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Abstract: Retinal blood flow is an emerging biomarker in ocular and systemic disease.
Erythrocytemediated angiography (EMA) is a novel technique that provides an easily interpretable
blood flow velocity quantification by directly tracing individual moving erythrocyte ghosts over
time in vivo, imaged using a scanning laser ophthalmoscope (Heidelberg Retina Angiograph
platform). This tracking procedure, however, requires time-consuming manual analysis to
determine blood flow. To overcome this current bottleneck, we developed an objective and
automated velocimetry approach, EMA - Automated Velocimetry (EMA-AV), which is based on
a modified sequential Monte Carlo method. The intra-class correlation coefficient (ICC) between
trained human graders and EMA-AV is 0.98 for mean vessel velocity estimation and 0.92 for
frame by frame erythrocyte velocity estimation. This study proves EMA-AV is a reliable tool for
quantification of retinal microvascular velocity and flow and establishes EMA-AV as a reliable
and interpretable tool for quantifying retinal microvascular velocity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Retinal blood flow (RBF) is an potential biomarker for diabetic retinopathy [1], age-relatedmacular
degeneration [2], and glaucoma [3]. Moreover, systemic diseases, including hypertension [4],
diabetes [5], hyperglycemia [6] and neuro-degenerative diseases such as Alzheimer’s dementia
[7, 8] are also associated with abnormal changes in dynamic RBF.
Methods to characterize ocular blood flow include conventional angiography with fluores-

cein/indocyanine green (ICG) [9, 10], color doppler imaging [11], laser doppler imaging [12]
and laser speckle imaging [13]. Different OCT-based blood flow velocimetry approaches have
also been introduced in the past for quantifying erythrocyte flow dynamics, but are currently still
lacking a reliable and comprehensive validation in vivo [14, 15]. Another concept, known as
"retinal functional imager (RFI)", possesses the capability of determining erythrocyte velocity by
assessing relative concentration of hemoglobin chromophores in both vessels and the capillary
background [16]. However, reproducibility of the measurement hence derived has substantial
variability [17], and more so for older subjects and glaucoma subjects [18]. Adaptive Optics -
Scanning Laser Ophthalmoscopy (AO-SLO) allows for quantification of flow in the microvascu-
lature within a small field of view [19]. In particular, near confocal AO methods [20] and flood
AO methods [21] provide precise blood flow values in smaller fields of view. However, none of
these methods have yet been established as an accurate and precise gold standard for measuring
retinal blood flow velocity in the living human eye.

Erythrocyte mediated angiography (EMA) is an emerging imaging technique which is capable
of directly measuring erythrocyte velocity in vivo [22]. In EMA, ICG-labelled erythrocyte ghosts
are injected into the bloodstream, enabling blood flow velocimetry by following the motion of
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individual erythrocytes over time. This makes EMA-based velocimetry an easily understandable
and interpretable technique that can be directly visually verified, even by non-experts in the
imaging field. One major drawback of EMA is the relatively invasive nature of the technique.
Still, however, EMA has the capability to serve as a generally accepted validation tool for in vivo
measurement of blood velocity in the retina.
Current methods of velocity determination from EMA data rely on delineation by human

experts [23], including erythrocyte identification and tracking, which is a timing-consuming
process. This limits the potential adoption and utilization of the technique. As a result, the
majority of current EMA applications consist of characterization of vasomotion, the spontaneous
oscillation of blood vessels that may cause stasis and erythrocyte pausing [24]. Direct erythrocyte
movement measurement has not been hitherto explored in detail. Some studies that characterize
cell flow, such as applied particle image velocimetry [25], or spatial temporal plots [26], usually
require high frame rates or slower object movement to ensure videos with continuous cell flow for
accurate measurement. In comparison, EMA has a large field of view, relatively slower frame rate,
and rapid object movement as compared to other technologies [23]. The large cell movements
between any two frames underlies our study of an advanced and automated EMA analysis method,
with the primary objective being to solve the object tracking problem. Automatic object tracking
has an extensive history in the field of signal processing and computer vision [27]. This tracking
problem could be considered as determining real object states given specific observation states
by solving systemic equations [28]. In this regard, the mathematical tools that are available
include the Kalman filter [29], the extended Kalman filter [30], and the particle filter [28]. The
discovery of better object representations are another branch of tracking studies [31], especially
with the recent advances of deep learning [32, 33]. Particle tracking is particularly important
in bioimaging when studying living cell activities [34]. In comparison with images produced
from general tracking tasks, biomedical particles lack rich image features and biomedical images
are typically burdened by a lower signal-to-noise ratio (SNR), which accordingly brings about
greater uncertainty. Researchers commonly separate the steps of particles detection and particle
tracking [34], but this method is only beneficial for reliable particle detection and single particle
tracking [35]. I. Smal et.al [36] unitized both spatial and temporal information to link detection
and tracking under the constant velocity hypothesis. This assumption, however, is invalid when
applied to erythrocyte tracking applications. Erythrocyte velocities are varied by changing vessel
diameters [37], while the vessels themselves exhibit changes in diameter with respect to their
relation to the optic disc [38]. Further, erythrocyte velocities are influenced by the systolic and
diastolic cycles [39]. One additional difficulty in EMA, as opposed to other biomedical partical
tracking tasks [40], is the potential for erythrocytes to enter/exit the region of interest, as well as
frame-by-frame variation of erythrocyte intensity, thereby conferring an increased complexity to
tracking. Variation in intensity may be in part due to axial movement of erythrocytes.

