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Objectives: To identify the pharmacokinetic (PK) and toxicodynamic (TD) relationship for vancomycin-induced
kidney injury.

Methods: Male Sprague–Dawley rats received intravenous (iv) vancomycin. Doses ranging from 150 mg/kg/day
to 400 mg/kg/day were administered as a single or twice-daily injection over 24 h (total protocol duration).
Controls received iv saline. Plasma was sampled with up to eight samples in 24 h per rat. Twenty-four hour urine
was collected and assayed for kidney injury molecule 1 (KIM-1), osteopontin and clusterin. Vancomycin in
plasma was quantified via LC-MS/MS. PK analyses were conducted using Pmetrics for R. PK exposures during the
first 24 h (i.e. AUC0–24h, Cmax 0–24h and Cmin 0–24h) were calculated. PK/TD relationships were assessed with
Spearman’s rank coefficient (rs) and the best-fit mathematical model.

Results: PK/TD data were generated from 45 vancomycin-treated and 5 control rats. A two-compartment
model fit the data well (Bayesian: observed versus predicted R2"0.97). Exposure–response relationships were
found between AUC0–24h versus KIM-1 and osteopontin (R2"0.61 and 0.66) and Cmax 0–24h versus KIM-1 and osteo-
pontin (R2"0.50 and 0.56) using a four-parameter Hill fit. Conversely, Cmin 0–24h was less predictive of KIM-1 and
osteopontin (R2"0.46 and 0.53). A vancomycin AUC0–24h of 482.2 corresponded to a 90% of maximal rise in KIM-1.

Conclusions: Vancomycin-induced kidney injury as defined by urinary biomarkers is driven by vancomycin AUC
or Cmax rather than Cmin. Further, an identified PK/TD target AUC0–24h of 482.2 mg�h/L may have direct relevance
to human outcomes.

Introduction

Many critically ill patients receive vancomycin empirically or in a
directed manner for their infection, making vancomycin the single
most commonly prescribed antibiotic in the hospital setting.1–4

Based on 36.5 million hospital stays in the USA annually5 and a
vancomycin prevalence of �100 days of therapy/1000 patient-
days,3,4

.3 million people receive vancomycin annually. Clinical
reports suggest that vancomycin-induced kidney injury (VIKI)
rates may vary from 5% to 43%,6–12 and a prospective study of

patients with hospital-acquired pneumonia (HAP)/ventilator-asso-
ciated pneumonia (VAP) treated with vancomycin demonstrated
an acute kidney injury (AKI) rate of 18.8%.13

Given vancomycin’s frequent use, it is imperative to identify the
safest delivery strategy. However, before dosing regimens can be
recommended, identifying vancomycin exposures that cause AKI
is crucial for implementing strategies to minimize the probability of
toxicity while maintaining vancomycin efficacy. Retrospective
studies and meta-analyses have identified several risk factors for
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VIKI such as higher daily dose, elevated troughs and an increased
duration of therapy.7,8,14,15 However, it is difficult to attribute caus-
ality of AKI in retrospective clinical studies. Non-modifiable patient
factors such as severity of illness, obesity and concomitant nephro-
toxic medications compound VIKI and are notoriously difficult to
adjust/control.16 In retrospective studies, it is also difficult to deter-
mine if vancomycin exposures caused AKI or if AKI from another
origin caused vancomycin exposures to be elevated (as a function
of decreased clearance). In contrast, animal models allow an en-
vironment that is free of these confounding factors. Furthermore,
a directed experimental design can allow data collection during an
early observational window to assess pharmacokinetic–
toxicodynamic (PK/TD) drivers before the onset of AKI confounds
PK variables.

We recently demonstrated that sensitive urinary biomarkers for
kidney injury such as kidney injury molecule-1 (KIM-1), osteopontin
(OPN) and clusterin were highly correlated with vancomycin
AUC0–24h and maximum concentration (Cmax 0–24h) in rats receiving
vancomycin via intraperitoneal administration.17,18 Notably, these
biomarkers identified AKI earlier than traditional markers such as
serum creatinine (SCr), and were correlated with histopathological
damage.19 Further, KIM-1 can increase within hours of proximal
tubule injury, plateau at 24 h and stay elevated through 120 h
from the time of renal injury.19 While our previous studies were
able to identify the PK/TD parameters most associated with VIKI,
discerning the exact quantitative relationship between vanco-
mycin exposure and AKI was impeded because of variability of
intraperitoneal absorption and confounded by the potential for in-
stillation of vancomycin into the abdominal cavity (i.e. instillation
into the retroperitoneal space). Thus, in this study, we employed
intravenous (iv) dosing.

