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Background. Tenofovir diphosphate (TFV-DP) in dried blood spots (DBS) is associated with viral suppression in persons 
living with HIV (PLWH) taking tenofovir disoproxil fumarate (TDF). However, its value as a predictor of future viremia remained 
unknown.

Methods. Blood for plasma viral load (VL) and TFV-DP in DBS were collected (up to 3 visits within 48 weeks) in PLWH on TDF. 
TFV-DP cut points were selected using logistic prediction models maximizing the area under the receiver operation characteristic 
curve, and estimated adjusted odds ratio (aOR) of future viremia (≥20 copies/mL) were compared to the highest TFV-DP category.

Results. Among all 451 participants in the analysis, aOR of future viremia for participants with TFV-DP <800 and 800 to 
<1650 fmol/punch were 4.7 (95% CI, 2.6–8.7; P < .0001) and 2.1 (95% CI, 1.3–3.3; P = .002) versus ≥1650 fmol/punch, respectively. 
These remained significant for participants who were virologically suppressed at the time of the study visit (4.2; 95% CI, 1.5–12.0; 
P = .007 and 2.2; 95% CI, 1.2–4.0; P = .01).

Conclusions. TFV-DP in DBS predicts future viremia in PLWH on TDF, even in those who are virologically suppressed. This 
highlights the utility of this biomarker to inform about adherence beyond VL.
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Sustained antiretroviral therapy (ART) adherence is indispen-
sable to achieve durable viral suppression in persons living with 
human immunodeficiency virus (PLWH) and to prevent disease 
progression and human immunodeficiency virus (HIV) trans-
mission [1, 2]. However, despite its critical role, the accurate 
and consistent quantification of ART adherence remains chal-
lenging, thus limiting the ability to reliably monitor adherence in 
routine clinical practice [3]. Methods such as self-report usually 
overestimate adherence and are subject to recall errors and social 
desirability bias [4]. Similarly, pill counts and pharmacy refills, 
while more objective, are burdensome to implement and do not 
confirm drug ingestion [5, 6]. While viral load (VL) has been 
used as the main measure of ART adherence in HIV therapy, it is 
a delayed clinical outcome that cannot inform about the adher-
ence gradients that preceded it, thus limiting the categorization 
of adherence into suppressive versus nonsuppressive. In addi-
tion, an undetectable VL does not predict change in viral status 

in the future, and providers may assume that discussions about 
adherence are not necessary [3, 7]. These limitations highlight 
the need for new and objective measures of ART adherence that 
can complement what is currently available in clinical practice.

Tenofovir diphosphate (TFV-DP), the phosphorylated 
anabolite of tenofovir (TFV), can be quantified in red blood 
cells and dried blood spots (DBS) in PLWH who are taking 
tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide 
(TAF) [8, 9]. Within this matrix, TFV-DP has a unique pharma-
cology demonstrated by a long intracellular half-life of 17 days 
with large accumulation (25-fold) to steady state [8, 10]. The 
large dynamic range of accumulation renders it ideal to quan-
tify levels of cumulative adherence and drug exposure over the 
preceding 4–8 weeks, analogous to the role that hemoglobin A1c 
has in patients with diabetes mellitus. This pharmacology has 
been leveraged such that TFV-DP in DBS is a strong predictor 
of efficacy to preexposure prophylaxis [11] and is also strongly 
associated with concomitant viral suppression in PLWH [12]. 
However, the value of this adherence and exposure biomarker 
as a tool to predict the development of viremia in the future, or 
as a complement to VL, has not been evaluated. To address this 
issue and further expand its potential clinical utility, we studied 
whether TFV-DP in DBS can predict the development of future 
viremia in PLWH who were receiving TDF-including ART.

