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ABSTRACT: The Marcus−Hush theory has been successfully applied to
describe and predict the activation barriers and hence the electron-transfer (ET)
rates in several physicochemical and biological systems. This theory assumes that
in the ET reaction, the geometry of the free Gibbs energy landscape is parabolic,
with equal curvature near the local minimum for both reactants and products. In
spite of its achievements, more realistic models have included the assumption of
the two parabolas having not the same curvature. This situation is analyzed by
the Nelsen’s four-point method. As a benchmark to compare the Marcus−Hush
approximation to a precise calculation of the excitation energy, we studied the
non-ET process of the electronic excitation of the aluminum dimer that has two
local minima (3∑g

− and 3∏u electronic states) and allows to obtain analytically
the Marcus−Hush nonsymmetric parameters. We appraise the ability of the
Marcus−Hush formula to approximate the analytical results by using several
averages of the two reorganization energies associated with the forward and
backward transitions and analyze the error. It is observed that the geometric average minimizes the relative error and that the
analytical case is recovered. The main results of this paper are obtained by the application of the Nelsen’s four-point method to
compute the reorganization energies of a large set of potential π-conjugated molecules proposed for organic photovoltaic devices
using the above-mentioned averages for the Marcus−Hush formula. The activation energies obtained with the geometric average
are significantly larger for some donor−acceptor pairs in comparison with the previously employed arithmetic average, their
differences being suitable for experimental testing.

■ INTRODUCTION

The longstanding interest on the electron-transfer (ET)
process1−4 relies on its influence within a plethora of
physicochemical and biological phenomena, such as electro-
chemical reactions,5−12 DNA damage and repair,13−16 inter-
actions between peptides and other macromolecules,17−20

photosynthesis,21 biochemical processes,22−24 model sys-
tems,25,26 and the technological interest on the exciton transfer
in organic photovoltaics.27−55

Historically, the theoretical models to understand ET can be
traced back to the pioneer work of Marcus5−8,56,57 and
Hush.58,59 The Marcus−Hush theory exhibits a mutual
dependence of the ET rate (kET) and the reaction free energy
(ΔG0).60 As a consequence, the theory exhibits a maximum of
the reaction rate when −ΔG0 is equal to the reorganization
energy λ. Thus, there exists a region where the increase of the
reaction driving force ΔG0 (reactants → products) leads to an
increase in kET, which is known as the Marcus normal region.
Additionally, the theory exhibits a region where the increase of
the driving force results in a decrease in the reaction rate, that
is, when −ΔG0 > λ, which is known as the Marcus inverted
region.60−62 Remarkably, the activation free energy ΔG† can be
calculated from the reorganization energy λ and the driving
force ΔG0.

A first assumption of the Marcus−Hush theory is to consider
that the electron is transferred only when the reactant and
product states have the same energy, as required by the
Franck−Condon approximation and the energy conservation
principle in the absence of interaction with external energy
sources (such as photons). This equi-energetic situation
(stabilization of products or destabilization of reactants)
required by the Marcus−Hush model is due to environment
fluctuations.63 The second assumption is that the solvent
response to variations in molecular densities is linear around
the relaxed state; hence, the free energy is quadratic. This has
two consequences. On the one hand, the free energies can be
modeled by two parabolas centered at the stable states of
reactants and products. On the other hand, these two parabolas
have the same curvature,64 indicating that the two reorganiza-
tion energies (products → reactants and reactants → products)
are the same.
Despite the hard assumption that both parabolas have the

same curvature, the Marcus−Hush theory is both qualitatively
and quantitatively accurate for most systems. However, in
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general, it is known that the solvent response is nonlinear and
that it manifests through differences between the curvatures of
the parabolas.63 Even in such a situation, the Marcus−Hush
theory fits as a first approximation that can give consistent
predictions.63,65,66 In spite of the previous mentioned achieve-
ments, many important cases are known where the equal
curvature assumption fails and several attempts to generalize
the Marcus−Hush theory have been reported.8−12,63,65−69 The
inclusion of different curvatures to account for nonlinear
solvent responses as well as other internal molecular features
has been previously discussed8−12,63,65−69 but is still an open
problem.
The reorganization energy λ is normally split into internal

