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Abstract

A Bayesian design is presented that does precision dose-finding based on time to toxicity in a 

phase I clinical trial with two or more patient subgroups. The design, called Sub-TITE, makes 

sequentially adaptive subgroup-specific decisions while possibly combining subgroups that have 

similar estimated dose-toxicity curves. Decisions are based on posterior quantities computed under 

a logistic regression model for the probability of toxicity within a fixed follow up period, as a 

function of dose and subgroup. Similarly to the time-to-event continual reassessment method 

(TITE-CRM, Cheung and Chappell), the Sub-TITE design downweights each patient’s likelihood 

contribution using a function of follow up time. Spike-and-slab priors are assumed for subgroup 

parameters, with latent subgroup combination variables included in the logistic model to allow 

different subgroups to be combined for dose finding if they are homogeneous. This framework can 

be used in trials where clinicians have identified patient subgroups but are not certain whether they 

will have different dose-toxicity curves. A simulation study shows that, when the dose-toxicity 

curves differ between all subgroups, Sub-TITE has superior performance compared to applying 

the TITE-CRM while ignoring subgroups, and has slightly better performance than applying the 

TITE-CRM separately within subgroups or using the two-group maximum likelihood approach of 

Salter et al. that borrows strength among the two groups. When two or more subgroups are truly 

homogeneous but differ from other subgroups, the Sub-TITE design is substantially superior to 

either ignoring subgroups, running separate trials within all subgroups, or the maximum likelihood 

approach of Salter et al. Practical guidelines and computer software are provided to facilitate 

application.
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1 | INTRODUCTION

Most phase I clinical trial designs use adaptive rules to choose doses for successive patient 

cohorts based on a binary indicator of toxicity 1–5. In practice, toxicity is evaluated for each 

patient over a follow up period of specified length, T. If T is large relative to the trial’s 
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accrual rate, then a severe logistical problem may arise when attempting to apply adaptive 

rules that use the (dose, toxicity) data of previous patients to choose doses for new patients. 

This sometimes is called a “late onset toxicity” setting. For example, suppose T = 12 weeks, 

the accrual rate is one patient per week, and the cohort size is three. Since a patient’s 

outcome can be scored definitively as “No toxicity” only if the patient is followed for 12 

weeks, roughly nine to 12 patients may be accrued before the first cohort’s toxicity 

outcomes are fully evaluated. The question arises of how to treat each of patients #4 through 

#12 when they are enrolled. If some previously treated patients’ outcomes have not been 

fully evaluated when a new patient is enrolled, possible approaches include making each 

cohort wait until all previous patients’ toxicity outcomes have been evaluated before 

choosing their dose, not waiting and treating the new patient at the current recommended 

dose, not waiting and treating the new patient one dose level below the current 

recommended dose, or treating newly accrued patients off protocol. A discussion of 

problems with these approaches is given by Jin et al. 6, in the phase I-II dose-finding setting. 

Thall et al. 7 proposed a very simple approach, the so-called “look ahead” method, wherein 

if the outcomes of patients treated but not yet evaluated will not alter the adaptive rule’s 

decision, then that decision is made immediately. In practice, however, the look-ahead rule is 

of little use early in the trial. Bekele et al. 8 proposed a Bayesian method based on predictive 

probabilities of toxicity, but this approach is impractical because it may require repeatedly 

suspending accrual.

Cheung and Chappell 9 provided a practical solution to the late onset toxicity problem in 

phase I trials by proposing the time-to-event continual reassessment method (TITE-CRM). 

This method generalizes the CRM introduced by O’Quigley, Pepe and Fisher 10 by 

accounting for patients who have been treated recently but whose outcomes have not been 

fully evaluated as either time of toxicity, or last follow up time without toxicity. Since its 

introduction, the TITE-CRM has been studied and extended in several ways, including 

evaluation of model sensitivity 11, refinement to accommodate both early and late onset 

toxicities 12, use of the EM algorithm to predict future toxicities 13, called the EM-CRM, 

and a computer simulation study 14.

The current paper was motivated by the desire to account for patient heterogeneity in trials 

with late onset toxicity. If patients are classified into putatively heterogeneous subgroups and 

the dose-toxicity relationship may differ between subgroups, the adaptive dose finding 

problem becomes more complex, since the optimal dose may differ between subgroups. If 

so, then simply ignoring heterogeneity and applying the TITE-CRM to select one “optimal” 

dose risks choose a suboptimal dose in one or more subgroups. If, instead, the TITE-CRM is 

used to conduct separate trials within the subgroups, this may be inefficient due to small 

subgroup sample sizes, particularly if two or more subgroups are truly homogeneous in that 

they have the same dose-toxicity curves. Our proposed method is similar to that of Salter et 

al. 20,21, who generalized the TITE-CRM by proposing a maximum likelihood-based 

method assuming a two parameter model, with the goal to choose subgroup-specific doses in 

the case of two subgroups.

For short term binary toxicity outcomes, methods that account for settings where the 

probability of toxicity increases with risk subgroup have been proposed by Mehta et al.15, 
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O’Quigley and Paoletti 16, Yuan and Chappell 17, and Ivanova and Wang 18. O’Quigley and 

Paeletti 16 included an additional subgroup-specific intercept parameter in the usual TITE-

CRM skeleton parameterization to perform dose-finding in a priori ordered subgroups. 

Morita, et al. 19 provided a simulation study of hierarchical and non-hierarchical model 

based subgroup-specific versions of the CRM.

In the late onset toxicity setting, we propose a method that deals with the problem that 

prespecified subgroups may have either different or similar dose-toxicity curves. To do this, 

we extend the TITE-CRM to do subgroup-specific dose selection while also possibly 

combining subgroups found to have the same dose-toxicity curve. The method, which we 

call the Sub-TITE design, is based on a working likelihood and down-weighting scheme 

similar to that of Cheung and Chappell 9. We assume a Bayesian logistic regression model 

for the probability of toxicity by follow up time T, with a linear component including effects 

of dose, subgroup, and dose-subgroup interaction. We assume spike-and-slab priors on 

subgroup-specific parameters to allow adaptive dose selection to be done within all 

subgroups, or for sets of subgroups combined if they are found to be homogeneous. This 

model provides a formal basis for implementing the Sub-TITE method’s main practical 

generalization, which is to choose optimal subgroup-specific doses while permitting some 

subgroups to be pooled if the data suggest it is appropriate. This provides a method for 

conducting a single trial that borrows strength between subgroups, rather than conducting 

separate trials within the subgroups. We also include safety rules that suspend accrual within 

a subgroup for which the lowest dose is found to be too toxic, but continue accrual in the 

other subgroups where the lowest dose is considered safe. To facilitate application, we 

provide algorithms for using elicited toxicity probabilities for each dose within each 

subgroup to calibrate prior means and variances, and we use simulation to determine 

subgroup specific cutoffs for stopping accrual in a subgroup. Computer code to simulate and 

conduct a trial using Sub-TITE is available on CRAN in the package SubTite.

While both our proposed method and that of Salter et al. 20,21 generalize the TITE-CRM to 

choose subgroup-specific doses, there are several important differences. Our proposed 

method (1) adaptively combines subgroups that have empirically similar dose-toxicity 

curves, thus choosing the same dose for the combined subgroups, (2) accommodates more 

than two subgroups, (3) includes rules to stop accrual and choose no dose in subgroups for 

which the lowest dose is found to be excessively toxic, and (4) is based on Bayesian model 

and computational algorithms.

