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Abstract

Reliable information processing is a hallmark of many physical and biological networked systems. 

In this paper, we propose a novel framework for modelling information transmission within a 

linear dynamical network. Information propagation is modelled by means of a digital 

communication protocol that takes into account the realistic phenomenon of inter-symbol 

interference. Building on this framework, we adopt Shannon information rate to quantify the 

amount of information that can be reliably sent over the network within a fixed time window. We 

investigate how the latter information metric is affected by the connectivity structure of the 

network. Here, we focus in particular on networks characterized by a normal adjacency matrix. We 

show that for such networks the maximum achievable information rate depends only on the 

spectrum of the adjacency matrix. We then provide numerical results suggesting that non-normal 

network architectures could benefit information transmission in our framework.

Index Terms

Linear dynamical networks; information transmission over networks; digital communication; 
Shannon capacity; normal networks; matrix non-normality

I Introduction

A wide range of natural and engineered phenomena can be modelled as networks of 

interacting dynamical units. These units typically communicate with each other in order to 

accomplish some common goal. Seamless and profitable cooperation among units requires a 
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robust and effective information transmission infrastructure at network level, especially in 

the presence of noise. Understanding how a network can enable efficient propagation of 

information across its units represents a central problem in many areas of engineering, 

biology and social sciences (see for instance [1]–[3], to cite just a few recent surveys). 

Perhaps, the most emblematic example is provided by the human brain wherein single 

neurons (or populations of neurons) are continuously rebroadcasting the information they 

receive to neighboring (populations of) neurons, in order to collectively execute complex 

tasks [4]–[6]. Unraveling the fundamental network principles at the core of efficient 

information transmission between neurons (or brain areas) is a current key challenge in 

neuroscience [3], [7]–[12].

In this paper, we propose a novel framework for modelling digital communication and 

quantifying the amount of information that can reliably be propagated through networks of 

linear dynamical units. Our approach builds upon the assumption that information is 

transmitted periodically through the network and encoded in the impulse response of the 

system. Whenever the network units retain some memory of their previous states, past 

transmissions interfere with the current signal being transmitted, thereby limiting the amount 

of information that the network can reliably process. In contrast to other communication 

models proposed in the literature [13], [14], we explicitly incorporate this interference 

phenomenon in our model. We measure the efficiency of information transmission via 

Shannon’s information rate and investigate how the structure of the network, described by its 

adjacency matrix, affects the latter information metric. Our primary aim is to dissect 

information transmission performance for the class of normal networks, i.e., networks 

characterized by a normal adjacency matrix. In particular, we show that, for such class of 

networks, the maximum achievable information rate is determined solely by the spectrum of 

the network adjacency matrix. Finally, numerical results seem to suggest that network non-

normality could represent a valuable feature for enhancing the information transmission 

performance of a network. This corroborates recent works that have highlighted the 

beneficial role of matrix non-normality for the short-term memory storage in neuronal 

networks [15], [16] and in the controllability of large-scale networks [17], [18].

Notation: Given a matrix A ∈ ℂn×n, A⊤ and A* denote the transpose and Hermitian 

conjugate of A, respectively. tr(A) and det(A) stand for the trace and determinant of A ∈ 
ℂn×n, respectively. A ∈ ℂn×n is said to be Hurwitz stable if all the eigenvalues of A have 

strictly negative real part. A ∈ ℂn×n is said to be normal if AA* = A*A, otherwise A is said 

to be non-normal. We write A ≥ 0 (A > 0) to mean that the (Hermitian) matrix A ∈ ℂn×n is 

positive semidefinite (positive definite, resp.). We denote by  = ( , ℰ) the (directed) graph 

with vertex (or node) set  = {1, 2, …, n} and edge set ℰ ⊆  × . The (weighted) 

adjacency matrix A ∈ ℝn×n corresponding to the graph ℊ satisfies Aij ≠ 0 iff (j, i) ∈ ℰ, where 

Aij denotes the (i, j)-th entry of A.  (µ, Σ) denotes the n-dimensional Gaussian distribution 

with mean µ ∈ ℝn and covariance Σ ∈ ℝn×n, Σ ≥ 0. [·] stands for the expectation of a 

random variable. ℒ2
p t1, t2  denotes the Hilbert space of p-dimensional square integrable 

functions in [t1, t2], t2 > t1, equipped with the inner product f , g ℒ2 ≔ ∫ t1

t2 f ⊤ t g t dt .
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Symbol δ(t) stands for the Dirac delta function and 1(t) is the step function, i.e., 1(t) = 0 for t 
< 0 and 1(t) = 1 for t ≥ 0.