In this study, we propose a Monte Carlo-based method that links particle detection and tracking
to automatically estimate the velocity of individual erythrocytes moving in small retinal arterioles
and venules. To the best of our knowledge, this is the first study to use a probabilistic method to
study blood flow. Section 2 briefly reviews EMA procedures and describes details of the velocity
estimation method. Section 3 overviews erythrocyte tracking and speed estimation results based
on the clinical data. In this section, the automated tracking performance achieved by the proposed
method is compared with trained human grader tracking results. Section 4 concludes the study
and suggests improvements, applications, and prospective future directions.

2. Methods

2.1. EMA procedures

The detailed procedure of EMA was described by Flower et al [22]. Figure 1 is a schematic
diagram illustrating the EMA procedure. In summary, approximately 30 mL of blood were drawn
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Fig. 1. The procedure of Erythrocyte mediated angiography.

from each subject. In a sterile environment, erythrocytes were separated via centrifugation and
then transferred to a hypotonic solution, leading to the transient opening of pores in the cell
membrane, through which ICG entered the cells. Subsequently, the osmolality of the solution was
increased to initiate closing of cell membrane pores, leaving the entrapped ICG dye within the
erythrocyte ghosts. After microscopic examination of the erythrocytes, and following pupillary
dilation of the subject, 1mL blood with autologous ICG-loaded cells were injected intravenously.

As this technique involves the re-injection of autologous erythrocyte ghosts, there is a potential
for non-physiologic disturbance of the vasculature. We note that Flower et al completed a detailed
assessment of erythrocyte fragility and integrity and found that erythrocyte ghosts made using
this procedure are comparable to control erythrocytes [41]. As described by Flower et al [41], and
from the experience of our group, this is a well-tolerated procedure without any ocular morbidity.

2.2. Image acquisition

For fluorescence angiography imaging, two confocal laser scanning ophthalmoscopes by Heidel-
berg Engineering GmbH were used, a modified Heidelberg Retina Angiograph 2 (HRA2) and a
Spectralis HRA. These devices generate fluorescence angiogram movies by repeatedly scanning
over the retina with a laser diode that excites ICG fluorescence. For peak ICG excitation, a diode
laser with a wavelength of 786nm was used, and a barrier filter at around 800nm edge wavelength
separated excitation and fluorescent light. The modified image acquisition systems limits the
vertical field of view (FOV) in order to allow for an increased imaging frame rate at 24.6 frames
per second (fps) during acquisition of a 15° × 7.5° (horizontal and vertical) FOV. For achieving
an even higher frame rate of 46.1 fps at a 30° × 5° FOV, a sinusoidal scan pattern was employed
vertically. The slower scan speed yielded a digital resolution of approximately 11µm, while the
faster acquisition yielded twice this digital resolution at approximately 5.5µm, depending on the
specific refractive properties of the eye being imaged. The diffraction limited optical resolution
of the system is approximately 5.4µm (Airy disk radius). After acquisition, an image sequence
was exported from the device software, geometrically corrected in case of sinusoidal scanning,
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and subsequently analyzed as described below.

2.3. Clinical data collection

Subjects for this study were recruited from the ophthalmology and/or optometry service at the
University of Maryland. All experiments were conducted in accordance with the Declaration
of Helsinki, and were approved by the institutional review board at the University of Maryland.
Detailed information is provided in Section 3.2.