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:jose.castillo-mancilla@ucdenver.edu?subject=


636 • jid 2019:220 (15 August) • Morrow et al

METHODS

Participants and Study Design

A clinical cohort of PLWH was prospectively recruited from within 
the University of Colorado Hospital (UCH) Infectious Diseases 
Group Practice, in Aurora, Colorado [12]. Participants were re-
quired to be 18 years or older, to be taking a regimen including 
TDF (any type of regimen and any duration of time) and to have 
blood drawn for routine VL as recommended by their primary 
HIV provider. Enrollment occurred on a first-come, first-served 
basis at the time of a clinic visit, and up to 3 visits in a 48-week 
period were obtained. Once informed consent was obtained, 
4–6 mL of whole blood for DBS were collected into 1 EDTA tube 
from the same peripheral venipuncture that was performed for the 
participant’s clinical blood draw including VL. Participants were 
also asked about their 3-month, 30-day, and 3-day self-reported 
adherence at every study visit using a validated visual analog scale 
[12, 13]. Timing of study visits was dependent on the follow-up 
visits scheduled by the participant’s clinical provider where VL 
was ordered, but were required to be at least 14 days apart to allow 
for 1 half-life of TFV-DP in DBS [8]. Enrollment for the study 
was initiated in June 2014 and the last follow-up visit for the last 
enrolled participant concluded in July 2017 [12]. Throughout this 
period, no major changes in ART prescription were observed, as 
TDF remained the most prescribed nucleoside analog in the study 
population and the proportion of nonnucleoside reverse tran-
scriptase inhibitor (NNRTI), integrase strand-transfer inhibitor 
(INSTI), and protease inhibitor (PI)-based regimens remained 
stable (25%–30% of visits on NNRTI-based, 35%–45% of visits on 
INSTI-based, and 15%–25% of visits on PI-based regimens). Prior 
to the recruitment of the first participant, the study was approved 
by the Colorado Multiple Institutional Review Board (COMIRB 
No. 13–2104) and it was also registered with clinicaltrials.gov 
(NCT02012621) [12].

The primary outcome of our study was VL, and an undetect-
able VL was defined as HIV RNA <20 copies/mL. Our original 
study design called for all DBS samples to be assayed. However, 
as previously described, after 27 months in which study visits 
were consecutively run, logistical limitations required a reduced 
assay strategy [12]. From August 2016 through the end of the 
study, DBS samples were assayed for any participant with a VL 
>20 copies/mL at any of the 3 study visits, while DBS assays for 
participants with an undetectable VL at all 3 visits were discon-
tinued [12]. This approach was chosen to accomplish outcome-
dependent sampling, which would resemble a longitudinal 
extension of a case (detectable VL) control (undetectable VL) 
design by enriching the sample to maintain statistical power for 
a relatively rare study outcome (<21% of study visits) [12, 14].

Quantification of Tenofovir Diphosphate in Dried Blood Spots

The DBS for the drug concentrations of TFV-DP were pre-
pared by pipetting 25  μL of whole blood 5 times onto a 

Whatman 903 Protein Saver card, as previously described [8, 
12, 15]. DBS cards were stored frozen at −80°C until analysis. 
The concentration of TFV-DP was quantified from a 3-mm 
punch using a validated liquid chromatography/tandem mass 
spectrometry assay, for which long-term stability in frozen 
samples has been documented, as previously described [12, 
15]. The lower limit of quantification of the assay was 25 fmol/
sample [12, 15].

Viral Load Analysis

The quantitative analysis for VL was performed at the UCH 
clinical laboratory using the Roche Cobas 6800 HIV test, which 
has a linear range of 20 to 107 copies/mL. The UCH clinical lab-
oratory is certified under the Clinical Laboratory Improvement 
Amendment of 1988.