We inform the reader that the present paper only reports some preliminary results. In 

particular, due to space limitation, some of the original proofs (specifically, proofs of 

Theorem 1, Theorem 2, and Corollary 1) have been omitted and will appear in a 

forthcoming and more complete publication.

II Modelling information transmission in dynamical networks

We consider a continuous-time linear time-invariant dynamical system of the form

ẋ t = Ax t + Bu t , (1)

y t = Cx t , (2)

where x(t) ∈ ℝn denotes the state vector, u(t) ∈ ℝm the input vector, and y(t) ∈ ℝp the output 

vector at time t ≥ 0. A ∈ ℝn×n, B ∈ ℝn×m, and C ∈ ℝp×n denote the state, input, and output 

matrix, respectively. Throughout the paper, we will consider stable systems, namely systems 

where A is (Hurwitz) stable.

We interpret the dynamics expressed by (1)-(2) as those of a network, whose weighted 

adjacency matrix A corresponds to a directed graph ℊ = ( , ℰ). We structure B and C so as 

to single out two subsets of nodes  ⊆  and  ⊆ , respectively:

B = ek1, …,ekm
, C = et1, …,etp

⊤
,

where ei i = 1
n  denotes the canonical vectors in ℝn and ki i = 1

m ⊆ 𝒦, ti i = 1
p ⊆ 𝒯 .

We model network information transmission by means of the digital communication 

protocol illustrated in the block diagram of Fig. 1. More precisely, we suppose that 

transmission occurs periodically every t = kT, T > 0, k ∈ ℤ. T represents the transmission or 

sampling time of the communication channel. The to-be-transmitted piece of information is 

represented by a symbol ak belonging to some alphabet  of finite cardinality. This symbol 

is mapped, through a suitable encoding procedure, to a vector uk ∈ ℝm (the input codeword). 

This vector then acts as an impulsive input u(t) = ukδ(t) that transiently excites the linear 

dynamical system in (1)-(2). The subsequent evolution of the system in the time interval 

[kT, (k + 1)T] constitutes the modulation stage of the protocol. In digital communication 

theory, a modulator is a function mapping a discrete symbol to a continuous-time trajectory. 

In our case, the modulator maps the input impulse into the p-dimensional square-integrable 

impulse response
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yk t = CeAtBuk1 t − kT ∈ ℒ2
p kT , k + 1 T

generated by the dynamical system (1)-(2). After this stage, the modulated signal is sent, via 

an additive white Gaussian noise (AWGN) channel, to the receiver. At the receiver side, the 

corrupted trajectory ỹk(t) = yk(t) + n(t), with n(t) ∼ (0, σ2I), [n(t)n⊤ (s)] = σ2Iδ(t − s), 

for all t, s ∈ ℝ, is first demodulated and then decoded in order to obtain an estimate âk of the 

transmitted symbol.

A crucial feature of our model relies on the fact that the memory of the system cannot be 

instantaneously erased at the end of every transmission.1 This implies that previous 

modulated waveforms interfere with the waveform of the currently transmitted symbol, as 

depicted in the bottom of Fig. 1. In digital communication jargon, this phenomenon is 

known as inter-symbol interference (ISI). More precisely, for a transmission occurring at 

time t = 0, the “interference term” in our model is the sum of contributions in the time 

window [0, T ] made by modulated waveforms left over from previous transmissions at 

times t = −kT, k ∈ ℤ, k > 1:

i t ≔ ∑
k = 1

∞
CeA t + kT Bu−k, t ∈ 0, T . (3)

In the next section, we develop a metric for quantifying information transmission 

performance within the digital communication framework introduced above.

III An information transmission metric

To measure the “efficiency” of information transmission over the previously described noisy 

digital communication channel, we turn to the notion of Shannon information rate, defined 

as

ℛ ≔ 𝒞
T , (4)

where  denotes the Shannon capacity of the channel and T > 0 is the finite transmission 

time. We recall that Shannon capacity  provides a tight upper bound on the number of bits 

per input symbol that can be sent reliably, i.e., with arbitrarily small decoding error 

probability, over the channel [19, Ch. 7]. Consequently, ℛ measures the amount of 

information that can be sent reliably over the channel within a fixed transmission time 

interval. With reference to the communication channel described in the previous section, we 

will exploit the following additional assumptions:

1This phenomenon arises naturally in any physical network whose units retain some memory of their previous state, e.g. in a neuronal 
network [6].
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A1) the available power at the sender just before the modulation stage is limited by P 
> 0, namely ‖uk‖2 ≤ P, k ∈ ℤ;

A2) sufficiently many messages have been sent at the time of current transmission, 

such that the distribution of interference terms has reached an equilibrium;

A3) the input codebook is the same at every transmission and input codewords 

corresponding to different transmissions are independent of each other;

A4) the noise n(t) is independent of current and past input codewords.