2.4. Erythrocyte velocity estimation

2.4.1. Image preprocessing

Prior to application of the proposed method for speed estimation, all video frames must be
preprocessed, as illustrated in Fig. 2. To accomplish this, firstly, images are de-noised by applying
a 5 × 5 Gaussian filter. The Gaussian filter is a good approximation for the point spread function
of the fluorescence spots, which can also improve object visibility [42]. The image registrations
are conducted based on the intensity-based automatic image registration algorithms in MATLAB
2018b, using the ’imregister’ function and ’multimodal’ configurations. After de-noising and
registration, the images are denoted as {I i0}

T
i=1. The vessels of interest are delineated and labelled

by trained graders in a manual fashion prior to automated velocimetry analysis. In order to
remove background noise and simultaneously enhance erythrocyte signals, the temporal average
of the whole sequence, Iavg, is subtracted from each individual raw image in the sequence {I i0}

T
i=1.

Output images are denoted as {I i}T
i=1. Here T indicates the total number of frames in the video

and Iavg =
∑T

t=1 I
t
0

T . A representative temporal average image for 24.6fps videos and 46.1fps
videos is displayed in Fig. 3, where the vessel shape is conspicuous and can be used for labelling
the vascular network.

Fig. 2. Image preprocessing.

2.4.2. Overview of the EMA-AV framework

EMA-AV is a Monte Carlo (MC) based method, and a diagrammatic representation of the method
is shown in Fig. 4. Beginning with frame tk−1, the EMA-AV method is constituted by two general
steps: MC particle initialization and MC particle movement. With certain movement stopping
criteria, the new frame, tk , is used for initialization. The entire tracking process is considered
complete when all video frames have passed through the step of initialization. To explain the
EMA-AV method, Section 2.4.3 - 2.4.5 explicate the mathematical framework behind EMA-AV,
and Section 2.4.6 describes the EMA-AV procedures in detail.

2.4.3. Stochastic dynamic system

The tracking problem can be conceptually understood as the task of recovering the real dynamics
of object (erythrocyte) states (positions) from a sequence of noisy observations, which can be
modelled by a set of stochastic dynamic equations, as shown in Eq. (1):
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Fig. 3. The typical temporal average images for (a) 24.6fps video (b) 46.1fps video. The
gray-scale value of images were stretched to the range of 0-255 to aid visual appreciation.

.

Fig. 4. EMA-AV framework for erythrocyte velocity estimation.

xk = fk−1(xk−1) + αk−1

zk = hk(xk) + θk
(1)

where xk represents the state of the object at time tk . fk−1 is a transition function describing the
evolution from xk−1 to xk , as a first-order Markov process. αk is an independent and identically
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distributed (iid) random process representing the process noise. hk defines the relationship
between the state, xk , and the measurement, zk . θk represents the iid measurement noise. In
essence, the tracking problem aims to estimate the posterior probability density function (PDF),
p(xk |z1:k).
The solution to this problem is, in a general sense, constituted by two steps: prediction, and

update [28]. In the prediction step, xk can be estimated from p(xk−1 |z1:k−1) and transition density
πk |k−1(xk |xk−1), based on the Chapman-Kolmogorov equation shown in Eq. (2):

p(xk |z1:k−1) =
∫

πk |k−1(xk |xk−1)p(xk−1 |z1:k−1)dxk−1 (2)

When the new measurement is obtained, the posterior PDF can be updated according to Bayes
rule, based on Eq. (3), where gk(zk |xk) is the likelihood function describes how likely the noisy
observation signal can be the signal from targeted object:

p(xk |z1:k) =
gk(zk |xk)p(xk |z1:k−1)∫
gk(zk |xk)p(xk |z1:k−1)dxk

(3)

2.4.4. Sequential Monte Carlo (SMC)

The SMC method establishes a general framework for a numerical solution to the dynamic system
problem [40]. It utilizes a large number of random weighted MC particles as an approach to
optimal estimation of the posterior PDF. We extend the idea to estimate the object movement
velocity (Section 2.4.5). The description of the general SMC method is given as following:

