Table 1. Comparison of Photocurrent and Onset Potential with Contemporary Literaturea,b,c.
material for active electrode | preparation method | substrate | electrolyte | maximum photocurrent density | onset potential vs RHE (V) | reference |
---|---|---|---|---|---|---|
WO3/α-Fe2O3 | sputter deposition (high vacuum, argon atmosphere)* | FTO | 0.5 M Na2SO4 | 0.84 mA/cm2 (at 1.4 V vs RHE) | 0.43 | (41) |
Pt-doped α-Fe2O3 | electrodeposition* | FTO | 1 M NaOH | 1.43 mA/cm2 (at 1.4 V vs RHE) | 1.0 | (43) |
Fe2O3/Ti:ZnFe2O4 (heterojunction) | hydrothermal | FTO | 1 M NaOH | 0.2 mA/cm2 (at 1.4 V vs RHE) | 0.9 | (65) |
Ti-doped α-Fe2O3 | hydrothermal + drop cast | FTO | 1 M NaOH | 1.2 mA/cm2 (at 1.23 V vs RHE) | 0.95 | (66) |
Ti-doped α-Fe2O3 | thermal evaporation | FTO | 1 M KOH | 0.585 mA/cm2 (at 1.4 V vs RHE) | ∼0.85 | (67) |
Co-doped α-Fe2O3/MgFe2O4 (heterojunction) | hydrothermal + wet impregnation | FTO | 1 M NaOH | 1.28 mA/cm2 (at 1.4 V vs RHE) | 0.43 | (68) |
SrTiO3/Fe2O3 (heterojunction) | spin coating | FTO | 0.2 M Na2SO4 | 52.7 μA/cm2 (at 0.94 V vs RHE) | (69) | |
Si-doped α-Fe2O3 | APCVD | FTO | 1 M NaOH | 1.45 mA/cm2 (at 1.23 V vs RHE) | 0.8 | (70) |
α-Fe2O3/graphene/BiV1–xMoxO4 core/shell (heterojunction) | hydrothermal/exfoliation + spin coating | Ti | 0.01 M Na2SO4 | 1.97 mA/cm2 (at 1.6 V vs RHE) | 0.27 | (71) |
Zn-doped α-Fe2O3 (p-type) | electrodeposition | FTO | 1 M NaOH | 40.4 μA/cm2 (at 0.5 V vs RHE) | 1.3 | (72) |
Si-doped α-Fe2O3 | electrodeposition + microwave annealing | FTO | 1 M NaOH | 0.45 mA/cm2 (at 1.55 V vs RHE) | 0.85 | (73) |
α-Fe2O3/CdS | hydrothermal + dipcoating | FTO | 1 MNaOH + 0.1 MNa2S | 0.6mA/cm2(at 0.92 V vs RHE) | 0.4 | present work |
* = uses high-temperature annealing (700 °C) in the experimental procedures, which may result in improved photocurrents because of Sn diffusion from the substrate into α-Fe2O3.5
Conversion to RHE scale performed wherever necessary.
APCVD = atmospheric pressure chemical vapor deposition.