Under these assumptions, we have the following result.

Theorem 1 (Shannon information rate): The Shannon information rate of the 

communication channel described in Sec. II under the input power constraint P > 0 is given 

by

ℛ = 1
2T max

Σ ≥ 0, tr Σ ≤ P
log2

det(σ2I + 𝒪𝒲)
det(σ2I + 𝒪(𝒲 − B Σ B⊤))

, (5)

where 𝒪 ≔ ∫ 0
T eA⊤ tC⊤CeAt dt denotes the [0, T ]-observability Gramian of the pair (A, C) and 

𝒲 ≔ ∑k = 0
∞ eAkT B Σ B⊤eA⊤kT denotes the discrete-time controllability Gramian of the pair 

(eAT, BΣ1/2).

From the expression of ℛ in (5), we note that the computation of the information rate boils 

down to solving a (generally non-convex) optimization problem over the space of positive 

semi-definite m × m matrices with trace less or equal than one. Further, it is worth observing 

that the numerator det(σ2I + ) can be thought of as a volumetric measure of the “energy” 

of the corrupted modulated signal ỹ(t) in [0, T ], whereas the denominator det (σ2I + (  − 

BΣB⊤)) can be thought of as a volumetric measure of the “energy” of the overall channel 

noise in [0, T], consisting of the sum of the interference term i(t) and the background noise 

n(t).

IV Preliminary results

In this section, we present a number of auxiliary results concerning the simplification and 

monotonicity of the information rate formula derived in the previous section.

The first result asserts that in the maximization problem in Eq. (5), the maximizer always 

saturates the input power constraint.

Lemma 1 (Optimal Σ has trace equal to P): Consider the information rate in (5). It holds

ℛ = 1
2T max

Σ ≥ 0, tr Σ = P
log2

det(σ2I + 𝒪𝒲)
det(σ2I + 𝒪(𝒲 − B Σ B⊤))

.
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Proof: Let us define

f ∑ : = 1
2T log2

det σ2I + 𝒪𝒲

det σ2I + 𝒪 𝒲 − B Σ B⊤ .

We will show that d f α∑
dα ≥ 0, α ∈ ℝ, α > 0. This implies that f(αΣ) is a monotonically 

increasing function of α > 0, so that the optimal Σ maximizing f(Σ) under the constraint tr Σ 
≤ P must satisfy the latter constraint with equality. To this end, we have

f α Σ = 1
2T log2

det σ2I + α𝒪𝒲

det σ2Iα𝒪(𝒲 − B Σ B⊤)

= 1
2T log2

det α𝒪1/2𝒲𝒪1/2 + σ2I

det α𝒪1/2(𝒲 − B Σ B⊤)𝒪1/2 + σ2I

= 1
2T ∑

i = 1

n
log2 αλi + σ2 − 1

2T ∑
i = 1

n
log2 αμi + σr

2 ,

where λi i = 1
n and μi i = 1

n  denotes the ordered eigenvalues of 1/2 1/2 and 1/2(  − 

BΣB⊤) 1/2, respectively. Taking the derivative of the previous expression w.r.t. α, we get

d f α Σ
dα = 1

Tln2 ∑
i = 1

n λi

αλi + σ2 − 1
Tln2 ∑

i = 1

n μi

αμi + σ2 .

Since 1/2 1/2 ≥ 1/2(  − BΣB⊤) 1/2, then λi ≥ µi, i = 1, 2, …, n. This implies that

d f (α Σ )
dα = 1

Tln2 ∑
i = 1

N λi − μi

(λiα + σ2)(μiα + σ2)
≥ 0,

and this ends the proof.

Another interesting property of ℛ is described in the following lemma.

Lemma 2 (Scaling invariance of ℛ w.r.t. P and σ2): Consider the information rate in (5). 