This research was motivated by a phase I trial to select subgroup-specific optimal doses of 

radiation therapy (RT) for advanced non small cell lung cancer. The subgroups in this trial 

corresponded to two different radiation modalities: proton beam or non-proton beam 

(conventional). The modality was chosen for each patient by the attending physician based 

on the patient’s insurance coverage and the location, type, and extent of disease. The 

clinician hypothesized that patients receiving proton beam RT might have lower toxicity 

probabilities, but was not certain that this was true and did not want to impose this as a 

restriction in the trial. Ideally, it would have been desirable to allow the design to either 

choose different optimal doses within the modality subgroups, or combine the modalities 

and choose one optimal dose if they were found to have the same dose-toxicity curve. No 
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methodology for doing this existed at the time of the trial, however. The patient’s nodal 

mediastinal disease, located in the esophagus, spinal cord, or large blood vessels 

surrounding the heart, was to be treated with a RT dose chosen from the set of five possible 

levels {10, 20, 30, 50, 70 } Gy, where Gy denotes a Gray unit, which is 1 Joule of radiation 

absorbed per kilogram of the tumor. Toxicity was defined as any of several common adverse 

effects due to the RT, occurring over a T = 6 month follow up period, with target toxicity 

probability .30. We developed the Sub-TITE methodology with this trial in mind.

We compared the operating characteristics (OCs) of Sub-TITE to either using the TITE-

CRM while ignoring subgroups, or the approach of using a TITE-CRM design to conduct a 

separate trial within each subgroup, which we call Sep-TITE. Our simulations showed that, 

when the true dose-toxicity curves differ substantively between subgroups, the Sub-TITE 

design has superior OCs compared to the TITE design that ignores subgroups and slightly 

better OCs than the Sep-TITE approach. When two or more subgroups are truly 

homogeneous, the Sub-TITE design is substantially superior to running separate trials within 

subgroups. In the case of two subgroups, we also compared our method to the maximum 

likelihood based approach of Salter et al.20,21, which we refer to as SOCA-TITE. We also 

performed a robustness study to examine the performance of Sub-TITE and its comparators 

under different time-to-toxicity distributions, and to evaluate each design’s sensitivity to the 

number of subgroups, maximum sample size, and proportions of patients within subgroups. 

Our simulations, presented in Section 4, show that Sub-TITE provides more reliable within-

subgroup decisions than either ignoring heterogeneity or conducting separate trials within 

subgroups.

The remainder of the paper is organized as follows. The probability model and prior 

distributions for time to toxicity as a function of dose and subgroup are given in Section 2. 

Section 3 describes how to elicit expected toxicity probabilities from clinicians for each 

subgroup and dose considered in the trial. It also describes how to use these expected 

toxicity probabilities to obtain the hyperparameters used for the design. Section 4 describes 

how the trial is designed and conducted using Sub-TITE, including step-by-step guidelines. 

The simulation study is presented in Section 5, including comparison of Sub-TITE to the 

three alternative approaches. We close with a brief discussion in Section 6.

2 | DOSE-TOXICITY MODEL

Let d1 < d2 < ... < dK denote the raw doses to be studied in the trial, and define the 

standardized doses x j = d j − d /s(d), for j = 1, …, K, where d is the mean and s(d) is the 

standard deviation of the raw doses. We denote 𝒳 = x1, ⋯, xK  and an arbitrary standardized 

dose by unsubscripted x. We index subgroups by g = 0, ..., G − 1, with g = 0 an arbitrarily 

chosen baseline subgroup, and consider settings where K ≥ 3 and G = 2, 3,…,6. Let T 
denote a fixed follow up time for evaluating toxicity, specified by the clinical investigators. 

At trial time t, let ai ≤ t denote the accrual time of the ith patient, with follow up time 

ui(t) = min t − ai, T , and define Yi(ui(t)) to be the binary indicator that patient i has 

experienced toxicity by t. Thus, Yi(T) = Yi is the indicator that the ith patient has toxicity 

within the specified follow up period.
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Let Wi ∈ {0, 1, …, G − 1} denote the ith patient’s subgroup. We define a latent patient 

subgroup variable Zi ∈ {0, …, G − 1}, and use Zi in the likelihood in place of Wi. The 

Markov chain Monte Carlo (MCMC) posterior sampling scheme uses (Z1, ..., Zn) as a device 

to allow different subgroups to be combined for dose finding. We define Zi = 0 if Wi = 0, 

and for G ≥ 2,

Zi = ∑
g = 1

G − 1
I W i = g ζg . (1)

This definition implies that the baseline group is always included in the likelihood, although 

other subgroups may be combined with it. The elements of the vector ζ = ζ1, …, ζG − 1  are 

random latent variables taking on values in {0, 1, …, G − 1}, with each ζg endowed with a 

prior, given below. In the MCMC algorithm, ζ is used to determine what other subgroups, if 

any, with which each subgroup should be combined for dose finding via the likelihood. 

Since Zi is a function of Wi and ζ, as ζ changes throughout the MCMC, so does Zi via (1). If 

ζg = g then the logistic model used for dose finding includes subgroup specific parameters 

for g, but if ζg = k for some k ≠ g, then for any Wi = g, in the likelihood Zi = k.

Since phase I sample sizes are limited, we require a model that is reasonably parsimonious 

and tractable. It also must include appropriate regression structure to account for the effects 

of dose, subgroup, and dose-subgroup interactions as a basis for adaptive subgroup-specific 

decision making. Temporarily suppressing the patient index i for simplicity, let 

η(x, Z, θ) = logit−1 π(x, Z, θ)  denote the linear term in a logistic regression model with 

parameter vector θ, where π(x, Z, θ) = Pr(Y = 1| x, Z, θ) . We assume that

η(x, Z, θ) = α + ∑
g = 1

G − 1
αgI(Z = g) + exp β + ∑

g = 1

G − 1
βgI(Z = g) x, (2)

so α and β are the intercept and dose effect parameters for subgroup g = 0, and αg and βg 

are the subgroup g–versus–0 intercept and dose effects. Thus, the 2G dimensional model 

parameter vector is θ = α, α1, …, αG − 1, β, β1, …, βG − 1 . This model is invariant to the 

choice of the baseline subgroup 0 and the operating characteristics do not change for the trial 

for different baseline subgroups. We parameterize the linear component in this way so that 

the model borrows strength across both subgroups and dose levels. We exponentiate β and β 
+ βg to ensure that the probability of toxicity increases with dose for each subgroup.

For priors, we assume that α ~ N(α, σα) and β ~ N(β , σβ). We introduce a binary random 

variable ρg to allow for the possibility that the subgroups are truly homogeneous and place a 

spike and slab prior on (αg, βg), of the form
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αg ρgN αg, σα + 1 − ρg δ0 αg
βg ρgN βg, σβ + 1 − ρg δ0 βg

P ρg = 1 = .9,

(3)

where δ0(·) denotes the probability function with point mass at {0}. We set the prior 

probability of heterogeneous subgroups to .9 to favor subgroup specific dose finding, while 

allowing the possibility that some subgroups are homogeneous.

We define a prior on each latent subgroup parameter ζg as follows. Denote 

S = 0 ∪ ζg: ρg = 1 , with |S| its cardinality.