Materials and methods
This PK/TD study was conducted at Midwestern University in Downers
Grove, IL, USA. All study methods were approved by the Institutional
Animal Care and Use Committee (IACUC; Protocol #2295) and conducted in
compliance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals, 8th edition.20

Experimental design and animals
Experimental methods and design were similar to those previously
described,17,18 with several notable differences. In brief, male Sprague–
Dawley rats were randomized into either a treatment or control group
[receiving vancomycin or normal saline (NS), respectively]. All dosages were
administered through iv injection via an internal jugular vein catheter.
Vancomycin-treated rats received total daily doses (dosing protocols) of
150, 200, 300 or 400 mg/kg as either a single or twice-daily divided dose
over 24 h (e.g. 150 mg/kg was given as a single injection or as 75 mg/kg
twice daily for a total of 24 h). Doses given twice daily were scheduled every
12 h. A complete dosing group disposition can be found in Figure 1. The
dosing range was chosen based on previous studies17,19,21 and to span the
clinical allometric range. For example, the clinical kidney injury threshold
of�4 g/day in a 70 kg patient (i.e. 57 mg/kg/day in humans) scales allomet-
rically to 350 mg/kg in the rat.14,22

Male Sprague–Dawley rats (n"50, �8–10 weeks old, mean weight
310 g) were housed in a light- and temperature-controlled room for the
duration of the study and allowed free access to water and food, except
during the metabolic cage period (restricted). Rats (n"5–6 per dosing
protocol) were administered iv injections of vancomycin in NS or NS only

(control). Data were analysed for all animals that initiated a protocol. When
animals contributed incomplete data (i.e. early protocol termination), urin-
ary biomarkers and urine output were treated as missing data.

Blood and urine sampling
Surgical catheters were implanted 24 h prior to protocol initiation. Blood
samples were drawn from a single right-side internal jugular vein catheter,
and dosing occurred via the left-side internal jugular vein catheter. A max-
imum of eight samples per animal were obtained and scheduled at 0, 15,
30, 60, 120, 240, 750 and 1440 min for the once-daily and twice-daily dos-
ing treatment protocol. Each sample (0.25 mL aliquot) was replaced with
an equivalent volume of NS to maintain euvolaemia. Blood samples from
vancomycin-treated animals were immediately transferred to a disodium
EDTA (Sigma–Aldrich Chemical Company, Milwaukee WI, USA) -treated
microcentrifuge tube and centrifuged at 3000 g for 10 min. Plasma super-
natant was collected and stored at#80�C for batch sample analysis.

Following the 2 h blood sample, animals were placed in metabolic cages
for urine collection (Nalgene, catalogue # 650-0350, Rochester, NY, USA) for
the remainder of the 24 h study (with the exception that they were briefly
removed for scheduled blood samples). Urine volume was measured at
24 h. The urine was centrifuged at 400 g for 5 min, and the supernatant
was stored at#80�C until batch analysis.

Chemicals and reagents
Animals were administered vancomycin hydrochloride (Lot#: 591655DD)
for injection, obtained commercially (Hospira, Lake Forrest, IL, USA). All sol-
vents were of LC-MS/MS grade. For LC-MS/MS, vancomycin hydrochloride,
United States Pharmacopeia, was used (Enzo Life Science, Farmingdale, NY,
USA) with a purity of 99.3%. Polymyxin B (Sigma–Aldrich, St Louis, MO, USA),
acetonitrile and methanol were purchased from VWR International
(Radnor, PA, USA). Formic acid was obtained from Fisher Scientific
(Waltham, MA, USA). Frozen, non-medicated, non-immunized, pooled
Sprague–Dawley rat plasma (anticoagulated with disodium EDTA) was
used for calibration of standard curves (BioreclamationIVT, Westbury,
NY, USA).