For all α ∈ ℝ, α > 0, it holds

ℛ(P, σ2) = ℛ(αP, ασ2),

where we made explicit the dependence of ℛ on P and σ2.

Proof: First observe that if we replace Σ and σ2 by αΣ and ασ2, respectively, then the 

Gramian  is replaced by α . This in turn implies that the value of
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f ( Σ , σ2): = 1
2T log2

det(σ2I + 𝒪𝒲)
det(σ2I + 𝒪(𝒲 − B Σ B⊤))

is not affected by this change of variables. If Σ⋆ is the input covariance maximizing f (Σ, σ2) 

under the constraint tr Σ ≤ P, it holds

ℛ(αP, ασ2) ≥ f (α Σ⋆ , ασ2)
= f ( Σ⋆ , σ2) = ℛ(P, σ2) .

(6)

On the other hand, let Σ⋆⋆ now denote the input covariance maximizing f (Σ, ασ2) under the 

constraint tr Σ ≤ αP. It holds

ℛ P, σ2 ≥ f 1
α Σ ⋆ ⋆ , σ2

= f Σ ⋆ ⋆ , ασ2 = ℛ αP, ασ2 .
(7)

Eventually, a combination of (6) and (7) yields ℛ(αP, ασ2) = ℛ(P, σ2).

As a consequence of Lemmas 1 and 2, we have that ℛ can be equivalently written in a more 

simplified form as

ℛ = 1
2T max

Σ ≥ 0, tr Σ = 1
log2

det(I + SNR𝒪𝒲)
det(I + SNR𝒪(𝒲 − B Σ B⊤))

. (8)

where the input power constraint has been normalized to one and the symbol SNR ≔ P/σ2 

denotes the signal-to-noise ratio of the communication channel.

We conclude this section with a monotonicity result on the structure of the input and output 

node subsets.

Proposition 1 (Monotonicity of ℛ w.r.t.  and ): Let 1, 2 ⊆  be two input nodes 

subsets and 1, 2 ⊆  be two output nodes subsets. Suppose that the pair (A, C i), i = 1, 

2, is observable, where C i denotes the output matrix corresponding to subset i. If 1 ⊆ 

2 and 1 ⊆ 2, then

ℛ 𝒦1, 𝒯1 ≤ ℛ(𝒦2, 𝒯2),

where we made explicit the dependence of ℛ on the input subset  and output subset .

Proof: Let  and  be two input and output node subsets and let ℬ  and C  denote the 

corresponding input and output matrices. Let us define
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f Σ , 𝒦, 𝒯 : = 1
2T log2

det I + SNR𝒪𝒯𝒲𝒦
det I + SNR𝒪𝒯 𝒲𝒦 − Σ𝒦

,

where Σ𝒦 : = B𝒦 Σ B𝒦
Τ , 𝒪𝒯: = ∫0

T
eA

⊤t
C𝒯

⊤ C𝒯eAtdt and 𝒲𝒦: = ∑k = 0
∞ eAkT Σ𝒦 eA⊤kT .

Under the assumption that the pair (A,C ) is observable (which in turn implies that 𝒪𝒯
−1 is 

non-singular), it is possible to rewrite f(Σ, , ) as

f ( Σ , 𝒦, 𝒯) = 1
2T log2det (I + SNR𝒪𝒯𝒲𝒦) ⋅ (I + SNR𝒪𝒯(𝒲𝒦 − Σ𝒦))−1

= 1
2T log2det I + Σ𝒦

1/2 (eAT𝒲𝒦eA⊤T + 𝒪T
−1/SNR)

−1
Σ𝒦

1/2 ,
(9)

Since 1 ⊆ 2 we first note that 1 ≤ 2. We have the following chain of implications

𝒪𝒯1
≤ 𝒪𝒯2

𝒪𝒯1
−1 ≥ 𝒪𝒯2

−1

𝒲𝒦 +
𝒪𝒯1

−1

SNR ≥ 𝒲𝒦 +
𝒪𝒯2

−1

SNR , ∀𝒦 ⊆ 𝒱,

𝒲𝒦 +
𝒪𝒯1

−1

SNR

−1

≤ 𝒲𝒦 +
𝒪𝒯2

−1

SNR

−1

, ∀𝒦 ⊆ 𝒱,

where 𝒲𝒦: = eAkT𝒲𝒦eA⊤kT . In view of (9), the latter inequality in turn implies that

f ( Σ , 𝒦, 𝒯1) ≤ f ( Σ , 𝒦, 𝒯2), ∀𝒦 ⊆ 𝒱 and ∀ Σ ≥ 0. (10)