1. If ρg = 1, then Pr(ζg = g) = 1.

2. If ρg = 0, then Pr(ζg = k) = 1/|S| for each k ∈ S.

That is, if ρg = 0, then the probability that subgroup g is truly a member of any other current 

latent subgroup is uniform on S. This construction allows two or more subgroups to be 

combined adaptively during the trial. If, for example, ζ1 = ζ2 = ζ3 = 1 then subgroups 1, 2, 

and 3 are combined. Thus, the parameter vector used in the likelihood is 

θ = α, β, αg, βg g = 1
G − 1 , while ζ determines the values of Z given the observed subgroups 

W.

To illustrate how the parameters θ, ζ, ρ work together in the likelihood, for example, 

suppose that G = 3 and ρ1 = ρ2 = 0. By definition of the conditional prior, S = {0} hence 

both ζ1 = ζ2 = 0 and the subgroup parameters are α1 = α2 = β1 = β2 = 0. If ρ1 = 0 and ρ2 = 1, 

then ζ2 = 2, α2 ≠ 0 and β2 ≠ 0, and α1 = β1 = 0. In this case, S = {0, 2}. If ζ1 = 0, then 

patients in subgroup Wi = 1 will have latent subgroup Zi = 0, while if ζ2 = 2, patients in 

subgroup Wi = 1 will have latent subgroup Zi = 2.

A key point is that the subgroup combination algorithm is applied at every iteration of the 

MCMC. Thus, for example, two different subgroups g = 2 and g = 3 be may combined but 

later separated in the course of the MCMC. Consequently, the resulting posterior sample 

may have subgroups g = 2 and g = 3 combined as {2, 3} for, say, 90% of the posterior 

sample values and distinct for the remaning 10%. This reflects the stochastic nature of (ρg, 

ζg), for g = 0, ..., G − 1. Hyperparameter calibration including prior elicitation from 

clinicians is discussed in section 3 in detail.

Let nt denote the number of patients enrolled and treated up to study time t, and index 

patients by i = 1, ..., nt. To choose each patient’s dose adaptively, at study time t when a new 

patient is enrolled, a personalized dose is chosen based on that patient’s subgroup and the 

posterior distribution for θ, ζ given the current data

𝒟nt
= Yi ui(t) , Wi, ui(t), i = 1, ⋯, nt
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for all previously enrolled patients. We follow the approach of Cheung and Chappell9 by 

including the weight function ωi(t) = ui(t)/T in the likelihood for patients who have been 

partially followed but not experienced toxicity, resulting in the approximate (working) 

likelihood

ℒ θ, ζ, 𝒟nt
= ∏

i = 1

nt
π x[i], Zi, θ

Yi ui(t) 1 − ωi(t)π x[i], Zi, θ
1 − Yi ui(t) (4)

where x[i] denotes the standardized dose given to patient i. The weights {ωi(t)} serve the 

purpose of downweighting censored outcomes for patients who have not been followed for 

long past their accrual in the study. Without this weighting scheme, dose escalation would be 

far too aggressive. We did not consider other forms of weights because it has been shown 

that using different weighting schemes does not improve the TITE-CRM design’s 

performance22. Additionally, we did not use subgroup specific weight functions because 

preliminary simulations showed that this causes some subgroups to have too much influence 

on dose finding decisions in the other subgroups, and it also disrupts the subgroup 

combination process, producing a design with poor properties.

We also considered using a full likelihood for the time to toxicity distribution as a function 

of subgroup and dose. However this decreased accuracy in the estimation of π(x, Z, θ), and 

the design performed poorly in settings with increasing hazards. For example, assuming 

either a lognormal or Weibull time-to-toxicity distribution, if the true distribution is Weibull 

with increasing hazard, so that toxicities are likely to occur late in the follow up interval [0, 

T], the design performs poorly compared to the downweighting approach. Since the 

posterior distribution for θ under the logistic model (2) does not have a closed form, we 

perform Metropolis Hastings steps for each θm within the MCMC sampling scheme 

including moves on ρ, ζ and on ζ|ρ. The posterior distribution for α, β, αg, βg are functions 

of the latent subgroup vector ζ and posterior toxicity probability estimates are computed 

using both the posterior parameter vector θ and the posterior latent subgroup vector ζ. 

Details are described in Web Appendix A.

3 | ESTABLISHING PRIORS

In this section, we explain how one may obtain numerical values of the hyperparameters θ
that characterize the prior p(θ |θ) of the logistic regression model parameter vector θ. We 

write θ = θ1, θ2  where θ1 = α, β, α1, ⋯, αG − 1, β1, ⋯, βG − 1  is the subvector of 2G 

hypermeans and θ2 = σα
2, σβ

2  is the subvector of two hypervariances. The first step is to elicit 

the prior mean probability of toxicity, πe(x, W), for each combination of dose x and 

subgroup W. This may be done by providing the clinician with a table with dose and 

subgroup cross-classified that has empty cells, and asking them to fill in their expected 

toxicity probability for each cell. The physician should be reminded that π(x, W) increases 

with x. When collaborating with two or more physicians, a consensus may be reached in 

various ways, with the simplest approach being to ask the physicians to work together to 
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provide a table of values that they agree upon. In practice, we have found that this works 

quite well. Once the JG values {πe(x, W)} are elicited, a general approach for establishing θ
is to proceed in two steps. First, since JG > 2G for J > 2 dose levels, one may treat the πe(x, 

W)’s like outcomes and θ1 like the parameter vector in a conventional nonlinear regression 

model, and use nonlinear least squares (NLS) to solve for θ1. Given these values, the 

hypervariances then may be calibrated to obtain a suitably non-informative prior p(θ |θ) .

For our application, prior mean toxicity probabilities for each dose and subgroup were 

elicited from a single radiation oncologist at M.D. Anderson. Table 1 displays elicited prior 

expected πe(x, W) for each dose and subgroup. For the sub-TITE model, we assume that the 

hypermeans θ1 satisfy the equation

logit πe(x, W) = α + ∑
g = 1

G − 1
αgI(W = g) + exp β + ∑

g = 1

G − 1
βgI(W = g) x

for all (x, W) pairs. We use the Newton-Raphson method to solve for the NLS estimates, 

although other iterative procedures, such as the Nelder-Mead algorithm, could be used. This 

computation is done using the function GetPriorMeans(). A key point here is that these 

hypermeans are based on the patient subgroups and not latent patient subgroups.

We then calibrate the hypervariances θ2 = σα
2, σβ

2  iteratively by first fixing them at some 

initial values, subject to the constraint σα
2 > σβ

2, such as σα
2 = 2 and σβ

2 = 1. The current prior 

p(θ |θ) then is used to generate a sample of (α, β, αg, βg g = 1
G − 1) values, and we compute the 

resulting prior sample of π(x, W, θ) values for each (x, W). We then approximate the prior 

effective sample size (ESS) of the distribution of π(x, W, θ) by matching the sample mean 

μx, W and sample variance σx, W
2  of the π(x, W, θ) values to the corresponding values of a 

beta(a, b) distribution, which has ESS = a + b. This gives the approximate ESS of the prior 

on π(x, W, θ) as

μx, W 1 − μx, W

σx, W
2 − 1.

We then obtain an overall approximate ESS for p(θ |θ), corresponding to the assumed fixed 

σα
2 and σβ

2, as the average over (x, Z) of these JG prior ESS values,

1
G

1
J ∑

x ∈ 𝒳
∑

W = 0

G − 1
ax, W + bx, W = 1

G
1
J ∑

x ∈ 𝒳
∑

W = 0

G − 1 μx, W 1 − μx, W

σx, W
2 − 1 .