(λi) and external or “outer” (λo) contributions. The internal
reorganization energy λi accounts for changes in bond lengths
and other structural parameters of the molecules. In gas-phase
reactions, it is the only contribution to the system
reorganization energy. In this sense, λi can be achieved by
quantum mechanical calculations.31,70−76 The external term, λo,
comes from the contributions of the solvent molecules to the
reorganization energy, and in condensed phase reactions
(liquids or solids), this term becomes dominant. Explicit
consideration of solvent−molecule interactions makes the
system quantum mechanically intractable, hence λo is often
calculated by means of classical dynamics methodologies or by
employing implicit solvent quantum mechanical models.
Regardless of this complication in computing λo, an

exceptional effort has been done to calculate λi, and many
quantum mechanical schemes have been introduced.31,70−77

One of the methods most often employed is the four-point
scheme proposed by Nelsen,77 which has been extensively
applied because of its simplicity and it has been successfully
proven for many systems.72,73,78−90 Particularly, it has been
used in the computation of electron self-exchange reac-
tions.83,85,90 In such a scheme, the Marcus−Hush theory
provides a method to find the intersection between the two
parabolas by means of the knowledge of just four points in the
free energy surface. Two points are the free energy of reactants
and products in their respective local minima geometry, and the
other two points are obtained by computing the free energy at
the reactants’ geometry in the potential energy surface (PES) of
the products and vice versa. In this scheme, the energetic
differences between the molecules in their stable and nonstable
states are related with two reorganization energies (λ1 and λ2).
In this work, we analyze several averages of these two

reorganization energies as a method to generalize the Marcus−
Hush theory to include parabolas with different curvatures, as
has been tried in previous reports.85,90 In such an attempt, we
discuss the error of employing the distinct averages in a model
system of an aluminum dimer, which has been extensively
investigated both experimentally91 and theoretically.92 This
simple model, while not an ET system, allows us to explore
analytically the reorganization energies as well as the driving
force by noting that the Marcus−Hush theory can be seen as a
method to find the intersection between the parabolas along
the reaction coordinate. The analysis of the relative error allows
us to explore novel donor and acceptor molecules used in
organic photovoltaics by means of the averaged reorganization
energy.
The rest of the paper is organized as follows. In section II, we

outline the Marcus−Hush theory. In section III, Results and
Discussion, a simple diatomic model is analytically solved and
the ability of the Marcus−Hush theory to recover the analytic

solution is appraised, also we analyze the ability of four different
averages of the parabolic curvatures to capture the analytic
solution obtained for the aluminum benchmark system. Next,
we apply our findings to analyze the activation energy
prediction for photovoltaic donor−acceptor (D−A) pairs and
report results that can be relevant in applications. Finally, in
section IV, conclusions are presented.

■ OUTLINE OF THE MARCUS−HUSH THEORY
The Marcus−Hush theory schematic view of the system is
shown in Figure 1. The PES geometry near the local minimum,

for either reactants (red) or products (blue), is approximated
by a parabola with a defined curvature k. It is assumed that the
species involved in the reaction are structurally relaxed in their
respective initial (x1) and final (x2) reaction coordinate values.
Moreover, the physical situation is the guess that both local
minima of reactants and products are connected along an
assumed reaction pathway, described by a complex N-
dimensional specific reaction coordinate direction on the PES.
In accordance with Figure 1, the corresponding parabolic

equations are
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λ stands for the reorganization energy. Application of the
Marcus−Hush theory implies the knowledge of merely k(x1 −
x2) and remarkably not of the individual reaction coordinates.
The reorganization energy can be evaluated by
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Figure 1. Idealized parabolic PESs for reactants (G1(x), red) and
products (G2(x), blue) in the electron self-exchange process, M− ↔
M, as functions of the reaction coordinate. The two parabolas have the
same curvature near the respective local minimum (x1 and x2). The
activation energy ΔG† is given by the reorganization energy λ and the
driving force ΔG0 = G2