Next, let us define i ≔ {Σ i : Σ ≥ 0, tr Σ = 1}, i = 1, 2. Since 1 ⊆ 2, we have 1 ⊆ 

2. By combining the latter fact with inequality (10),

ℛ(𝒦1, 𝒯1) = max
Σ ≥ 0, tr Σ = 1

f ( Σ , 𝒦1, 𝒯1)

= max
Σ1 ∈ 𝒮1

f ( Σ1 , 𝒱, 𝒯1)

≤ max
Σ1 ∈ 𝒮1

f ( Σ1 , 𝒱, 𝒯2)

≤ max
Σ2 ∈ 𝒮2

f ( Σ2 , 𝒱, 𝒯2)

= max
Σ ≥ 0, tr Σ = 1

f ( Σ , 𝒦2, 𝒯2) = ℛ(𝒦2, 𝒯2),

and this concludes the proof.
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Remark 1: It is worth observing that the previous proposition in particular implies that ℛ(

1, 1) ≤ ℛ ( , ). This means then the maximum information rate is always attained by 

choosing all network nodes as input and output nodes.

V Analysis of network information rate

In this section, we investigate how the connectivity structure of the network, encoded by 

matrix A, affects the information rate ℛ introduced in Sec. II. We start by analyzing the 

simplest possible case, i.e., the case of scalar A, and then we move to the case of normal A.

A Scalar case

When n = 1, the simplified expression of ℛ in (8) reduces to

ℛ = 1
2T log2

2a + SNR
2a + SNRe−2aT , (11)

where B = C = 1 and A = −a, a ∈ ℝ, a > 0, in view of stability. In this case, ℛ is a 

monotonically decreasing function of the transmission time T. Hence, the optimal value of 

ℛ is attained for T → 0 and is equal to

ℛmax ≔ max
T ≥ 0

ℛ = 1
ln2

aSNR
2a + SNR . (12)

The latter quantity is a monotonically increasing function of a, so that its maximum value is 

attained for a → ∞ and is equal to ℛa: = SNR
2ln2  (see also the top plot of Fig. 2). Intuitively, 

for small values of a and T the ISI term becomes large enough to be detrimental for the rate. 

Lastly, as SNR increases, ℛ in (11) increases as well until it saturates to the limit value 

ℛSNR: = a
ln2  (see also the bottom plot of Fig. 2). Again, this finite upper bound is due to the 

ISI term which penalizes the transmission performance even in presence of vanishing 

background noise.

B Normal network case

We derive here an explicit expression for the information rate of normal networks. We 

suppose that the dynamical network is fully controllable (  = ) and fully observable (  = 

). The next result asserts that the information rate of a n × n normal network can be 

decoupled in the sum of the information rates of n independent scalar channels whose 

behavior depends on the eigenvalues of A.

Theorem 2 (Information rate for normal networks): If  =  =  and A ∈ ℝn×n is a 

normal and stable matrix with eigenvalues λi i = 1,
n  then
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ℛ = max
Pi i = 1,

n Pi ≥ 0

s . t . ∑i = 1
n Pi = P

∑
i = 1

n
ℛ(SNRi, λi ), (13)

with SNRi ≔ Pi/σ2 and

ℛ(SNR, λ ) ≔ 1
2T log2

SNR−2Re λ
SNRe2TReλ − 2Re λ

. (14)

From the above theorem we have the following interesting corollary.

Corollary 1 (Optimal rate for normal networks): If  =  =  and A ∈ ℝn×n is a normal 

and stable matrix, then the maximum of ℛ is achieved for T → 0 and the optimal signal-to-

noise ratio allocation is

SNRi =
Re λi
tr A SNR,

which yields

ℛmax = max ℛ
T ≥ 0

= 1
ln 2

tr A SNR
2 tr A − SNR . (15)

It is worth pointing out that the expression in (15) coincides with the maximum information 

rate derived for the scalar case in (12), after replacing a with − tr A. Therefore, the same 

considerations made for the scalar case hold also for the normal case.