We iterate this process using different numerical values of (σα
2, σβ

2) until we obtain an average 

ESS of about 1. Generally it only takes a few minutes to calibrate the two hypervariances 
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using the function GetPriorESS(), which does the above steps and returns a single value for 

the approximate prior effective sample size.

4 | TRIAL DESIGN AND CONDUCT

4.1 | Trial Design

Computer software that implements the proposed methodology is available in the package 

SubTite on CRAN at http://cran.r-project.org. To start the design process, the physician must 

define toxicity and specify T, the doses to be studied, the starting dose, and a fixed target 

toxicity probability π*, or possibly different subgroup-specific targets πg* g = 0
G − 1 .

Additionally, prior means of π(xj, g, θ) must be elicited from the physician for all GK pairs 

of (xj, g) in order to determine prior hyperparameters, as described above. Our proposed 

design generalizes the TITE-CRM by determining, for each subgroup g = 0,1,..., G − 1 the 

dose xg
opt such that π xg

opt, g, θ  has posterior mean closest to the target πg* . Formally, given the 

data 𝒟nt
, if the newly accrued patient at t has W = g, we choose the optimal dose so that

xg
opt 𝒟nt

= argmin
x ∈ 𝒳

E π(x, g, θ) 𝒟nt
− πg* . (5)

If desired, different starting doses may be used within the subgroups. Although in our 

simulations we consider the case where all πg* = π*, with the same starting dose x1 in each 

subgroup, the package SubTite accommodates the more general design features given above. 

For each g, computation of the posterior optimality criterion (5), as well as the posterior 

safety stopping criterion, given below, reflect the possibility that some subgroups may be 

combined in some proportions of the MCMC sample.

To apply Sub-TITE to design and conduct a phase I trial, there must be sufficient evidence 

of subgroup heterogeneity to warrant the increased sample size in order to avoid the small 

loss in reliability in the truly homogeneous case. The prior parameter means are computed 

using the GetPriorMeans() function in the SubTite package, which applies non-linear least 

squares to the elicited toxicity probabilities. After the prior means are obtained, these are 

used in the function GetPriorESS() to calibrate σα and σβ to obtain a desired approximate 

prior ESS.

Before conducting the trial, a simulation study should be done to calibrate design parameters 

to ensure desirable OCs. This requires an expected accrual rate and proportion of patients in 

each subgroup to be elicited from the clinician. Depending on the number of doses, K, 

several potential values of NMax may be evaluated to assess the design’s sensitivity to 

sample size. NMax should be large enough so that the trial would assign at least one cohort 

of patients in each subgroup and dose if they were completely randomized. This ensures that 

there will be enough exploration among the doses within each subgroup. During the trial, 

accrual is suspended in a subgroup if the lowest dose is found to be too toxic. Formally, if at 
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least three patients have been treated at the lowest dose x1 and been fully evaluated in 

subgroup g and

Pr π x1, g, θ > π* 𝒟nt
> pg, U,

then accrual is suspended in that subgroup. If all subgroups are suspended at any interim 

time, then the trial is terminated.

Calibrating NMax and the cutoffs pg, U, g = 0, ⋯, G − 1, for suspending accrual within 

subgroups is done via simulation using the function SimTrial() in the SubTite package. This 

should be done under a reasonably wide range of different true dose-toxicity-subgroup 

scenarios and time-to-toxicity distributions. This function supports the gamma, Weibull, 

lognormal, exponential, and uniform distributions for time to toxicity. Calibration of the 

pg,U’s should include simulation of the trial under a scenario where one subgroup is 

excessively toxic at x1. The design should stop this subgroup early with high probability, but 

without stopping safe subgroups too frequently.

In summary, the following steps should be taken when designing a trial using Sub-TITE:

1. Working with the physician(s) planning the trial, establish (a) the K doses to be 

evaluated, (b) definition of toxicity (c) follow up time T, (d) anticipated accrual 

rate (d) definitions of the subgroups, (e) anticipated subgroup proportions, (f) the 

starting dose for each subgroup, and (g) the target toxicity probability π*, or 

subgroup-specific targets.

2. Elicit the GK prior subgroup-specific mean dose-toxicity probabilities from the 

physician(s), and input these to compute the hyper parameter means 

α, β, αg, βg g = 1
G − 1

 using the GetPriorMeans() function. Calibrate σα and σβ with 

the function GetPriorESS() to obtain approximate prior effective sample size 1.

3. Calibrate NMax and pg, U g = 0
G − 1, by simulation.

4.2 | Trial Conduct

The steps for trial conduct are as follows. While these are given in terms of the initial G 
distinct subgroups, the posterior dose selection and stopping criteria reflect the subgroup 

combination process in the MCMC sample.

1. Treat the first patient in each subgroup enrolled into the trial at that subgroup’s 

starting dose.

2. In each subgroup g, for each successive patient enrolled after the first patient, 

choose xg
opt(𝒟nt

), subject to the additional constraints given in the steps below.

3. In each subgroup, an untried dose may not be skipped when escalating.
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4. In each subgroup g, after at least three patients have been enrolled and fully 

evaluated at the lowest dose, if the lowest dose is unacceptably toxic in the sense 

that

Pr π x1, g, θ > π* 𝒟nt
> pg, U (6)

then accrual to subgroup g is temporarily suspended with no dose selected for 

patients accrued in that subgroup until (6) does not hold. In practice, it may be 

more appropriate to treat these patients off protocol rather than delaying therapy. 

We fully evaluate the first subgroup cohort at the lowest dose to avoid stopping 

due to chance if the lowest dose is not truly toxic.

If at some point during the trial, (6) holds for all g = 0, ⋯, G − 1, then (6) is re-

evaluated for each g based on the data in that subgroup only before subgroup the 

trial is stopped. This mitigates the possibility that x1 is so toxic for one subgroup 

g that all subgroups are stopped, when in fact not all of the other subgroups 

g′ ≠ g are truly excessively toxic at x1.

5. Unless the trial is terminated early, it ends after NMax patients have been enrolled 

and evaluated. The final optimal dose for each subgroup g that has not been 

terminated is xg
opt 𝒟NMax

.

In practice, the values pg,U = .90 to .99 typically work well for the safety stopping rule (6). 

The Sub-TITE methodology does not impose the constraint that π(x, W, θ) is increasing in 

subgroup W, although this can be done by adding additional constraints.

5 | SIMULATION STUDY

In this section, we describe a simulation study conducted to evaluate the Sub-TITE method, 

and to compare it to using the TITE-CRM while ignoring subgroups, the approach of 

running separate trials using the TITE-CRM within each subgroup (Sep-TITE), and the two 

group maximum likelihood method introduced by Salter et al 19 (SOCA-TITE). We 

designed the simulations to mimic the motivating RT trial, hence T = 6 months, π* = .30, 

the maximum sample size is NMax = 60, we assume an accrual rate of 2 patients per month, 

the subgroups are equally likely, and all designs considered start at x1. For the true time to 

toxicity distribution, we assumed a Weibull parameterized as 

−log Pr(time to toxicity > t) = (t /λ)ϕ, with shape parameter ϕ = 4 to ensure late onset 

toxicities, and scale parameter λ set in each scenario to give the assumed true toxicity 

probability π(x, Z) at the reference time T. Recall that the raw dose levels in consideration 

for the radiation therapy are {10, 20, 30, 50, 70 } Gy, where Gy denotes a Gray unit, which 

is 1 Joule of radiation absorbed per kilogram of the tumor. Elicited toxicity probabilities for 

each subgroup and dose obtained from the clinician are listed in Table 1.
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The hypermeans for the Sub-TITE prior based on the clinician elicited toxicity probabilities 

were α = − .70, β = − .04, α1 = − .81 and β1 = .009,  with variances σα
2 = 5 and σβ