Determination of vancomycin concentrations in plasma
Plasma concentrations of vancomycin were quantified with LC and column
conditions similar to our previous report,17,23 with the following notable
changes to transfer the method to LC-MS/MS. A plasma sample volume of
40 mL was combined with 4 mL of the internal standard of polymyxin B at
a concentration of 0.1 mg/mL. Protein precipitation was facilitated using
455 mL of methanol containing 1% formic acid. Following centrifugation for
10 min at 16000 g (Eppendorf Model: 5424), 75 mL of the supernatant was
collected and reserved for analysis. A total of 2 mL was injected into an in an
Agilent 1260 liquid chromatograph attached to an Agilent 6420 triple quad-
rupole mass spectrometer. MS was conducted with electrospray ionization
in positive mode (ESI!). The MS source conditions were: gas temperature
set to 350�C, gas flow set to 13 L/min, nebulizer set at 40 psi, fragmentor
set at 140 V and cell accelerator voltage set at 4V. Vancomycin collision en-
ergy for the quantifier and qualifier was set at 15 and 34 eV, respectively.
Polymyxin B1 collision energy was set at 22 eV. The following transitions
(m/z) for vancomycin and polymyxin B1 were identified and utilized: 725.6
! 144.1 for vancomycin quantifier, 725.6! 100.1 for vancomycin qualifier
and 402.2! 101.1 for polymyxin B1 quantifier. The assay was linear be-
tween concentrations of 0.5 and 100 mg/L (R2"0.998) with an applied
weight of 1/x. The lower limit of quantification was 0.5 mg/L. Precision was
,6.7% for all measurements, including intra- and interassay measure-
ments. Greater than 92% accuracy was observed in all standards tested,
with an overall mean assay accuracy of 100%. Any samples measuring
above the upper limit of quantification were diluted.
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Determination of urinary biomarkers of AKI
Urine samples were analysed in batch to determine concentrations of clus-
terin, KIM-1 and OPN. Microsphere-based Luminex X-MAP technology was
used for the determination of all biomarker concentrations, as previously
described.24,25 Urine samples were aliquoted into 96-well plates supplied
with MILLIPLEXVR MAP Rat Kidney Toxicity Magnetic Bead Panel 1 (EMD
Millipore Corporation, Charles, MO, USA), prepared and analysed according
to the manufacturer’s recommendations.

Vancomycin PK model and exposure determination
One- and two-compartment rate constant (Ke) models solved algebraically
(minus the absorption constant in the stock model for the program)26 were
considered as base models and were fit using the non-parametric adaptive
grid (NPAG) algorithm within the Pmetrics package version 1.5.0 (Los
Angeles, CA, USA) for R version 3.2.1 (R Foundation for Statistical
Computing, Vienna, Austria).27,28 Model performance was evaluated and
compared utilizing a regression of observed versus predicted concentra-
tions, visual plots of parameter estimates, Akaike information criterion (AIC)
and the rule of parsimony. The initial estimate of parameter weighting was
accomplished using the inverse of the assay variance. The observation vari-
ance was proportional, with a scalar (gamma) to assay variance.

Estimation of PK exposure profiles and statistical
analysis
The best-fit model was utilized to obtain median maximum a posteriori
probability (MAP) Bayesian vancomycin plasma concentration estimates at
12 min intervals over the 24 h study period, generated from each animal’s
measured vancomycin concentrations, exact dose and dosing schedule.
Bayesian posteriors for each animal were used to determine exposures
over the 24 h time period (i.e. AUC0–24h, Cmax 0–24h and Cmin 0–24h).
The PK values Cmax 0–24h and Cmin 0–24h were calculated using ‘makeNCA’
within Pmetrics.27,29 The highest predicted concentration was determined
to be each individual animal’s Cmax 0–24h, and the concentration at hour 24
following the initial vancomycin dose was determined to be that
subject’s Cmin 0–24h. Twenty-four hour exposure, as measured by AUC0–24h,
was calculated using the trapezoidal rule under the Pmetrics command
‘makeAUC’.27,29 PK exposure measure variability was calculated as the
percentage coefficient of variation (CV%). Relationships between PK
exposure parameters were evaluated using Spearman’s rank coefficient (rs)
as described below.