Statistical Analysis

The maximum number of predictive paired TFV-DP and 
VL assessments per participant was 2, with visit 1 TFV-DP 
concentrations informing about visit 2 VL, and visit 2 TFV-DP 
concentrations informing about visit 3 VL. To enhance inter-
pretation and ease of application in clinical practice, TFV-DP 
levels were categorized using the genetic algorithm in the 
CatPredi function of the R package CatPredi [16, 17]. The 
CatPredi function selects the optimal location and number 
of cut points in logistic prediction models by maximizing the 
area under the receiver operation characteristic curve [16, 17]. 
Accordingly, TFV-DP levels were assigned into 3 categories: 
(1) low, below the limit of quantification (BLQ) to <800; (2) 
medium, 800 to <1650; and (3) high, ≥1650 fmol/punch. Cut 
point optimization was performed using only the first record 
per participant in a univariable setting. To accommodate re-
peated measures over time, generalized estimating equations 
with a logit link were used to estimate the odds ratio (OR) of 
viremia (≥20 copies/mL) comparing each TFV-DP category 
to the highest reference category. An adjusted OR (aOR) was 
obtained by including covariates for age, sex, race, body mass 
index, estimated glomerular filtration rate (using MDRD 
equation), CD4+ T-cell count, and ART class. Adjustment 
variables were selected a priori based on previous findings 
on the pharmacology of TFV in plasma [18, 19], TFV-DP in 
peripheral blood mononuclear cells [20, 21] and DBS [10, 
12]. To ensure adequate time for VL to reach suppression in 
participants who recently initiated ART [8, 10], visits in which 
the participant had not been on ART therapy for the previous 
3 months were removed from the analysis. Data are presented 
as median (interquartile range) or number (percentage) un-
less otherwise specified. A P value <.05 was considered to be 
statistically significant. P values were not adjusted for mul-
tiple comparisons. All statistical analyses were performed 
using SAS, version 9.4 (SAS Institute, Inc., Cary, NC) and R 
software version 3.4.4.
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RESULTS

Study Population

A total of 807 participants were enrolled in the study, contributing 
a total of 1939 person-visits and 1936 DBS samples, with 444 
participants (55%) completing all 3 visits, 244 (30%) completing 
2 visits, and 119 (15%) completing only 1 study visit. Drug 
concentrations were analyzed in 532 participants, of whom 468 
had more than 1 visit and could potentially be included in this 
analysis. After removing visits in which the participant had not 
been on ART for at least 3 months, 451 participants with both 
analyzed DBS and VL at the next visit were included in the anal-
ysis. Out of these, 201 (45%) were on a single-tablet regimen 
containing TDF for at least 1 of their visits (only 8 participants 

switched from a multitablet to a single-tablet regimen during 
the study). The demographic characteristics of this cohort are 
presented in Table 1.

Among the 451 participants contributing to the analysis, 205 
(45%) contributed only 1 paired TFV-DP and VL assessment 
and 246 (55%) contributed 2 paired assessments, for a total of 
n  =  697 paired assessments. The median time between visits 
was 17 (range 2–48) weeks. According to virologic suppression, 
264 (59%) of the 451 participants were suppressed at all visits, 
135 (30%) switched suppression status between visits (either 
suppressed to viremic or vice versa), and 52 (12%) had an VL 
>20 copies/mL at all visits. The median and range VL in viremic 
participants upon the first analyzed visit is shown in Table 1.

Table 1. Demographic Characteristics of Participants at First Evaluable Visit According to Tenofovir Diphosphate in Dried Blood Spots Categories

Characteristic All Participants (n = 451) 

TFV-DP (fmol/punch)

BLQ to <800 (n = 58) 800 to <1650 (n = 165) ≥1650 (n = 228)

Age, median (IQR) 46 (37–53) 42 (34–51) 45 (39–51) 49 (38–55)

Sex, n (%)     

 Male 380 (84) 49 (84) 141 (85) 190 (83)

 Female 71 (16) 9 (16) 24 (15) 38 (17)

Race/ethnicity, n (%)     

 Black 85 (19) 18 (31) 37 (22) 30 (13)

 White 257 (57)  23 (40) 96 (58) 138 (61)

 Hispanic 89 (20) 14 (24) 30 (18) 45 (20)

 Other 20 (4) 3 (5) 2 (1) 15 (7)

Body mass index, kg/m2, n (%)     

 <18.5 18 (4) 2 (3) 3 (2) 13 (6) 

 18.5–25 191 (42) 23 (40) 60 (36) 108 (47)

 25–30 149 (33) 19 (33) 58 (35) 72 (32)

 >30 93 (21) 14 (24) 44 (27) 35 (15)

eGFR, mL/min/1.73 m2, median (IQR) 87 (73–101) 96 (80–112) 89 (76–104) 84 (70–97)