0 − G1
0.
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Also, in the case of two parabolas not having the same
curvature (k1 ≠ k2), the intersection between the curves can be
analytically found. In this case, the activation energy is strongly
related both to the reorganization energy previously mentioned
λ1 (reactants → products) and to a new defined reorganization
energy λ2 obtained in the reverse direction (products →
reactants).
However, the analytical solution cannot be written in terms

of neither λ1 nor λ2. Rather the intersection is related to the free
activation energy ΔG†, so an approximate solution for k1 ≈ k2
can be achieved by means of a Taylor expansion, giving the
corresponding transition state energy

Δ =
Δ + + −

−+
†G k

G k x k x k x x
k x k x

( 2 )
4( )1

0
1 1

2
2 2

2
2 1 2

2

2 2 1 1
2

(4)

One can easily notice that eq 4 leads to the Marcus−Hush
formula (eq 2) when k1 = k2 = k3. Hence, the Marcus−Hush
formula can be seen as an approximation to the analytical
solution for small differences between λ1 and λ2. A detailed
discussion on the analytical and approximate solutions can be
found in the Supporting Information.
To apply the above scheme to an ET process, we first

consider an electron self-exchange reaction

↔−M M (5)

and denote by λI(M) and λII(M) the reorganization energies of
the forward and backward reactions, respectively, and the
reaction driving force is ΔG ≠ 0, as depicted in Figure 2. The
reorganization energy λI(M) is the required energy to reach the
geometry of the products from the geometry of the reactants
without transferring the electron, whereas λII(M) is the energy

required to achieve the positions of the atoms in the reactant
complexes from the product geometry without ET. Such
reorganization energies are typically different, as schematized in
Figure 2. Those cases with very dissimilar λI and λII are
examples where one ET deeply influences the relaxed geometry
of the isolated donor or acceptor molecules.
Computation of the activation energy of reaction in eq 5

faces the disadvantage that the curvature of the two parabolas
could be different and that the application of the Marcus−Hush
formula is dubious; notwithstanding, we could try to estimate
the activation energy by the substitution of either λI or λII in eq
2. However, a better approach is to construct two parabolas of
equal curvature to guarantee the validity of eq 2. As can also be
seen in Figure 2, in this case, the equal curvature condition of
the Marcus−Hush theory is fulfilled by considering the electron
self-exchange process

+ → +− −M M M M (6)

whose total reorganization energy is the same for the forward
and backward directions and can be calculated considering the
adduct of the two molecules or by considering them as
noninteracting species. We adopt the second approach and
compute an approximation to this reorganization energy as the
sum of their respective λI(M) and λII(M)85,90

λ λ λ= +(M) (M) (M)I II

while the driving force is ΔG0 = 0, thus substitution of λ(M) in
eq 2 leads to ΔG† = λ(M)/4. Hence, a reliable option to
estimate the reorganization energy of the reaction in eq 5 is by
means of different averages of λI(M) and λII(M) (arithmetic,85

harmonic, or geometric) to use eq 2.
Let us now consider a general ET reaction

+ → +− −D A D A (7)

with D and A denoting donor and acceptor species,
respectively, and D− and A− their ionized counterparts. This
reaction can be split into two electron self−exchange processes,
and then the total free energy for their respective local minima
G1
0 and G2

0 is obtained as the sum of both systems (donor plus
acceptor).

λ λ λ λ= = +(D, A) (D) (A)1 1 I I

and

λ λ λ λ= = +(D, A) (D) (A)2 2 II II

where λ1 and λ2 denote the reorganization energies of the
forward and backward reactions, respectively, and the reaction
driving force, ΔG0 ≠ 0.
The total reorganization energy of this bimolecular system

can also be obtained as the different averages of λ1 and λ2,
similar to the electron self-exchange process.
Before we consider D−A systems, in the next section, we

focus on a system that can be solved analytically, followed by
Marcus−Hush parameters, and then we test the averages by
computing the error with respect to the exact result.