Association of PK measures with urinary AKI biomarkers
Exposure parameters were assessed for relationships with urinary bio-
markers using GraphPad Prism version 7.02 (GraphPad Software Inc., La

Animals in 24 h iv
protocol
N= 50

Control
(normal saline)

n= 5

Treatment
(vancomycin)

n= 45

TDD=150 mg/kg
n= 12

150 mg/kg ×1
n= 6

75 mg/kg q12h
n= 6

TDD=200 mg/kg
n= 12

200 mg/kg ×1
n= 6

100 mg/kg q12h
n= 6

TDD=300 mg/kg
n= 11

300 mg/kg ×1
n= 5

150 mg/kg q12h
n= 6

150 mg/kg q12h
n= 4 completed

n= 1 contributed partial
PK data only

n= 1 contributed partial
PK and full TD data  

TDD=400 mg/kg
n= 10

400 mg/kg ×1
n= 5 

400 mg/kg ×1
n= 4 completed

n= 1
completed
partial PK
data only

200 mg/kg q12h
n= 5

Figure 1. Randomization and animal dosing flowchart. TDD, total daily dose; %1, once-daily dose.
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Jolla, CA, USA). PK/TD exposure–response relationships were evaluated
using Spearman’s rs and Hill-type functions; log transformations of varia-
bles (i.e. log2 and log10) were employed to explore the relationship between
PK parameters and urinary biomarkers. The 90th percentile effective con-
centration (EC90) for each PK exposure versus a specific biomarker was cal-
culated from the best-fit Hill model. The EC90 was selected on the basis that
(i) an antecedent value of KIM-1 .16 ng/mL was identified to predict AKI
2 days prior to the event (83% sensitivity and 95% specificity);30 (ii) KIM-1
values of 16.5 ng/mL corresponded to the 90th percentile for values in our
model; and (iii) KIM-1 is the primary biomarker of interest as it is specific to
the proximal tubule and associated with VIKI.17,31

Statistical analysis for between-treatment group
comparisons
Urine output, body weight loss and PK exposure measures were compared
across vancomycin total daily dose and dosing frequency groups. Log
transformations were employed as needed to maintain parametric distri-
butions. Differences were evaluated using either Student’s t-test or the
Wilcoxon rank sum test, as appropriate. Regressions on biomarkers
were completed with categories treated as independent variables and con-
trol animals set as the referent category. All tests were two-tailed, with an
a priori level of statistical significance set at an a of 0.05.

Results

Characteristics of animal cohort

All 45 dosing protocol animals contributed PK model data. Mean
weight loss and urine output were not significantly different be-
tween controls and vancomycin dosing protocol animals (4.8 g
versus 8.6 g, P"0.35, 16.86 mL versus 15.74 mL, P"0.59; Table 1).
Three animals (two animals in the 150 mg twice-daily cohort and
one from the 400 mg once-daily cohort) did not complete the full
protocol due to complications from either surgery or anaesthesia
(Figure 1). Of these three animals, only one from 150 mg vanco-
mycin twice daily contributed 12 h urinary biomarker data.
Analyses were run including and excluding this animal. Since all
interpretations were identical when excluding the animal with
only 12 h urine (data not shown), the animal was included for all
analyses. All animals contributed PK data and were thus included
for PK study. All available/appropriate vancomycin plasma sam-
ples and urine biomarkers were utilized for model building and
post-hoc Bayesian posterior generation.

Vancomycin PK models, parameter estimates and
exposures

Models were successfully fit for one- and two-compartment mod-
els. A two-compartment model was chosen as the final model
given that it was the most parsimonious with the least bias/impre-
cision and the lowest AIC compared with other models. The overall
PK exposures for all rats are summarized in Table 2. The final mod-
el’s population mean parameter values (SD) for Ke, V, KCP and KPC

were: 0.6 h#1 (0.38), 0.11 L (0.08), 5.33 h#1 (8.5) and 3.66 h#1

(6.56), respectively. Model predictive performance for observed
versus Bayesian predicted concentrations, bias, imprecision
(i.e. bias-adjusted mean weighted squared prediction error) and
the coefficient of determination (R2) were 0.49 mg/L, 34 (mg/L)2

and 0.97, respectively (Figure 2). PK exposures (i.e. AUC0–24h, Cmax

0–24h and Cmin 0–24h) were variably correlated when assessed
using Spearman’s rs correlation coefficient (AUC-Cmax, rs"0.92;
AUC-Cmin, rs"0.76, Cmax–Cmin, rs"0.62; P values,0.01), and are
displayed in Table 3.