Suppose at time tk−1, the posterior density is approximated by N weighted MC particles in:
{wi

k−1, xi
k−1}

N
i=1, where xi

k−1 is the state of particle i in time tk−1, and wi
k−1 is its corresponding

weight (which must be normalized to describe the possibility of being a real object). The detailed
definition of wi

k
in our application is given in Section 2.4.6. The posterior PDF at time tk−1 can

be expressed as Eq. (4):

p(xk−1 |z1:k−1) ≈
N∑
i=1

wi
k−1δxik−1

(xk−1) (4)

where δ(x) is the Dirac function.
At time tk , the posterior PDF can be approximated by a new set of weighted MC particles
{wi

k
, xi

k
}N
i=1, as shown in Eq. (5):

p(xk |z1:k) ≈
N∑
i=1

wi
kδxik
(xk) (5)

where
xik ∼ qk(xk |xik−1, zk)

w̄i
k = wi

k−1
gk(zk |xik)πk |k−1(xik |x

i
k−1)

qk(xk |xik−1, zk)

wi
k =

w̄i
k∑N

j=1 w̄
j
k

In general cases, qk ≡ πk |k−1. To avoid particle weight degradation [28], a potential problem
where MC particles will be less likely to represent the real signal when tracking, a re-sampling
process is ordinarily required to preserve more large weight particles and discard more small
weight particles. The re-sampling step selects N particle(s) from {wi

k
, xi

k
}N
i=1, with the probability

of selecting particle i being wi
k
[43].

                                                                      Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3686 



2.4.5. SMC for erythrocyte velocity estimation: EMA based automated velocimetry (EMA-AV)

In SMC, the transition function f is based on prior knowledge of object velocities [36]. In the
tracking procedure, the function can gradually filter out uncertain signals with low signal weights.
However, with regards to our erythrocyte speed estimation application, the transition function
(object velocity) required estimation frame by frame. To that end, we borrowed the idea of
weighted MC particles to consider signal uncertainties, sacrificing the filtering ability of the SMC
method. The weighted average velocity of MC particles is a better speed estimation. To ensure
that the MC particles represent multiple erythrocytes, we introduced spatial clustering of MC
particles in Section 2.4.6. Each MC particle cluster represents an erythrocyte, whose velocity,
vk−1, at time tk−1, needs to be estimated based on p(v |zk−1, zk). Once vk−1 is determined, the
transition density, πk |k−1, may be deduced without considering the process noise, α. Utilizing
the weighted MC particles in an erythrocyte, p(v |zk−1, zk) can be computed as follows:

p(v |zk−1, zk)

=

∬
p(v |xk−1, xk)p(xk−1, xk |zk−1, zk)dxk−1dxk

=

∬
1(xk − xk−1 = v)p(xk−1, xk |zk−1, zk)dxk−1dxk

≈

∑N
i=1

∑N
j=1 1(x

j
k
− xi

k−1 = v)wi
k−1w

j
k
δxi

k−1
(xk−1)δx j

k
(xk)∑N

i=1
∑N

j=1 1(x
j
k
− xi

k−1 = v)wi
k−1w

j
k

(6)

where 1() is an indicator function. Subsequently, vk−1 can be determined based on p(v |zk−1, zk):

vk−1 = E(v |zk−1, zk)

=

∫
v

vp(v |zk−1, zk)dv

v ∼ uni f orm(vmin, vmax)

(7)

In order to compute the integration in Eq. (7), we allocate vxi
k−1

to each MC particle, xi
k−1,

and transform the continuous integration into a discrete integration. vxi
k−1

is sampled from the
uniform distribution in Eq. (7). A one-to-one mapping between the set {wi

k−1, xi
k−1, vxik−1

}N
i=1 and

the set {wi
k
, xi

k
}N
i=1 can be established naturally. Equations (6) and (7) can also be simplified as:

(6) = p(v |zk−1, zk) =
N∑
i=1

wi
k−1w

i
k∑N

j=1 w
j
k−1w

j
k

δixk−1
(xk−1) (8)

(7) = vk−1 ≈
N∑
i=1

vxi
k−1

wi
k−1w

i
k∑N

j=1 w
j
k−1w

j
k

δixk−1
(xk−1) (9)

2.4.6. Elaboration on the steps of EMA-AV

As shown in Fig. 4, the EMA-AV method has two main steps: MC particle initialization and MC
particle movement. MC particle initialization ascertains the weighted particle set {wi

k−1, xi
k−1}

N
i=1,

as mentioned in Section 2.4.4. The N weighted MC particles represent N pixel signals from
an unknown number of erythrocytes. Their weights represent how likely the signal is to be
originating from erythrocytes. Firstly, the particles were selected in a random and uniform fashion
within the vessel of interest, and wi

k−1 was set as 1
N . In accordance with the gray-scale value
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in Ik−1 (observation), the image from the pre-processing step, the MC particle weight values
could be updated. The updating of the particle weight values was accomplished according to Eq.
(10) based on the Gaussian intensity distribution assumption of likelihood function gk(zk |xk), as
mentioned in Section 2.4.3 [40]. w̄i

k−1 were subsequently normalized according to Eq. (5):

w̄i
k−1 = exp(−

(Ik−1(xi
k−1) − Imax)2

2σ2 ) (10)

Here, Imax and σ were both hyper-parameters. If the grayscale value of a particle was larger
than Imax , the non-normalized weight of the MC particle was maximized. In the experiment, the
Imax was set as 100, and sigma was set as 30. To exclude invalid frames associated with a blink,
if the largest particle grayscale value was lower than an established hard-set threshold, this frame
was discarded.