■ RESULTS AND DISCUSSION
Analytic Marcus−Hush Parameters for Al2. To study

the relevant aspects of the Marcus−Hush theory, a simple
diatomic aluminum system has been employed. This example
does not correspond to an ET reaction, but it helps to analyze
the case of two parabolas with different curvatures. It is worth
to mention that while the Marcus transition state theory is most

Figure 2. Parabolic PESs for reactants (red) and products (blue) in an
electron self-exchange process as a function of the reaction coordinate.
Top: M− ↔ M. Bottom: M− + M → M + M−. ΔG† is not obtained by
only the value of λI, but a new reorganization energy λII must be
considered.
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broadly used for ET, it is not limited to ET systems and is
applicable to almost any nonadiabatic process. Al2 has been
observed to have two local minima both experimentally91 and
theoretically.92 The spectroscopy experiment reports a 3∏u
electronic ground state with a bond length of 2.7011 ± 0.0015
Å and a vibrational frequency of 285.80 cm−1. Similarly, a 3∑g

−

electronic state with a bond length of 2.4665 ± 0.0024 Å and a
vibrational frequency of 350.01 cm−1 has been reported. Figure
3 shows an energy scan at the Perdew, Burke, and Ernzerhof93/

triplet zeta basis set94 theory level as previously reported92 for
the triplet PES employing the Gaussian 09 suite,95 with two
well-defined parabolas near each local minima. Despite
knowing that the energy order of the local minima for both
electronic states is wrongly predicted by density functional
theory (DFT) methods, we can analyze the local geometry as
the normal modes are real91,92 after vibrational analysis. Both
parabolic equations y = ax2 + bx + c can be easily obtained for
their respective local minima. The coefficients are summarized
in Table 1, and the plots employing the coefficients are shown
in Figure 3 for both electronic states. The relevant Marcus−
Hush parameters were analytically obtained and presented in
Table 2.

Starting from the 3∑g
− electronic state, the bonding distance

can be increased to reach the intersection point. The energy
barrier is determined by the intersection point coordinates (x†,
G(x†)). In this particular example, we need to know only the
dimer bond distance as the reaction coordinate results from the
knowledge of both analytical functions, and therefore, the
reorganization energy λ is not necessary to be applied in the
Marcus−Hush model.

The activation energy from the Marcus−Hush formula can
be evaluated with different averages of the reorganization
energies. λ1 is used to estimate ΔG† when the system is going
from reactants to products, and λ2 appears when the system
reaches the minimum of the reactants starting from the PES of
the products. We will consider the arithmetic (λ1̅), harmonic
(λ2̅), and geometric (λ3̅) averages, and the arithmetic average of
the first two (λ4̅)

λ
λ λ

̅ =
+( )
21

1 2
(8)

λ
λ λ

λ λ
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1 2
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Because the reaction coordinates in the λ = k(x2 − x1)
2

equation are known for the Al2 system, for the purpose of
explaining the error of the different averages, we will consider
the curvature k and not the reorganization energy λ as follows.
To delve into the general behavior for arbitrary variations of

the ratio k1/k2 between parabolas and to analyze the error in
such hypothetical cases, defined as

λ
=

Δ − Δ

Δ

† †

†

G G

G
error

( )analytical i calc

analytical (12)

we plot the relative error (Figure 4) employing the Marcus−
Hush formula for the different k’s as a function of the curvature
ratio of both parabolas (k2 = 0.057411 is fixed and k1 is varied).
For the Al2 system, the ratio k1/k2 ≈ 2.02. The error percentage
is obtained by multiplying the relative error by 100 and taking
the absolute value.
It is observed that employing an average of the curvature k,

the error is decreased in comparison with using either k1 or k2
(Figure 4), for k1/k2 ≤ 2, all the averages give errors of less than
5%, whereas k1 and k2 separate immediately one from the other.
Besides, in spite of the fact that the relative error is nonzero for
all the curvatures explored, there are few regions where the
error decreases as seen in the bottom plot, where data with
error less than 5% and up to the ratio k1/k2 = 3 are displayed. It
is also observed that the geometrical average k3̅ and the average
of average k4̅ depart slowly from zero error, specially they seem
to be the best choices for larger values of the ratio k1/k2. It is
worth to mention that k4̅ is obtained from two averages. For a
better understanding of the error percentage, the activation
energies ΔG† are computed (Table 3) for their respective
reorganization energy and compared with the analytical value
obtained. It exhibits the good agreement of the error obtained
with k3̅ and k4̅ averages in comparison to the previous error