Remark 2: In light of Proposition 1 and Remark 1, the results in this subsection (Theorem 2 

and Corollary 1) can be also interpreted as fundamental limitations for the information rate 

of normal networks regardless of the choice of  and . Specifically, (13) provides an 

upper bound to the achievable information rate of any normal network w.r.t. any choice of 

input and output node subsets , . Furthermore, the expression of ℛmax in (15) 

corresponds to the maximum information rate that can be attained by a network described by 

a normal matrix A for a given SNR level. Observe also that in the ideal scenario of infinite 

SNR, the optimal information rate reduces to − 1
ln 2 tr A .
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VI Numerical examples

To illustrate the results outlined in the previous section, we consider the following n-

dimensional Toeplitz line network  described by the 

adjacency matrix

A =

−γ β/α
βα −γ ⋱

⋱ ⋱ β/α
βα −γ

∈ ℝn × n, (16)

with α, β, γ > 0 such that γ > 2β to ensure stability. The parameter α > 0 regulates the 

“anisotropy” of the network, so that it can be thought of as an index of network non-

normality.

We first focus on the normal case, i.e., we set α = 1. In Figure 3 the “normalized” time 

behavior of ℛ for unit SNR and different values of n is illustrated. From this figure, it is 

worth noticing that in the fully observable and fully controllable case (  =  = ) ℛ is a 

monotonically decreasing function of T, in agreement with the expression derived in 

Theorem 2 (top plot); whilst the monotonic behavior breaks down if the input and output 

nodes are selected to be the most distanced ones (  = {1},  = {n}), in that the information 

rate exhibits a peak for an optimal T different from zero (bottom plot). Further, observe that 

the latter optimal transmission time scales proportionally to n. Figure 4 displays the behavior 

of ℛmax = maxT≥0 ℛ against the noise variance σ2 for a unit input power constraint, n = 8 

and four different choices of  and . From the plot, it can be noticed that the upper bound 

in Corollary 1 (obtained by choosing  =  = ) is quite tight in case  = {1},  =  and 

 = ,  = {1}, whereas it becomes rather uninformative in case of most distanced input 

and output nodes, i.e.,  = {1},  = {n}.

In Fig. 5 we compared the behavior of ℛ for a normal network (α = 1) and a non-normal 

one (α = 3.5) in the fully observable and fully controllable case. From the figure, two 

important observations can be made: (i) in the non-normal network case the optimal 

transmission time is different from zero, even though  =  = ; (ii) the value of ℛmax in 

the non-normal case is higher that the one obtained in the normal case, even though the two 

network matrices share the same spectrum. The latter fact in particular suggests that non-

normality could represent a valuable feature for increasing the information transmission 

performance of a network.

VII Concluding remarks and perspectives

In this work, we have proposed a new communication framework to describe the 

propagation of information in networks of interconnected linear dynamical systems. We 

measured information transmission performance by means of the Shannon information rate, 

Baggio et al. Page 11

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2019 July 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and analyzed how the connectivity structure of the network influences this information 

metric. We proved that for a normal network, the information rate is entirely determined by 

the eigenvalues of the adjacency matrix (Theorem 2 and Corollary 1). We validated our 

theoretical results with a simple yet paradigmatic numerical example, which further 

suggested that network non-normality could substantially enhance the quality of information 

transmission. Further research is needed to better explore this conjecture. This could be done 

by specifically investigating how network diameter, recently shown to be related to the non-

normality of the adjacency matrix [20], affects the Shannon information rate.
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Fig. 1. 
Block diagram representation of the digital communication protocol considered in this 

paper.
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Fig. 2. 
Plots of ℛ against transmission time T in the scalar case (n = 1). Top plot: SNR = 10. 

Bottom plot: a = 2. The dashed red line denotes the limit values 

ℛa = lima ∞ℛT = 5/ln2 and ℛSNR = limSNR ∞ℛT = 2/ln2.
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Fig. 3. 
Normalized plots of ℛ against transmission time T for the line network in (16) with SNR = 

1, α = 1, β = 1, and γ = 2.5. Top plot:  =  = . Bottom plot:  = {1},  = {n}. Notice 

that the curves obtained for  =  =  coincides (up to a normalization factor) with the 

ones of the scalar case in Fig. 2, after replacing a with −tr A.
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Fig. 4. 
Logarithmic plot of ℛmax against σ2 for P = 1 and different choices of  and  for the line 

network in (16) with n = 8, α = 1, β = 1 and γ = 2.5. The curves obtained for  = ,  = 

{1} (dashed line) and  = {1},  =  (dotted line) are almost overlapping.
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Fig. 5. 
Plot of ℛ against transmission time T for the line network in (16) with n = 10, SNR = 1, β = 

1, γ = 2.5 and two different values of α.
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