The re-sampling process was conducted in following the precaution stated earlier in Section
2.4.4, namely, to avoid MC particle weight degradation. After re-sampling, low weight MC
particles were usually discarded. However, there was still a potential for several MC particle
clusters to be located within the vessel. These MC particle clusters, which could represent
various independent erythrocytes, were amenable to have their movement velocities computed
independently.

In order to define theMCparticle clusters mathematically, amean shift clustering algorithm [44]
was applied to separate the particles as dictated by their two-dimensional (2D) coordinates. As
current, cluster analysis is an important branch in the domain of pattern recognition [45]. However,
as opposed to classic centroid-based clustering methods, such as the "k-mean algorithm", mean
shift algorithms do not require an explicit preliminary designation of the number of clusters.
This was appropriate considering the uncertainty of the exact number of erythrocytes in each
frame. All the MC particles in each mean shift cluster represent an erythrocyte. In this study, the
bandwidth of the mean shift algorithm was set to 5.

Spatial clustering could generate C MC particle clusters. Given cluster c, the set of weighted
particles could be denoted as {wi

k−1, xi
k−1}

Nc

i=1, where Nc was the number of particles in cluster c.
As previously introduced in Section 2.4.5, each particle could be assigned a random velocity
value vxi

k−1
, and the particles could move accordingly within the 2D region of the vessel of interest.

If all the particles exited the target vessel, this corresponding particle cluster was removed from
the cluster list.
After movement, the particle positions were denoted as {xi

k
}Nc

i=1, and their weights, {w
i
k
}Nc

i=1,
were re-calculated according to the gray-scale value in the next frame, Ik . Re-sampling and
spatial clustering operations were conducted in a similar fashion to the former step. If spatial
clustering generated a new particle cluster (cluster split), the movement of cluster c ended. This
was designed to address the concern of erythrocyte aliasing, which could have otherwise affected
the experiment results (during manual labelling, trained human graders also excluded cases where
there was any uncertainty as to the identification of cells from frame to frame). If no cluster split
was observed, the cluster’s movement velocity, vc

k−1, would be recorded following Eq. (9), and
the movement continued.

When the movements of all C particle clusters had ended, the initialization and movement steps
in Fig.4 needed to be restarted from frame tk . As introduced in 2.4.2, the entire tracking process
was considered complete when all video frames had passed through the step of initialization.
The EMA-AV framework is implemented in Python 3.6. It requires approximately ten minutes to
process an EMA video (with 300 frames) using an Intel i7-7700 CPU (by comparison, more than
eight hours are required for manual labelling by trained human graders). The python class of
EMA-AV has been uploaded to http://taolab.umd.edu/research/
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3. Results and discussion

3.1. Tracking results visualization

In order to present the erythrocytes tracking results in an intuitive manner, the typical tracking 
chains in the 46.1fps and 24.6fps EMA videos are displayed in Figs. 5 and 6. In each frame, 
one venule and one arteriole are shown. The practical purpose of these images are to allow 
readers to appreciate the reliability of automatic erythrocyte speed estimation. Examples of 
angiograms with tracked erythrocytes using EMA-AV are included in the supplemental materials 
(Visualization 1 and Visualization 2). The topmost images in Figs. 5 and 6 are variance maps of 
corresponding EMA videos, with the target vessel skeleton labelled. The variance maps display 
increased contrast of smaller vessels compared to temporal average frames, as defined in Section 
2.4.1, but have more noise for image preprocessing.

Fig. 5. Sample tracking results from the 46.1fps videos. (a) A venule is displayed as the
target vessel. (b) An arteriole is displayed as the target vessel. The topmost images in (a)
and (b) are variance maps for the corresponding video sequences, with the vessel skeleton
labelled in red.
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Fig. 6. Sample tracking results from the 24.6fps videos. (a) A venule is displayed as the
target vessel (b) An arteriole is displayed as the target vessel. The topmost images in (a)
and (b) are variance maps for the corresponding video sequences, with the vessel skeleton
labelled in red.