CD4+ T-cell count, cells/mm3, n (%)     

 <200 48 (11) 12 (21) 18 (11) 18 (8)

 200–350 66 (15) 10 (17) 24 (15) 32 (14)

 350–500 66 (15) 8 (14) 22 (13) 36 (16)

 >500 271 (60) 28 (48) 101 (61) 142 (62)

VL, copies/mL,a median (IQR) 119 (37–710) 1055 (140–34 575) 71 (31–397) 63 (32–187)

Type of ART, n (%)     

 NNRTI-based 119 (26) 10 (17) 63 (38) 46 (20)

 INSTI-based 159 (35) 22 (38) 52 (32) 85 (37)

 b/PI-based 111 (25) 17 (29) 28 (17) 66 (29)

 Multiclass 62 (14) 9 (16) 22 (13) 31 (14)

Time on current anchor drug, n (%)     

 <6 months 74 (16) 6 (10) 32 (19) 36 (16)

 ≥6 months 377 (84) 52 (90) 133 (81) 192 (84)

Pharmacologic booster, n (%)     

 No 223 (49) 23 (40) 101 (61) 99 (43) 

 Yes 228 (51) 35 (60) 64 (39) 129 (57) 

Self-reported adherence, %, median (IQR)     

 3-day 100 (100–100) 100 (72–100) 100 (100–100) 100 (100–100)

 30-day 100 (93–100) 90 (60–100) 100 (92–100) 100 (99–100)

 3-month 98 (90–100) 84 (62–90) 98 (90–100) 100 (95–100)

Abbreviations: ART, antiretroviral therapy; BLQ, below limit of quantification; b/PI, boosted protease inhibitor; eGFR, estimated glomerular filtration rate; HIV, human immunodeficiency virus; 
INSTI, integrase strand-transfer inhibitor; IQR, interquartile range; NNRTI, nonnucleoside reverse transcriptase inhibitor; TFV-DP, tenofovir diphosphate; VL, viral load.
aLV for viremic participants (≥20 copies/mL).



638 • jid 2019:220 (15 August) • Morrow et al

Tenofovir Diphosphate in Dried Blood Spots

Included in the analysis were 697 samples of TFV-DP 
quantified in DBS, with median 1704 (range BLQ–7432) 
fmol/punch. TFV-DP concentrations BLQ were observed in 
4 samples (0.6% of total) from 4 different participants. Based 
on the categorization of TFV-DP concentrations at visit 1 for 
the 451 participants included in the analysis, 228 (50%) of 
them had TFV-DP in the highest category, 165 (37%) had 
TFV-DP in the medium range, and 58 (13%) of participants 
had TFV-DP <800  fmol/punch. Regarding all 697 visits in-
cluded in the analysis, 55/368 (15%) of the participants with 
TFV-DP in the high concentration category (≥1650  fmol/
punch) became viremic at a future visit. This is in compar-
ison to 63/247 (26%) in the medium (800 to <1650  fmol/
punch) and 44/82 (54%) in the low (BLQ to <800  fmol/
punch) TFV-DP categories. For the smaller subset of 213 
participants who had DBS analyzed from all 3 visits, Figure 1 
shows the trajectory of TFV-DP concentrations by study visit. 
The proportion of participants in the highest TFV-DP cat-
egory (≥1650  fmol/punch) increased from 47% at visit 1 to 
58% by visit 3, with the majority of the increase arising from 
participants in the midlevel category (800 to <1650  fmol/
punch). The proportion (≤13%) of participants with TFV-DP 
concentrations <800  fmol/punch remained relatively stable 
across visits, with participants moving to higher TFV-DP 
categories over time being replaced by individuals with de-
clining TFV-DP levels (Figure 1).