Urinary biomarkers

Urinary biomarkers (KIM-1, clusterin and OPN) for the vancomycin
dosing group were all significantly different from control (P,0.05),
displayed in Table 1. For KIM-1, the median (IQR) for control versus
vancomycin group was 1.02 ng/mL (0.88–1.05) and 12.3 ng/mL
(5.6–13.9), respectively, P,0.001. For clusterin, the median (IQR) for
control versus vancomycin group was 319.5 ng/mL (308.9–332.2)
and 879.4 ng/mL (617.6–1362), respectively P"0.0043. For OPN, the
median (IQR) for control versus vancomycin group was 0.02 ng/mL
(0.01–0.03) and 0.218 ng/mL (0.11–0.39), respectively P,0.001.

Exposure–response relationships and EC90

Four parameter Hill models best described the exposure–biomark-
er relationships. Exposure–biomarker relationships were found be-
tween AUC0–24h versus KIM-1 and OPN (R2"0.61 and R2"0.66) and
Cmax 0–24h versus KIM-1 and OPN (R2"0.50 and R2"0.56).
Conversely, Cmin 0–24h and mg/kg/day were less predictive of KIM-1
(R2"0.46 and R2"0.47) and OPN (R2"0.53 and R2"0.50). All
exposure–biomarker relationships are shown in Figure 3. The EC90

(95% CI) for PK/TD pairs were as follows: AUC0–24h versus KIM-1
(482.2 mg�h/L, 95% CI 320.2–1030) and OPN (939.4 mg�h/L, 95%

Table 1. Summary of weight loss, urinary output and urinary biomarkers

Control Vancomycin P value

Animals (n) 5 45 –

Baseline weight (g), mean+SD 323.8+22.42 312.87+15.37 0.16

Weight loss (g), mean+SD 4.8+2.28 8.6+8.95 (n"40)a 0.35

Urine output (mL), mean+SD 16.86+3.07 15.74+4.48 (n"41)a 0.59

KIM-1 (ng/mL), median (IQR) 1.02 (0.88–1.05) 12.3 (5.6–13.9) (n"43)b
,0.001

Clusterin (ng/mL), median (IQR) 319.5 (308.9–332.2) 879.4 (617.6–1362) (n"43)b 0.0043

OPN (ng/mL), median (IQR) 0.02 (0.01–0.03) 0.218 (0.11–0.39) (n"43)b
,0.001

aSome values inadvertently not recorded.
bFor animals completing the urine endpoint.
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CI 539.9–3171); Cmax 0–24h versus KIM-1 (323.1 mg/L, 95% CI un-
able to estimate) and OPN (695.8 mg/L, 95% CI unable to esti-
mate); Cmin 0–24h versus KIM-1(95% CI unable to estimate) and
OPN (17.45 mg/L 95% CI unable to estimate).

PK/TD correlations

Correlations of urinary biomarkers and vancomycin exposure met-
rics (i.e. AUC0–24h, Cmax 0–24h and Cmin 0–24h) are shown in Table 4.
KIM-1 was highly correlated with AUC0–24h (rs"0.53, P,0.01). OPN
demonstrated the highest correlation with AUC0–24h (rs"0.75,
P,0.01), followed by Cmax 0–24h and Cmin 0–24h (both rs"0.68,
P,0.01). Correlations between Cmin 0–24h and urinary biomarkers
were less pronounced, and clusterin was less correlated with all
biomarkers (data not shown).