2 = 1 giving 

approximate prior ESS = 1. We used the baseline subgroup’s elicited dose-specific toxicity 

probabilities as the prior dose-toxicity skeleton in the TITE-CRM design and the subgroup 

specific elicited dose-specific toxicity probabilities for each subgroup’s dose-toxicity 

skeleton for the Sep-TITE design. The model assumed for the TITE-CRM design was 

logit−1 π x j, β = 3 + exp(β)D1, j and for the Sep-TITE trial designs was 

logit−1 π x j, g, β = 3 + exp(β)Dg, j, where Dg, j = logit−1 sg, j − 3, with sg, j is the elicited 

prior reference probability for subgroup g and dose level j. We assumed that β N 0, σ2 . To 

ensure comparability to the Sub-TITE design in terms of prior information, we calibrated 

this hypervariance to obtain approximate prior ESS = 1, which resulted in σ2 = .86.

We used the titecrm function from the dfcrm package 23 in R to perform the comparative 

simulations for the TITE and Sep-TITE designs using the logit link function with the default 

parameter value for the intercept of 3. Since the Sub-TITE design has within-subgroup early 

stopping rules, again for comparability, when implementing the TITE-CRM and Sep-TITE 

designs we used the lower credible interval (ci) bound on the lowest dose toxicity probability 

to stop a subgroup or trial if this value was greater than the target toxicity probability. For 

the Sep-TITE design, these ci’s were constructed such that if the .90 ci lower bound on the 

probability of toxicity at x1 was greater than π*, that subgroup was stopped. If all subgroups 

in the Sep-TITE trial were stopped after fully evaluating a cohort at the lowest dose in each 

subgroup, the trial was ended. For the TITE design, only the one group considered needs to 

be stopped for the trial to end. We calibrated the early stopping cut-offs for Sub-TITE {pg,U} 

under scenario 5 so that subgroup 0 has a stopping probability and each subgroup g ≠ 0 has a 

optimal dose selection probability near the values seen for the Sep-TITE trial. This upper 

cutoff vector was determined to be (.95, .99) for G = 2 and (.95, .99, .99, .99) for G = 4. 

Since the available SAS software for the SOCA-TITE design does not allow one to simulate 

trials as done in our simulation study, we implemented this design in R using C++ with an 

efficient grid search to find maximum likelihood estimates, assuming the logistic link 

function and linear term with intercept parameter equal to 3, to ensure comparability to Sep-

TITE.

We studied five different simulation scenarios. The first four were defined by specifying four 

different dose-toxicity probability curves, one corresponding to each subgroup. Only two 

dose-toxicity curves are displayed for scenario 5, which is differs from the other scenarios in 

that we do not examine this scenario in the vase of G = 4 subgroups. The dose-toxicity 

probability curves for scenarios 1,2,3 and 5 are given graphically in Figure 1, and the 

numerical toxicity probabilities are given in Web Table 1.

The five scenarios represent a variety of possible subgroup-specific dose-toxicity probability 

functions that may be seen in practice. In scenario 1, the optimal dose vector for the two 

subgroup case is (2,3). The average probability of toxicity across subgroups for dose 2 is .20 

while this average for dose 3 is .375. We expect the TITE-CRM to do well in this case, but 

we note that the TITE-CRM can never pick the optimal dose for both subgroups, since the 
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true optimal within-subgroup doses are different. Scenario 5 represents a case where the 

lowest dose is unacceptably toxic for subgroup 0, with true toxicity probability .50, but in 

subgroup 1 the lowest dose is optimal. In this scenario, the SOCA-TITE design will continue 

to treat patients at the excessively toxic lowest dose for subgroup 0 since this method does 

not have a subgroup-specific stopping rule.

When looking at the four subgroup scenarios in Figure 1, which have solid dots when two or 

more subgroups share a toxicity, we see that scenario 1 represents a case where all four 

patient subgroups have different dose-toxicity probabilities, with optimal doses (2, 3, 4, 5). 

In scenario 2, subgroups 1 and 2 are homogeneous, while subgroups 0 and 3 are different 

from the other subgroups, with optimal doses (1, 3, 3, 4). In scenario 3, subgroups 0, 2 and 3 

are truly homogeneous and subgroup 1 has a different dose-toxicity probability vector, with 

optimal doses (4, 5, 4, 4). Again, scenario 4 is not depicted because all four subgroups have 

the same dose-toxicity curves. In an additional set of simulations, we evaluated the 

sensitivity of the Sub-TITE design to the proportions of patients in the subgroups, different 

families of time to toxicity distributions, and maximum sample size of the trial. All 

simulations were based on 5,000 replications.

5.1 | Simulation Results for Trials With Two Subgroups

We first compare the Sub-TITE design to the TITE-CRM design that ignores subgroups, the 

Sep-TITE design, and the SOCA-TITE design, in the case of two subgroups (G=2). For each 

subgroup g = 0,1, we evaluated the average absolute difference Δg between the toxicity 

probabilities of the selected and optimal doses, the proportion of times P selg that each 

method selected the optimal dose, the number of toxicities N toxg, and the stopping 

probability P stopg. Let πtrue(x, g, θ) denote the true toxicity probability by time T for 

subgroup W = g and dose x and xg
opt denotes the truly optimal dose for subgroup W = g. If 

we run B simulations and for the bth iteration xg
b is the dose chosen for subgroup g then we 

calculate Δg as

Δg = 1
B ∑

b = 1

B
πtrue xg

b, g, θ − πtrue xg
opt, g, θ .

Larger values of P sel0 + P sel1 and smaller values of Δ0 + Δ1 and N tox0 + N tox1 indicate 

superior design performance. The results of the simulation study with two subgroups and a 

late onset Weibull distribution for time to toxicity are given in Table 2. Figure 2 displays the 

dose selection probability for each dose within each subgroup across scenarios 1–4. In 

Figure 2, the symbol * denotes the optimal dose within the (PTox) parenthesis. This 

facilitates evaluating how frequently each method selects the optimal dose within each 

subgroup under each scenario. In scenario 1, the Sep-TITE and TITE designs pick the 

optimal dose for subgroup 0 most often, but the Sub-TITE design picks the optimal dose for 

subgroup 1 with a much higher probability than all other competitors. In scenario 2, the 

optimal dose for subgroup 0 is picked by the Sep-TITE design most often, but, again, the 

Sub-TITE design performs best for subgroup 1. The TITE design that ignores patient 

heterogeneity here does a very poor job of picking the optimal dose for both subgroups in 
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scenario 2. In scenario 3, the TITE design picks the optimal dose for subgroup 0 with the 

highest probability, slightly higher than the Sub-TITE design. However, for subgroup 1 the 

TITE design performs poorly and the SOCA-TITE design performs best. We note the 

important point that, when considering both subgroups, the total probability of selecting the 

optimal dose for the two subgroups, denoted by the sum P sel0 + P sel1, is higher for the 

Sub-TITE design than for all of the three competitors across all scenarios 1–3. In scenario 4, 

where the subgroups are homogeneous, the TITE design performs best in each subgroup, 

followed closely by the Sub-TITE design. The TITE design performs better in scenario 4 

because it correctly assumes one dose toxicity curve for the trial.