Predictive Value of Tenofovir Diphosphate for Future Viremia

In a univariable model, TFV-DP levels in DBS categorized 
into low, medium, and high were predictive of viremia at the 
next study visit (P <  .0001). This association remained highly 
significant after adjusting for covariates (P  <  .0001), with the 
aOR for the highest TFV-DP category compared to the lower 2, 
increasing in both magnitude and significance. With TFV-DP 
concentrations BLQ to <800 versus ≥1650  fmol/punch, the 
odds of future viremia were 4.2 (95% confidence interval 
[CI], 2.3–7.5) and 4.7 (95% CI, 2.6–8.7) in the unadjusted and 
adjusted models, respectively (P < .0001 in both models). Full 
pairwise comparison results for both models are shown in Table 
2. Comparisons for the adjusted model only are illustrated in 
Supplementary Figure 1. Along with TFV-DP categories, signif-
icant predictors of future viremia included ART class (P = .0002) 
and CD4+ T-cell count (P < .0001) (Supplementary Table 1).

A subanalysis was performed on participants who were 
virologically suppressed at the time of their study visit to in-
vestigate the ability of TFV-DP to predict viremia at future 
visits, even among currently suppressed individuals. This 
suppressed cohort consisted of 354 participants (from the 451 
available) contributing 501 paired assessments. In an adjusted 
model, TFV-DP in DBS in this subgroup was predictive of vi-
remia at the next clinical visit (P = .005). The aOR for TFV-DP 
concentrations BLQ to <800 versus ≥1650  fmol/punch levels 
was 4.2 (95% CI, 1.5–12.0), P =  .007, and for TFV-DP 800 to 
<1650 versus ≥1650  fmol/punch was 2.2 (95% CI, 1.2–4.0), 
P = .01, Supplementary Figure 2.

Sensitivity Analyses

An initial sensitivity analysis focused on the subset of 
participants in whom DBS were consecutively assayed prior to 
the modification of the assay strategy, which consisted of 284 
participants providing 452 paired assessments. Viremia for this 
subgroup was 21% versus 23% in the outcome-enriched popu-
lation. Model results for this subgroup were similar to the full 
cohort, although the pairwise comparison between the me-
dium and low TFV-DP concentrations lost significance in the 
adjusted model (Table 3). In an additional sensitivity analysis, 
we utilized TFV-DP categories derived from the mean TFV-DP 
concentrations at steady state from volunteers without HIV 
randomized to 33%, 67%, or 100% TDF adherence [10]. In this 
analysis, not all pairwise comparisons remained significant; 
however, all of the aOR were consistent with lower TFV-DP 
levels predicting higher aOR of future viremia (Supplementary 
Table 2).

DISCUSSION

In this study, we established the value of TFV-DP in DBS, 
obtained at the time of a clinic visit, as a predictor of fu-
ture viremia >20 copies/mL in PLWH taking TDF. Our data 
demonstrated that the odds of future viremia increased with 
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Figure 1. Trajectory of TFV-DP in DBS in participants in whom drug 
concentrations were available for all 3 study visits (N  =  213) according to drug 
concentration category. Colors represent TFV-DP categories with green indicating 
higher concentrations (≥1650 fmol/punch), yellow medium concentrations (800 to 
<1650 fmol/punch), and red low concentrations (BLQ to <800 fmol/punch) of TFV-DP. 
Each line within each category represents 1 participant. Individuals with the same 
progression of TFV-DP over time are grouped together forming thicker color bands. 
At visit 2, n = 115, n = 74, and n = 24 participants were included in the high, medium, 
and low concentrations, respectively. Abbreviations: BLQ, below limit of quantifica-
tion; DBS, dried blood spots; TFV-DP, tenofovir diphosphate.
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lower drug concentration categories, which remained signifi-
cant after adjusting for individual characteristics that could in-
fluence TFV-DP in DBS [12]. In addition, TFV-DP remained a 
significant predictor of future viremia when we restricted our 
analysis to PLWH who were virologically suppressed at the time 
of their visit. Extending on previous findings of the association 
of TFV-DP in DBS with viral suppression at the time of con-
comitant sampling [12], this study shows new clinical utility for 
this biomarker in predicting future viremia in PLWH. In partic-
ular, our findings highlight the value that an objective measure 
of adherence could add to the information that is currently 
provided by VL in clinical care. While VL has historically been 
regarded as the ultimate clinical outcome in patients who reach 
a sufficient degree of ART adherence, modern ART has be-
come more potent and pharmacologically forgiving to missed 
doses, allowing for virologic suppression with adherence levels 
around 80%–85% [22–25], or even as low as 50% [26]. Thus, an 
undetectable VL no longer reflects perfect adherence [7], and 
relying on VL alone could lead to inadequate conclusions about 
a patient’s adherence and lead to negative consequences.