Discussion

In this study, we found that AUC0–24h and Cmax 0–24h were highly
correlated with increased urinary concentrations of KIM-1 and
OPN. Cmin 0–24h was less correlated with AKI measures. Here, we
identified that an AUC0–24h of 482.2 mg�h/L and a Cmax 0–24h of
323.1 mg/L were associated with a 90% maximal increase in KIM-
1 within a 24 h period. We believe KIM-1 to be the most relevant
urinary biomarker as it is specific for proximal tubule injury.17,32,33

OPN, on the other hand, is more generically indicative of non-
specific tubule or glomerular damage.21,34 Further studies looking
into this are warranted. Our previous work indicates that KIM-1 is
more specific to the proximal tubule in VIKI as it was correlated
with the proximal tubule injury score,17 and this is consistent with
the known mechanistic effect.32 Further, the threshold that we
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Table 2. PK exposure summary for vancomycin-treated animals

PK exposure Vancomycina (n"45)

AUC0–24h (mg�h/L), median (IQR) 643.1 (427.7–2769.4)

Cmax 0–24h (mg/L), median (IQR) 350.9 (209.7–917.9)

Cmin 0–24h (mg/L), median (IQR) 2.9 (0.8–36)

aControls were excluded given that they did not receive vancomycin.

Table 3. Spearman correlation between untransformed PK exposure
parameters

PK exposure (n"45)a AUC0–24h (rs) Cmax 0–24h (rs) Cmin 0–24h (rs)

AUC0–24h 1 – –

Cmax 0–24h 0.92 (P, 0.001) 1 –

Cmin 0–24h 0.76 (P, 0.001) 0.62 (P, 0.001) 1

aControls were excluded given that they did not receive vancomycin.
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used (KIM-1 .16 ng/mL) has demonstrated predictive ability for
AKI in humans as defined by AKIN criteria (urinary output ,0.5 mL/
kg/h during a 6 h period or when the serum creatinine increased
.0.3 mg/dL or a 1.5- to 2-fold increase from the baseline value).30

It is notable that our identified AUC target is in agreement with a
prospective multicentre clinical study of vancomycin concentra-
tions at day 2 that caused AKI (defined as a�1.5-fold increase in
serum creatinine for patients with a baseline creatinine ,2.0 mg/
dL) during vancomycin therapy.35 The results of the clinical study
demonstrated that the first risk stratification by classification and
regression tree (CART) analysis occurred between 343 and
793 mg�h/L,35 which agrees with the threshold of 482 mg�h/L that
we found. We believe that our results can be viewed as similar to
MIC testing for bacterial resistance classification. While the testing
conditions are different from the clinical environment (i.e. the MIC

testing environment does not mimic a standard physiological en-
vironment), the numerical agreement of the surrogate (e.g. MIC to
clinical efficacy) is important for predicting downstream patient
outcomes. Hence, we believe that the 24 h iv rat model and bio-
marker thresholds will be translatable for early identification of
meaningful kidney injury. Notably, our results are also qualitatively
similar to our previous rat studies when we utilized doses between
150 and 400 mg/kg given as either single or twice-daily intraperito-
neal injections.17,18 In those studies, we identified a correlation be-
tween the PK parameters vancomycin AUC0–24 and Cmax 0–24h and
urinary biomarkers, demonstrating that histopathological damage
correlates with an increase in KIM-1.17,18 Other laboratories19,21

conducting vancomycin dose–response studies have similarly
identified KIM-1 and OPN as sensitive and specific biomarkers pre-
dictive of kidney damage in rat models. Our results and concord-
ance amongst the studies provides further evidence to support
that vancomycin Cmin is not likely to be the parameter that medi-
ates VIKI. Notably, the current vancomycin treatment guidelines
focus solely on the measurement of trough concentrations.36

The present study focuses on iv-treated rats utilizing a range of
dosages to allometrically scale low to high clinical exposures.
Using iv dosing offers several advantages. First, in contrast to intra-
peritoneal (ip) dosing, there is a more predictable and reproducible
exposure profile with iv dosing. This is important because erratic
absorption from ip studies requires that multiple samples are
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Table 4. Spearman correlation for untransformed PK exposure parame-
ters and urinary biomarkers

Biomarker AUC0–24h (rs) Cmax 0–24h (rs) Cmin 0–24h (rs)

KIM-1 0.53 (P, 0.001) 0.40 (P, 0.001) 0.49 (P, 0.001)

Clusterin 0.27 (P"0.06) 0.18 (P"0.22) 0.19 (P"0.19)

OPN 0.75 (P, 0.001) 0.68 (P, 0.001) 0.68 (P, 0.001)
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drawn after every dose (in order to characterize each exposure
curve). In small animal studies, the number of blood samples pos-
sible is limited. Second, with ip dosing, vancomycin may inadvert-
ently be injected into the retroperitoneal space and serve as a
direct nephrotoxin via external contact. Additionally, there is a re-
mote possibility for the injection to physically damage the kidney.
Thus, iv dosing in rats represents a biodistribution profile more re-
flective of that seen in typical clinical use in humans, and addition-
ally avoids unnecessary variability.