3.2. Statistical analysis

In total, 11 vessels (5 venules and 6 arterioles) from 4 subjects (5 individual eyes) were used for
the erythrocyte tracking algorithm validation. All vessels were imaged by the modified HRA2
and Spectralis, in both 24.6fps and 46.1fps modes, within the same day. Trained human graders
were appointed the task of labelling and tracking erythrocyte movements on a frame by frame
basis. Manual labelling was found to be a time-consuming process which thereby limits large
scale applications and experiments. However, based on previous studies, grading results from
different graders showed the intra-class correlation coefficient (ICC) [46] value to be 0.99 [23].
Therefore, in this study, results obtained by trained human grader tracking served as a basis for
comparison with the data yielded by EMA-AV.
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3.2.1. Mean erythrocyte velocity analysis

Mean erythrocyte velocity is an important index to study overall vessel blood flow [22], which
is a tool that may promote the understanding of blood flow alteration in eye disease. In EMA,
the mean velocity was computed based on all tracked erythrocytes. In comparing the results
obtained by EMA-AV with those from the trained graders, several modalities of data analysis
were employed (ICC, coefficient of determination (R2) and the mean coefficient of variation
(CV)), and these are summarized in Table 1. Statistical analysis was performed in RStudio
(version 3.5.2). The linear regression plot is displayed in Fig. 7. In Fig. 8, Bland-Altman plots
are presented to visualize the difference between the results obtained by EMA-AV versus the
trained graders. Based on these data, in addition to the results of a paired t-test, it is evident that
no statistically significant difference exists in mean velocity results as determined by trained
graders and EMA-AV. This conclusion supports the proposition that EMA-AV may serve as a
reliable and accurate alternative to trained human grader reporting of mean erythrocyte velocities
as based on EMA.

EMA-AV displayed a high degree of correlation with the trained graders results in both 24.6fps
and 46.1fps videos. 24.6fps results showed higher correlation than 46.1fps results, based on
experimental data. A potential explanation could be that the mean signal to noise ratio in the
24.6fps videos was 11.32, which was 33% higher than the SNR in 46.1fps videos (SNR=8.51).
In Fig. 8(b), it is shown that the outlier data points, with regards to the limits of agreement,
were from the video with an SNR of 4.33. In such conditions, even single particle tracking in
simulated videos cannot be accomplished [35].

Table 1. Summary of statistical results analyzing mean erythrocyte velocities as determined
by trained human graders and EMA-AV.

frame rate ICC R2 mean CV

25fps 0.999 0.995 9.23 ∗ 10−3

46fps 0.983 0.932 4.17 ∗ 10−2

Fig. 7. Linear regression plots for mean erythrocytes velocities (for 11 vessels) between
trained human graders and EMA-AV. (a) 24.6fps videos (b) 46.1fps videos.

3.2.2. Frame-based erythrocyte velocity analysis

By means of EMA, it is also possible to observe blood particle component dynamics under
normal physiologic conditions. Moreover, EMA facilitates the study of the relationship between
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Fig. 8. Bland-Altman plots for mean erythrocytes velocities (for 11 vessels) between trained
human graders and EMA-AV. The 95% confidence intervals of the mean difference and
limits of agreement are shown in the plot. (a) 24.6fps videos (b) 46.1fps videos.

retinal ocular blood dynamics and ocular disease [22].
In order to evaluate individual cell tracking performance, frame based ICC values between

trained graders and EMA-AV were computed. In deciding whether to include or exclude data
reported by the graders and EMA-AV for ICC computation, it was first assessed whether the
two tracking media had produced mutually agreeable results. If both the trained graders and
EMA-AV mutually reported an erythrocyte tracked from frame t to frame t + 1, its velocity was
then used for ICC computation. If either a trained grader or EMA-AV reported an erythrocyte
tracked (but there was no mutual agreement), then the velocity would be excluded from ICC
computation. A potential reason for lack of agreement was due to a tendency for human graders
to overlook erythrocytes in low contrast situations. EMA-AV would reject particle movement
when erythrocyte cluster splitting had occurred, as displayed in Fig. 4. To clarify, all particles
were included when computing the mean erythrocyte velocity in Section 3.2.1.

Frame-based ICC values of 11 vessels, in both the 24.6fps and 46.1fps videos, are displayed in
Tables 2 and 3.