The predictive value of TFV-DP in DBS for the develop-
ment of future viremia offers a wide range of potential clinical 
applications. Specifically, this biomarker could identify PLWH 
who have low drug concentrations (ie, <800  fmol/punch) 
while remaining virologically suppressed. Since viremia is a 
delayed clinical outcome that requires long periods of subop-
timal adherence before it becomes evident [27–30], early iden-
tification of patients with insufficient adherence could prevent 
virologic breakthrough and its adverse clinical consequences 
(ie, virologic failure, drug resistance, HIV transmission, burst in 
inflammation), which could be irreversible by the time viremia 

has ensued [2, 29, 31, 32]. Thus, low TFV-DP concentrations 
could trigger an in-depth reevaluation of a patient’s drug adher-
ence, such as a focused discussion between the patient and the 
provider, a careful review of pharmacy refills, or an earlier fol-
low-up visit for reevaluation of drug concentrations, all of which 
would have otherwise not happened by relying on VL alone. 
Comparatively, high TFV-DP concentrations (ie, ≥1650  fmol/
punch) with high or persistent viremia could prompt an earlier 
consideration of drug resistance testing. Frequently, the deci-
sion to perform HIV drug resistance testing in the clinic can be 
delayed if there is a concern for (or suspicion of) nonadherence, 
leading to a discussion with the patient and repeated VL testing 
several weeks (or months) later. This attempt to regain virologic 
suppression can perpetuate viremia and impact the success of 
genotyping [33] or lead to worse clinical outcomes [34–36]. 
Collectively, these frequently encountered and challenging clin-
ical scenarios illustrate the additional value that this adherence 
biomarker could provide beyond VL in HIV care.

In addition to identifying PLWH who might develop 
viral breakthrough or drug resistance, additional clinical 
applications of this biomarker could include feedback to both 
patients and providers regarding drug intake prior to a clinic 
visit. For patients, given the current emphasis on the undetect-
able equals untransmittable premise for the prevention of HIV 
transmission [37], the concentrations of TFV-DP would pro-
vide reassurance regarding optimal adherence and exposure 
in the periods between VL analyses. For providers, TFV-DP 
could offer a confirmation of a provider’s perception about the 
patient’s adherence (ie, low TFV-DP in the setting of viremia 
despite high adherence by self-report), or be used to remotely 
monitor drug adherence and exposure, in particular because 

Table 2. Odds Ratio of Risk of Future HIV Load >20 copies/mL by Concentration of Tenofovir Diphosphate in Dried Blood Spots at Current Visit (N = 697 
Paired Assessments)

TFV-DP (fmol/punch) Paired Assessments, n (%) OR (95% CI) P Value aOR (95% CI)a P Value

BLQ to <800 82 (12) 4.2 (2.3–7.5) <.0001 4.7 (2.6–8.7) <.0001

800 to <1650 247 (35) 1.8 (1.2–2.7) .007 2.1 (1.3–3.3) .002

≥1650 368 (53) 1 REF 1 REF

Abbreviations: aOR, adjusted odds ratio; BLQ, below limit of quantification; CI, confidence interval; OR, odds ratio; REF, reference; TFV-DP, tenofovir diphosphate. 
aAdjusted for age, sex, race, body mass index, estimated glomerular filtration rate, CD4+ T-cell count, and antiretroviral therapy class. The OR and aOR between categories BLQ to <800 vs 
800 to <1650 fmol/punch were 2.3 (1.3–4.1), P = .003 and 2.3 (1.2–4.2), P = .008, respectively.