In the case of G = 2 subgroups, across all five scenarios, the Sub-TITE design performed 

better than all three comparators in terms of P sel0 + P sel1, the probability of selecting the 

optimal dose for both subgroups, with the exception that the TITE-CRM has superior 

performance in scenario 4, where the subgroups are truly homogeneous. In scenario 1, 

where the optimal doses are 2 and 3, respectively, the Sub-TITE design has a smaller P sel0 

than the Sep-TITE and TITE designs, but has larger values of P sel1, with sum P sel0 + P 
sel1 that is at least .11 higher than any of the three comparators. Similarly, the value of Δ1 + 

Δ2 for the Sub-TITE design is at least .02 smaller than each of the other designs. In scenario 

2, where the optimal doses are 1 and 3, respectively, the SOCA-TITE method has the highest 

optimal dose selection probability for subgroup 0 with P sel0 = .91, due in part to the SOCA-

TITE design’s inability to stop subgroup 0. The Sub-TITE method has a value of P sel0 + P 
sel1 that is .03 higher than it’s closest competitor, SOCA-TITE. In scenario 3, where the 

optimal doses are 4 and 5, the Sub-TITE design provides improvements of .15, .36, and .52 

in P sel0 + P sel1 compared to the Sep-TITE, SOCA-TITE, and TITE designs, respectively. 

Similarly, the Sub-TITE design provides improvements of .04, .08 and .09 in Δ0 + Δ1 

compared to the Sep-TITE, SOCA-TITE and TITE designs.

Scenarios 4 and 5 are important special cases. In scenario 4, the two subgroups are truly 

homogeneous, and in scenario 5 the lowest dose is too toxic for subgroup 0 but not for 

subgroup 1. In scenario 4, the Sub-TITE design accurately combines the two subgroups, 

thus providing improvements in P sel0 + P sel1 of .36 and .69, and in Δ0 + Δ1 of .07 and .12, 

compared to the Sep-TITE and SOCA-TITE designs, respectively. As may be expected in 

this scenario, the Sub-TITE design does not perform as well as the TITE-CRM design, 

which ignores patient heterogeneity, losing by .03 in terms of P sel0 + P sel1. However, this 

loss in total optimal dose selection probability is not nearly as large as those of two 

competing designs that account for subgroups. This indicates that the Sub-TITE design 

provides a good compromise between running separate trials within subgroups and ignoring 

heterogeneity. In scenario 5, the SOCA-TITE design has the highest optimal dose selection 

probability P sel1, with advantages of .07 and .08 compared to the Sep-TITE and Sub-TITE 

designs, respectively. It also has the lowest value of Δ1 by .02. However, again, SOCA-TITE 

can not stop accrual to subgroup 0, which has a toxicity probability of .50 at the lowest dose 

in scenario 5, resulting in SOCA-TITE having 3.1 more patient toxicities on average than 

the Sub-TITE design.
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5.2 | Sensitivity to trial design parameters

We also examined sensitivity of the Sub-TITE design’s OCs to Nmax = 30, 60, 90, and the 

expected proportions of patients in each subgroup. Here we only consider scenarios 1–4 

since scenario 5 represents a special case where the lowest dose is too toxic for subgroup 0 

but not for subgroup 1. Figure 3 displays plots of the differences DPsel, defined as P sel0 + P 
sel1 for the Sub-TITE design minus this sum for each of the TITE, SOCA-TITE and Sep-

TITE designs. Since Sub-TITE sometimes outperforms Sep-TITE or SOCA-TITE in one 

subgroup but not the other, DPsel provides a useful overall index of the Sub-TITE design’s 

ability to select optimal doses within subgroups compared to each of the other designs.

When comparing the three designs as a function of Nmax, Sub-TITE design outperforms the 

TITE design further as the sample size increases, except in scenario 4 where the subgroups 

are homogeneous. The Sep-TITE and SOCA-TITE designs have improved operating 

characteristics as the sample size increases compared to the Sub-TITE design. However, the 

sum of the optimal dose selection probabilities is never greater than that of Sub-TITE for 

any sample size or scenario. In a small sample size of Nmax = 30, where we expect about 15 

patients in each subgroup, we see large improvements in P sel0 + P sel1 of at least .10, .04, .

22 and .47 for scenarios 1–4, respectively, compared to the SOCA-TITE and Sep-TITE 

designs. In scenario 4, where the subgroups are homogeneous, the Sub-TITE design has D P 
sel values at least .23 greater than that of the Sep-TITE design and .57 of that of the SOCA-

TITE design for any sample size. Here the D P sel values for the comparison to the TITE 

design are (.11, –.03, –.15), so the Sub-TITE design loses some efficiency in larger trials in 

the homogeneous case, but not nearly as badly as the Sep-TITE design.

Figure 4 shows the differences in P sel0 + P sel1 for the Sub-TITE design compared to the 

Sep-TITE, SOCA-TITE and TITE designs for scenarios 1–4, for different subgroup 

proportions. Other than scenario 2 for P(Subgroup 0) = .20, the Sub-TITE design has 

substantially larger total optimal dose selection probability compared to the SOCA-TITE 

and Sep-TITE designs. In scenario 2, the two subgroup specific optimal doses are not 

adjacent, so the Sub-TITE method has a harder time recognizing this with only 12 patients, 

on average, in subgroup 0. In scenario 4, we see that when the subgroups are homogeneous 

the Sub-TITE design outperforms the Sep-TITE and SOCA-TITE designs regardless of the 

proportions of patients in the subgroups. In this scenario, the Sub-TITE design D P sel ≥ .35 

compared to the Sep-TITE design and D P sel ≥ .59 compared to the SOCA-TITE design. 

These results suggest that, for large or small trials, and for balanced or unbalanced 

subgroups, the Sub-TITE design provides a desirable compromise between the TITE-CRM 

that ignores subgroups and the Sep-TITE or SOCA-TITE design.

5.3 | Robustness study

To assess robustness, in addition to the late onset Weibull distribution, we examined the OCs 

of the Sub-TITE design in each scenario for an exponential, uniform, and a lognormal 

distribution. For the uniform distribution, indicators of toxicity first were generated from the 

scenario subgroup specific dose-toxicity probabilities, and if a patient experienced a toxicity 

their toxicity time was generated from a Uniform[0, T] distribution. For the exponential 

distribution, the rate parameters were calibrated to give the simulation scenario’s cumulative 
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toxicity probabilities at the reference time T. For the lognormal distribution, we simulated 

data with variance parameter σ2 = 1 and calibrated the mean for each dose and subgroup to 

have each scenario’s specified cumulative toxicity probabilities by time T. No other aspects 

of the trial were changed, in order to isolate the effects of different time-to-toxicity 

distributions. The results for the Sub-TITE design are given in Web Table 2, with the results 

for the Sep-TITE, TITE and SOCA-TITE designs shown in Web Tables 3, 4 and 5, 

respectively.

In general, the OCs of the Sub-TITE design change very little for the different distributions 

considered. The values for (Δ0, Δ1) differ by at most .01 while the largest difference in 

selection probability for one subgroup is .06 which took place in subgroup 1 in scenarios 1 

and 2 for the Weibull increasing and exponential. Since the two subgroup probabilities of 

optimal dose selection do not differ by more than .01 between the two subgroups in the 

homogeneous case for any distribution considered, it appears that the Sub-TITE design is 

likely to correctly identify that only one subgroup is needed. The average trial times for the 

different distributions considered were about the same except for in scenario 5, where the 

lowest dose is too toxic, with a difference of about 1.8 months between the Weibull 

increasing hazard and the uniform distribution. In general, the exponential distribution had 

the fewest patient toxicities while the Weibull distribution with an ncreasing hazard had the 

most toxicities in each scenario.