Importantly, our data reinforce that the rat model is highly
translational for understanding vancomycin-induced kidney dam-
age. In the clinical setting, the median onset of vancomycin-
induced AKI has been reported as 6–7 days into therapy, but these
studies have relied on traditional and insensitive markers of AKI
such as SCr and blood urea nitrogen (BUN).8,12,13 We previously
analysed SCr in animals and found no relationship in the 24 h to
3 day studies, probably since SCr and BUN did not have enough
time to become demonstrably elevated. As SCr requires 30%–50%
parenchymal damage before it is detectable, kidney injury can be
severe before changes in SCr can be detected.37 Using sensitive
biomarkers for detection of early kidney damage may allow for
early indication of renal injury and enable clinicians to change ther-
apy prior to more substantial damage. Both the FDA and EMA have
issued letters of support for KIM-1 and OPN.38,39 In addition, KIM-1,
clusterin and cystatin C have already been qualified for pre-clinical
toxicological evaluations by the EMEA and the Pharmaceutical and
Medical Devices Agency Japan (PMDA).40,41 Further, urinary bio-
markers (e.g. KIM-1 and clusterin) are already qualified for rat42

and human43 drug trials by the FDA (i.e. for drug-induced AKI).
Thus, our results and agreement with robust clinical data indicate
that KIM-1 can serve as an early surrogate for realized kidney
injury.

We acknowledge several limitations in our study. First, our
study was limited to 24 h dosing. However, as previously noted,
elevations in biomarkers have already been linked to histopatho-
logical damage within this time period.19 Despite the 1 day nature
of our study, we have demonstrated similar AUC thresholds to
those identified in humans.35 Thus we suggest that this model is a
surrogate for clinical human outcomes. Second, this study does
not effectively separate Cmax and AUC, and additional studies will
be needed to understand which is the primary driver of toxicity.
These future studies will have implications for dosing administra-
tion time (e.g. continuous infusion versus intermittent infusion).
Notably, this study employed allometric scaled doses which is dif-
ferent from parameter scaling (matching Cmax in the rat to the
human Cmax).44 FDA guidance suggests allometrically scaled doses
for toxicological analysis.45 Tethered animal models employing
continuous infusion are needed for parameter scaling, and it is not
clear if these results will be more translational than current studies.
Third, when fitting the data to the TD model, some mathematical
relationships were not sufficient for defining the 95% CI of the
EC90. For Cmin, this is due to overall poor model fit. It will be neces-
sary to design studies to formally compare AUC to Cmax to fully de-
fine the PK/TD link; however, for standard intermittent infusions,
our AUC data are presently the most translational. Fourth, clinical
studies have not identified single urinary biomarkers that are high-
ly specific for drug-induced kidney injury where multifactorial proc-
esses are the rule rather than the exception.46 Clinical studies may
benefit from employing blood biomarkers where dilution is less of

a concern than with urinary markers,47 and one biomarker alone
may not be sufficient to identify vancomycin-induced kidney dam-
age. Despite these concerns, it is notable that KIM-1 in the rat is a
homologue of KIM-1b in humans, thus further enhancing future
translation.48 These quantitative relationships require further ex-
ploration and clinical trials.

In summary, these data demonstrate that VIKI is caused by ei-
ther elevated peak plasma concentrations (Cmax 0–24h) or total
plasma exposure (AUC0–24h) of vancomycin rather than with troughs
(Cmin 0–24h). These findings may have clinical implications for vanco-
mycin monitoring schemes. Further clarification of the drivers of
VIKI are needed to improve dosing regimens that maximize efficacy
while minimizing toxicity. Finally, our study demonstrates the utility
of the rat model for understanding PK/TD for vancomycin.
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