Table 3. Odds Ratio of Risk of Future HIV Load >20 Copies/mL by Concentration of Tenofovir Diphosphate in DBS at Current Visit in a Subset of 284 
Participants with Consecutively Analyzed DBS (N = 452 Paired Assessments)

TFV-DP (fmol/punch) Paired Assessments, n (%) OR (95% CI) P Value aOR (95% CI)a P Value

BLQ to <800 57 (13) 4.4 (2.1–9.4) <.0001 4.5 (2.0–10.1) .0003

800 to <1650 167 (37) 1.9 (1.1–3.4) .02 2.2 (1.2–4.3) .01

≥1650 228 (50) 1 REF 1 REF

Abbreviations: aOR, adjusted odds ratio; ART, antiretroviral therapy; BLQ, below limit of quantification; CI, confidence interval; DBS, dried blood spots; HIV, human immunodeficiency virus; 
OR, odds ratio; REF, reference; TFV-DP, tenofovir diphosphate.
aAdjusted for age, sex, race, body mass index, estimated glomerular filtration rate, CD4+ T-cell count, and antiretroviral therapy class. The OR and aOR between categories BLQ to <800 vs 
800 to <1650 fmol/punch were 2.3 (1.2–4.5), P = .02 and 2.0 (0.9–4.3), P = .08, respectively.
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self-collection of DBS has been successfully achieved for other 
purposes in HIV research [38, 39]. As the field moves towards 
the development of clinically useful measures for adherence 
monitoring, future research will be indispensable to evaluate the 
clinical impact of this adherence biomarker in clinical practice.

Our study offers several strengths, which include the lon-
gitudinal prospective sample and data collection in a diverse 
clinical cohort, making our results applicable to the demo-
graphic groups most affected by the HIV/AIDS epidemic. In 
addition, quantification of adherence using TFV-DP could 
offer the opportunity to infer adherence to the full ART reg-
imen in individuals taking single-tablet formulations. It could 
also help identify if a specific ART regimen might be the ideal 
choice for a treatment-naive individual, or determine if any 
modifications to TDF —and eventually TAF—dosing may be 
considered (especially given the upcoming availability of ge-
neric drugs). Furthermore, DBS samples are easy to collect 
and practical for routine clinical care, and efforts are underway 
to create a point-of-care assay using a miniature mass spec-
trometer at an anticipated cost that would be lower than VL. 
Among the limitations of our study are the observational na-
ture of the cohort and its possible impact on the number of fol-
low-up visits for some participants who missed their second or 
third visit after enrollment. Similarly, the timing between DBS 
and future VL sampling was variable (and sometimes long), 
and may not have reflected adherence near the VL measure-
ment. However, we believe that any potential influence from 
this would have biased our results towards the null, in which 
case the magnitude of our association would have been even 
stronger. In addition, not all participants were included in the 
analysis; however, our sampling strategy of assaying all DBS 
samples from participants with documented viremia focused 
on the most informative participants, which has been shown 
to produce accurate estimates when compared to an analysis 
of the full cohort [14], and our sensitivity analysis limited to 
the period prior to when our assay strategy was modified con-
firmed our results. Additionally, categorization of a continuous 
variable can lead to loss of information, which could result in 
different cut points across various subpopulations. However, 
our sensitivity analysis using cut points previously established 
in an independent population (volunteers without HIV) [10] 
demonstrated similar predictive qualities across categories. 
Lastly, our study was focused only on participants who were 
taking a TDF-based regimen. While some of our DBS samples 
were collected while on TAF, the sample size and number of 
events in this cohort would not allow for a similar analysis of 
participants on ART including TAF. Future research to assess 
the predictive value of TFV-DP in DBS derived from TAF will 
be indispensable to move this biomarker forward in clinical 
practice given its widespread use in clinical practice.

In summary, our study established the value of TFV-DP in 
DBS to predict future viremia in PLWH, even in those who are 

virologically suppressed at the time of their visit. These findings 
provide new insight on its possible use as a complement to VL 
to monitor efficacy of ART, and set the framework for future 
implementation of this adherence biomarker in clinical prac-
tice. Further research to determine whether TFV-DP in DBS 
can improve clinical outcomes in PLWH on ART is needed.
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