Table 2. Frame based ICC values of 11 vessels from 5 eyes in 24.6fps EMA videos. Under the
vessel index column, E represents eye index, A represents arteriole index, and V represents
venule index.

Vessel Index ICC Vessel Index ICC Vessel Index ICC

E1V1 0.957 E3A2 0.905 E4V1 0.982

E2A1 0.935 E3V1 0.860 E5A1 0.970

E2V1 0.897 E4A1 0.902 E5V1 0.939

E3A1 0.912 E4A2 0.918 Mean 0.925

Based on the information displayed in the tables, it could be concluded that ICC values
vary between vessels, potentially due to higher velocities related to vessel size or also possibly
resolution. Further, it was possible for the variable ocular physiologic status to influence EMA
image quality and thus alter frame-based ICC values. Compared to 46.1fps videos, 24.6fps
videos had higher SNR values than 46.1fps videos, as previously stated in Section 3.2.1, while the
spatial resolution of 24.6fps videos was inferior that of 46.1fps videos, as mentioned in Section
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Table 3. Frame based ICC values of 11 vessels from 5 eyes in 46.1fps EMA videos. Under the
vessel index column, E represents eye index, A represents arteriole index, and V represents
venule index

Vessel Index ICC Vessel Index ICC Vessel Index ICC

E1V1 0.954 E3A2 0.974 E4V1 0.979

E2A1 0.987 E3V1 0.983 E5A1 0.927

E2V1 0.987 E4A1 0.837 E5V1 0.899

E3A1 0.944 E4A2 0.873 Mean 0.940

2.1. In the 24.6fps videos, erythrocytes were more likely to aggregate and to split. For example,
if there was a potential erythrocyte cluster in frame t and two in frame t + 1, and the two clusters
in frame t + 1 had a significant grayscale value difference. In this situation, the trained grader
displayed a tendency to link the cluster in frame t with the closer cluster in frame t + 1, while,
conversely, EMA-AV tended to link it with the brighter cluster in frame t + 1. These tendencies
may be understood as systematic differences in EMA methods, which, as discussed in Section
3.2.1, did not necessarily influence mean velocity estimation performance statistically.
EMA-AV can generate a plot of the cardiac systolic and diastolic cycles based on frame by

frame erythrocyte velocities, and an example is shown in Fig. 9. The limitations of this method to
generate such a plot are that the velocity of each frame is determined by individual erythrocytes
and not gated with an ECG signal at the current stage. Further investigations in frame by frame
erythrocyte velocities with ECG gating may permit understanding of systolic and diastolic cycles
and their importance in the relationship between retinal blood flow and cardiovascular (or other
systemic) disease(s).

Fig. 9. An example cardiac systolic and diastolic cycle plot (venous). In order to de-noise
the signal, the results were smoothed every 0.5s.

3.2.3. Comparison between 24.6fps EMA and 46.1fps EMA

As mentioned in Section 2.1, the primary distinction between 24.6fps and 46.1fps Heidelberg
SLO imaging was the change in scanning pattern. For both trained grader and EMA-AV results,
when assessing all 11 vessels, there was no statistically significant difference with regards to the
mean erythrocyte velocity between the two frame rate settings (human: p = 0.179, EMA-AV:
p = 0.277). However, for each vessel, when comparing the average top 10% fastest velocities, the
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values in 46.1fps EMA videos were significantly higher than the values in 24.6fps EMA videos
for both human graders (p = 0.986) and EMA-AV (p = 0.963). The top 10% fastest velocities
could be of greater importance than mean erythrocyte velocity when assessing faster velocities
such as those occurring during cardiac systole. Moreover, based on the aforementioned data, it
could be observed that 46.1fps EMA was capable of capturing more accurate faster velocity data.
The EMA-AV algorithm was capable of effectively ascertaining the average top 10% velocities
in both 24.6fps video and 46.1fps videos, and, when compared to the trained graders, the ICC
values were 0.98 in both frame rates. The corresponding Bland-Altman plots are shown in Fig.
10. As shown in the figure, the average top 10% velocities derived from the trained graders were
generally higher than those from EMA-AV. An explanation for this phenomenon is that in Eq. (7),
vmin and vmax were required to be pre-defined to restrict the search range of the SMC method.
To further refine the intra-setting variability of the two different imaging frame rates, one

arteriole was excluded whose diameter was > 70µm, as this larger arteriole would be too fast for
velocity detection at 24.6fps, and its CV value between 24.6fps and 46.1fps videos was larger
than 0.15. The vessel diameter range for the remaining 5 arterioles was 30µm ∼ 55µm, and
22.5µm ∼ 50µm for the 5 venules. The vessel diameters were computed based on the temporal
average image from each video sequences. Our study found the mean velocities in small vessels
from EMA-AV were more robust to different frame rates as compared to trained graders. For
EMA-AV, the intra-setting R2 value for mean erythrocyte velocity was 0.856, and the ICC value
was 0.9553. For trained graders, the intra-setting R2 value was 0.8057, and the ICC value was
0.9435.