When comparing the results for Sub-TITE to the Sep-TITE and TITE designs for different 

distributions, we see the same results as in Table 2, namely that Sub-TITE has superior 

performance compared to the TITE design when patient heterogeneity is present, and is 

superior to Sep-TITE and SOCA-TITE designs when subgroups are homogeneous. This is 

shown by the D P sel values since, as in the homogeneous case, D P sel ≥ .15 when 

comparing Sub-TITE to either Sep-TITE or SOCA-TITE.

For scenario 3, where doses 4 and 5 are optimal, for g = 0 and 1, the Sub-TITE design had a 

slight decrease in performance compared to the Sep-TITE design for other distributions 

considered, having D P sel values of − .04 and −.02 for the exponential and uniform 

distributions. In these cases the values of Δ1 + Δ0 were the same and the Sub-TITE design 

had about .8 less patient toxicities. The average D P sel values comparing Sub-TITE to Sep-

TITE for scenarios (1,2,3,4) are (.15, .07, .03, .21) and comparing Sub-TITE to SOCA-TITE 

are (.17, .08, .13, .42). For scenario 5, where subgroup 0 is too toxic, the Sep-TITE design 

stopped this subgroup (.04, .01, .05, −.03) more often than the Sub-TITE design for the 

exponential, uniform, lognormal and Weibull increasing hazards, respectively, but chose the 

optimal dose for subgroup 1 with the same probability on average as the Sep-TITE design. 

For subgroup 1, SOCA-TITE picked the optimal dose .06,06, .06, and .04 more often than 

Sep-TITE, but never stopped the truly toxic subgroup 0, resulting in 3.9 more toxicities for 

this subgroup on average over the four extra distributions considered. Thus, across all 

scenarios and time-to-toxicity distributions,in general the Sub-TITE design has superior 

performance compared to both the Sep-TITE and SOCA-TITE designs. The Sub-TITE 

design is greatly superior to the TITE design that ignores subgroups in terms of D P sel in all 

scenarios, except in the homogeneous case, losing by an average of .15. The Sub-TITE 

design had about .4 more total patient toxicities in each scenario compared to the TITE and 
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Sep-TITE designs, and had similar trial durations in all but scenario 5, with about a month 

longer trial duration than the Sep-TITE design due to skipping more patients in subgroup 0.

5.4 | Simulation results for four subgroups

We next performed a simulation study to evaluate the Sub-TITE method in the case of G = 4 

subgroups for scenarios 1–4 compared to the Sep-TITE and TITE designs. Scenario 5 was 

not used because it is a special case where subgroup 0 has an unacceptably high toxicity 

probability at the lowest dose. The SOCA-TITE design was not included because it cannot 

accommodate more than two patient subgroups. The four assumed true subgroup-specific 

dose-toxicity vectors are given in Figure 1 and listed numerically in Web Table 1. We 

assumed that a patient was equally likely to be in any of the four subgroups. We increased 

Nmax to 90 to ensure a sufficient number of patients to do dose finding reasonably reliably in 

each subgroup. The simulation results for the Sub-TITE, Sep-TITE, and TITE designs are 

summarized in Table 3. The additional hypermeans here are 

α2 = − 1.77, β2 = − .05, α3 = − 2.35 and β3 = .35.

Let P sel+(Method) = ∑g = 0
G − 1P selg(Method) denote the sum of the optimal dose selection 

probabilities and Δ+(Method) = ∑g = 0
G − 1Δg(Method) denote the sum of the Δg’s for a given 

Method ∈ {Sub-TITE,Sep-TITE,TITE}. Larger values of P sel+(Method) and smaller values 

of Δ+(Method) are more desirable. In each of the four scenarios considered, the smallest 

difference

P sel+(Sub‐TITE) − P sel+(Sup‐TITE)

was .12 in scenario 1, where all subgroups are heterogeneous, and the largest difference of .

61 was in scenario 4, where the subgroups are homogeneous. On average, P sel+(Sub-TITE) 

− P sel+(Sep-TITE) = .34 over the four scenarios considered, and Δ+(Sub-TITE) − Δ+(Sep-

TITE) = −.08, with a maximum value of −.03 in scenario 2 and minimum value of −.12 in 

scenarios 3 and 4. The Sub-TITE design again had slightly more total toxicities over the four 

scenarios, with an average .5 more toxicities than Sep-TITE. In scenarios 1, 2, and 3, where 

at least two subgroups are heterogeneous, the Sub-TITE design had much better OCs than 

the TITE design, with P sel+(Sub-TITE) − P sel+(TITE) = 1.14, 1.82 and .58 and, Δ+(Sub-

TITE) − Δ+(TITE) of −.24, −.52 and −.13, respectively.

In scenarios 3 and 4, where three and four subgroups are homogeneous, respectively, the P 
sel+(Sub-TITE) − P sel+(TITE) values are −.23 and −.47, and values of Δ+(Sub-TITE) − Δ+

(TITE) values are .04 and .13. In scenario 4, where all four subgroups are homogeneous, we 

see the same qualitative result as with two subgroups, namely that the TITE design 

outperforms the Sub-TITE design. However, in the heterogeneous subgroups cases, again, 

the TITE design has extremely small P selg values for some subgroups, e.g. P sel0 = .05 and 

P sel3 = 0 in scenario 1. In scenarios 3 and 4, the differences P sel+(Sub-TITE) − P sel+(Sep-

TITE) were .32 and .61, and Δ+(Sub-TITE) − Δ+(Sep-TITE) were −.13 and −.12.
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These results indicate that, when two, three, or four of G = 4 subgroups are homogeneous, 

because the Sub-TITE design can accurately combine these subgroups for dose selection, it 

greatly outperforms Sep-TITE. This advantage also is seen in scenario 2, where two 

subgroups are homogeneous, and in scenario 1, where all four subgroups are different, 

demonstrating how Sub-TITE borrows strength flexibly among subgroups. In general, 

although the values of P stopg are not listed, they are all 0 or < .01, except for in scenario 2, 

subgroup 0, where the stopping probability is .02 for both the Sub-TITE and Sep-TITE 

designs. Similarly, the average durations of the trials did not differ by more than .01 between 

the three competing methods.

We also compared the three methods for Nmax = 60 and 120 in the four subgroup case. 

When comparing the Sub-TITE and Sep-TITE designs, we see the same trend, namely that 

increasing the sample size decreases the margin of advantage for Sub-TITE in terms of the P 
sel+, but Sub-TITE always outperforms Sep-TITE, regardless of sample size. This difference 

is striking in scenario 4, where all subgroups are homogeneous, with a difference P sel+

(Sub-TITE) − P sel+(Sep-TITE) = .73 for Nmax = 60 and P sel+(Sub-TITE) − P sel+(Sep-

TITE) = .18 for Nmax = 120. Likewise, in scenario 3, where 3 of the subgroups are 

homogeneous, P sel+(Sub-TITE) − P sel+(Sep-TITE) = .51 for Nmax = 60 and .27 for Nmax = 

120. In scenarios 1 and 2, where none and two of the subgroups are homogeneous, 

respectively, we see a substantial improvement for both sample sizes, with respective 

differences P sel+(Sub-TITE) − P sel+(Sep-TITE) = .18 and .21 for Nmax = 60, and .06 and .

