with changes in scores of a neuropsychological test in 1~2 years after 
the initial assessment is needed to clinically validate the three EEG variables.

Conclusion
In conclusion, by comparing the neuropsychological MMSE scores and resting EEG slowing measured in the 
prefrontal regions of 496 elderly participants, we observed a moderate correlation between resting EEG slowing 
and the MMSE global and cognitive domain scores, especially for orientation to time and place. We developed 
a predictive model for the MMSE scores using three resting EEG biomarkers and demographic covariates with 
a Pearson correlation coefficient of 0.758. The annual progression rate of MCI to dementia is reported to be 
10–15%86, which requires frequent cognitive status assessments to ensure the appropriate clinical care of MCI 
patients. In a future work, the development of resting-state EEG slowing into a screening tool could be attempted 
that can replace the MMSE particularly for assessing the early stages of cognitive decline. A predictive model of 
cognitive impairment could be developed, e.g., based on a longitudinal study, by investigating associations with 
a comprehensive neuropsychological battery such as the CERAD neuropsychological instrument87 or with MRI 
or PET imaging.
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