Fig. 10. Bland-Altman plots for average top 10% erythrocytes velocities (11 vessels) between
trained graders and EMA-AV. The 95% confidence intervals of mean difference and limits
of agreement are shown in the plot. (a) 24.6fps videos (b) 46.1fps videos.

3.3. EMA-AV: pros, cons, and comparison to other methods

EMA-AV offers the benefit of direct measurement of erythrocyte ghosts in vivo. This comes
with several potential benefits and drawbacks. Of these, the most promising benefit is the
potential to accurately and precisely characterize absolute erythrocyte velocity in the retinal
microvasculature. The invasive nature of this technique is a clear drawback of this procedure, as it
involves autologous injection of ICG-labelled erythrocyte ghosts. As compared to other forms of
invasive angiography, however, EMA-AV has a favorable risk profile. ICG is relatively safe and
less likely to result in allergy or nausea and vomiting as compared to fluorescein angiography [47].
Furthermore, the amount of ICG in ICG labelled erythrocytes is approximately 1/700 of that in
conventional ICG, which may make it safer. Adaptive Optics Scanning Laser Ophthalmoscopy
(AO-SLO) and other Adaptive Optics techniques offer a precise and noninvasive method of
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determining blood flow in a small field of view generally using equipment that is not commercially
available. EMA-AV is clearly more invasive, but allows for determination of blood velocities
in a wide field of view using a modified commercially available device. OCT-Angiography
currently allows for mapping out of blood vessels, and determination of relative blood flows
using techniques such as Variable Interscan time analysis (VISTA) [48]. More established such
as Color Doppler Imaging (CDI), laser speckle imaging, and laser doppler flowmetry allow for
noninvasive determination of relative blood flows as compared to absolute blood flows and have
generally shown higher variability. For example, the Canon Laser Blood Flowmeter has been
shown to have measured coefficients of variation for blood flow of up to 39.7% [49].

4. Conclusion

Erythrocyte mediated angiography (EMA) is a promising method for quantifying blood flow via
direct observation of erythrocyte movement. In an effort to overcome the time-intensive process
of trained human grader erythrocyte tracking, this study proposes an automatic and objective
method of analyzing EMA videos, called EMA-AV (EMA-Automated Velocimetry), which is
capable of ascertaining erythrocyte velocities. EMA-AV applies the concept of the sequential
Monte Carlo method to determine erythrocyte velocities. In two frame rate settings (24.6fps and
46.1fps), EMA-AV derived mean erythrocyte velocities and frame by frame velocities were highly
correlated with trained grader tracking results, as supported by the aforementioned statistical
analyses, which included an ICC, R2 and a CV.
Erythrocyte velocities obtained by EMA-AV have potential applications in studying the

relationship between retinal blood flow dynamics and the cardiac cycle, including systolic
and diastolic changes. 46.1fps EMA videos were more accurate for describing faster systolic
erythrocyte velocities than 24.6fps EMA videos. Moreover, EMA-AV demonstrated the capability
of capturing faster velocities as accurately as trained graders in both frame rate settings. Despite
the comparisons between trained human graders and EMA-AV being highly dependent on the
EMA method and image sampling characteristics, a reliable automatic analysis method could
still benefit the further validation of EMA.
Future development of EMA may involve both hardware and software improvements. With

regards to hardware, an increase in scanning rate with a minimal consequential reduction in
SNR is a potential means of broadening the erythrocyte velocity estimation range, which could
further enhance the robustness of EMA. In the current state of EMA image analysis, trained
human graders manually label the target vessel in the pre-processing step, and, as a result,
EMA-AV may be regarded as a semi-automatic modality. To further increase automation, image
segmentation techniques may be used. In the interim, there is scope for enhancement of image
particle description by augmentation with artificial intelligence techniques.

In conclusion, EMA-AV is a reliable prototype method for EMA video analysis and erythrocyte
velocity estimation. It is expected to broaden the applications of EMA and facilitate quantitative
analyses of retinal microvascular dynamics.
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