13 for Nmax = 120. Thus the Sub-TITE design provides large improvements with any sample 

size compared to the Sep-TITE design and compared to the TITE design with heterogeneous 

subgroups.

6 | DISCUSSION

We have presented a subgroup specific phase I dose finding design based on a time-to-

toxicity outcome that adaptively allows some subgroups to be combined if they are found to 

have similar dose-toxicity probability curves. This is implemented as part of the MCMC 

posterior computation using latent subgroup membership variables and spike-and-slab 
priors. This methodology provides a compromise between the Sep-TITE design, that applies 

the TITE design to do dose-finding separately in the sub-groups, and the TITE design that 

ignores subgroups. In cases where some subgroups are heterogeneous, the Sub-TITE design 

performs at least as well as running separate trials, outperforms the TITE design that ignores 

subgroups. In the two subgroup case, Sep-TITE performs favorably compared to the two 

group maximum likelihood approach of Salter et al., with values of P selg and Δg that are 

either similar or greatly superior to those of SOCA-TITE, depending on scenario and 

subgroup. When the subgroups are homogeneous, the Sub-TITE design selects the correct 

dose much more frequently than Sep-TITE, and performs nearly as well as the TITE design 

that ignores subgroups.

In cases where some but not all subgroups have the same dose-toxicity curve, the ability of 

Sub-TITE to combine some subgroups provides a substantial advantage over SOCA-TITE in 

the two subgroup case (scenario 4 in Table 2) and the Sep-TITE approach in the four 

subgroup case (scenarios 3 and 4, Table 3). Essentially, this is because these two 
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comparators do not have the ability to combine homogeneous subgroups. This seems to be a 

generally desirable property of any adaptive precision medicine design, since subgroups 

identified at the start of a trial may in fact not differ with regard to the distribution of 

outcome as a function of treatment. Thus, this is an important area for future research in 

other precision medicine settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Simulation Study: Assumed dose-toxicity probability curves for the four subgroup design. 

The first two subgroups are used in trials with two subgroups. The horizontal solid line is the 

targeted probability π*. Solid dots represent that two or more subgroups share that dose-

toxicity curve. Scenario 4 is not shown, since all subgroups in this scenario have the same 

toxicity probability vector, (.05, .10, .15, .30, .50). Only two subgroups are shown for 

scenario 5 since we do not investigate this scenario’s operating characteristics with four 

subgroups.
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FIGURE 2. 
Simulation Study: Dose selection probabilities in each of the two subgroups in scenarios 1–

4. PTox denotes the true toxicity probability for each dose within each subgroup and * 

denotes the dose toxicity probability closest to the target of .3.
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FIGURE 3. 
Total difference in optimal dose selection probability, DPsel, of Sep-TITE versus each 

comparator, for different maximum sample sizes.
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FIGURE 4. 
Total difference in optimal dose selection probability, DPsel, of Sep-TITE versus each 

comparator, for different proportions of patients in subgroup 0.
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TABLE 1

Elicited Prior Mean Dose-Toxicity Probabilities for each Subgroup.

Subgroup Elicited Toxicity Probabilities

0 (.10, .25, .35, .50, .60)

1 (.04, .15, .20, .30, .40)

2 (.04, .10, .15, .25, .35)

3 (.01, .05, .10, .22, .32)
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TABLE 2

Simulation study with two subgroups comparing the Sub-TITE, TITE, Sep-TITE and SOCA-TITE designs. 

For each subgroup g = 0,1, Δg is the mean absolute difference between the true toxicity probabilities of the 

optimal dose and the selected dose, P selg is the probability of selecting the optimal dose, N toxg is the mean 

number of toxicities, and P stopg = P[Stop subgroup g]. Dur is the average trial duration, in years. In Scenario 

5, where the lowest dose is too toxic for subgroup 0, the symbol ‘—’ is used for Δ0 and P sel0 since no optimal 

dose exists.

Scen Method Δ0 Δ1 P sel0 P sel1 N tox0 N tox1 P stop0 P stop1 Dur

1 Sub-TITE .07 .06 .53 .64 11.7 10.4 0 0 2.96

Sep-TITE .06 .09 .59 .47 10.9 10.2 < .01 < .01 2.96

TITE .08 .09 .59 .39 12.2 8.3 0 0 2.95

SOCA-TITE .07 .08 .49 .32 10.4 10.3 0 0 2.96

 

2 Sub-TITE .04 .06 .86 .46 13.4 9.5 .01 0 2.97

Sep-TITE .04 .07 .88 .39 12.1 10.1 .03 0 2.97

TITE .19 .14 .42 .02 15.7 6.7 < .01 < .01 2.96

SOCA-TITE .03 .07 .91 .38 12.1 10.1 0 0 2.97

 

3 Sub-TITE .05 .05 .75 .74 10.3 7.1 0 0 2.96

Sep-TITE .09 .05 .60 .74 9.4 7.6 0 0 2.97

TITE .05 .14 .79 .19 12.5 6.5 0 0 2.96

SOCA-TITE .13 .05 .38 .75 9.4 7.7 0 0 2.96

 

4 Sub-TITE .04 .04 .75 .76 9.2 9.8 0 0 2.96

Sep-TITE .07 .08 .61 .54 9.2 9.4 0 0 2.95

TITE .04 .04 .77 .77 9.2 9.3 0 0 2.95

SOCA-TITE .10 .10 .40 .42 9.3 9.3 0 0 2.95

 

5 Sub-TITE — .04 — .84 13.5 14.6 .72 .04 3.42

Sep-TITE — .04 — .85 14.2 14.0 .69 .08 3.32

TITE — .17 — .43 15.6 10.6 .57 .57 2.35

SOCA-TITE — .02 — .92 16.6 12.9 0 0 2.96
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TABLE 3

Simulation study with four subgroups. For each g = 0,1,2,3, Δg is difference between the true optimal dose 

toxicity probability and the true toxicity probability of the dose chosen, P selg is the probability of selecting 

the optimal dose and N toxg is the mean number of toxicities.

Seb-TITE Sep-TITE TITE

g Δg P selg N toxg Δg P selg N toxg Δg P selg N toxg

Scenario 1

0 .09 .46 8.4 .07 .53 7.6 .23 .05 11.6

1 .07 .60 7.9 .10 .43 7.1 .04 .77 8.5

2 .06 .55 6.6 .08 .45 6.7 .09 .18 5.7

3 .05 .53 4.9 .06 .61 5.1 .09 0 4.0

Scenario 2

0 .07 .80 9.5 .05 .84 8.6 .38 < .01 14.7

1 .06 .48 7.1 .08 .34 7.0 .06 .41 14.7

2 .06 .45 7.1 .08 .37 7.1 .06 .41 6.4

3 .07 .58 6.1 .08 .55 6.6 .18 .01 4.1

Scenario 3

0 .07 .68 6.4 .13 .57 6.6 .01 .94 8.1

1 .06 .67 5.1 .05 .73 5.3 .17 .03 4.0

2 .06 .72 7.4 .10 .55 6.9 .01 .94 8.1

3 .05 .75 7.3 .09 .56 6.8 .01 .94 8.1

Scenario 4

0 .05 .67 6.0 .08 .53 6.4 .02 .90 7.1

1 .06 .68 7.0 .09 .52 6.6 .02 .90 7.1

2 .05 .69 7.0 .08 .53 6.7 .02 .90 7.1

3 .05 .69 7.0 .08 .54 6.5 .02 .90 7.1
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