Figure 3. PESs employing the total energy (E, in mHa) and the free
Gibbs energy (G, in mHa) for Al2 as a function of the interatomic
distance (r in Å). For an easy visualization, an energy shift has been
introduced in the total energy (adding −18.5 mHa). Energy is referred
to the ground state.

Table 1. Coefficients of the y = ax2 + bx + c Equations for the

3∑g
− and 3∏u Electronic State System Employing the Total

Energy, E (in Ha), and the Free Gibbs Energy, G (in Ha)

E G
3∑g

− 3∏u
3∑g

− 3∏u

A 0.11853 0.07440 0.11557 0.05711
b −0.59468 −0.41265 −0.58337 −0.32101
c −483.876 −484.049 −483.795 −484.079

Table 2. Coordinates of the Minimum for the 3∑g
− and 3∏u

Electronic States of the Al2 System, xi (in Å) and Gi
0 (in Ha)

in Each Parabolaa

i xi Gi
0 ki λi

3∑g
− 2.524 −484.5311 0.1186 9.51 (10−3)

3∏u 2.811 −484.5304 0.0571 4.70 (10−3)
aThe curvature ki and the reorganization energy λi (in Ha) are
analytically obtained.
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discussed. Employing either k3̅ or k4̅ averages, the relative error
is minimized and the closest value to the analytical activation
energy ΔG† is obtained.
Organic Photovoltaic Systems. One of the branches with

greater relevance to apply the ET Marcus−Hush theory is the
process between a donor and an acceptor molecule in an
organic photovoltaic (OPV) cell.31,75,76 In this work, a set of
potential molecules (Figure 5) for OPV devices are employed
to assess the Nelsen’s four-point method and verify the best
choice of the reorganization energy in accordance with the Al2
dimer discussion.
With this purpose, we use the list of molecules compiled by

Das and Ghosh96 functionalized in all their R-positions with
methyls, and we did not consider another substituent. Also,
while it is known that only few of the possible pairs are suitable
D−A systems in the experiment,96 for the sake of completeness
of our analysis, we considered all possible combinations (120
D−A pairs). At the end of the section, we present D−A pairs

that have energy barriers potentially attainable for practical
applications; nevertheless, in the following discussion, we do
not restrict ourselves to these pairs.
The total reorganization energies of the D−A system are

treated as two contributions separately.77 Each molecule is
individually geometry-relaxed without considering solvent
interactions. Details of the computations are given in the
Methods section at the end of this text. A summary of the total
energy and free Gibbs energy is reported in the Supporting
Information, Tables S2 and S3.
The activation energy ΔG† is computed for each D−A

system employing either λ1, λ2, or the arithmetic and geometric
averages λ1̅ and λ3̅, respectively (the λ2̅ and λ4̅ averages
considered are reported in the Supporting Information). In
Figure 6, it can be observed that employing ΔG†(λ3̅) as our y-
axis reference, dispersion between ΔG†(λ1̅) and ΔG†(λ2̅)
occurs for values higher than 2.0 eV. The activation energy
obtained by means of λ1 is in most cases lower than employing
λ2. Actually, there are several systems where the ΔG†(λ2) is
higher than all the other barriers obtained. Remarkably, the
ΔG†(λ3̅) shows an exceptional correlation for the 120 D−A
pairs with respect to ΔG†(λ1̅).
It is useful to mention that the arithmetic average λ1̅ has been

previously employed in the computational model of ET in a
homogeneous oxidation of aqueous transition-metal ions by
dissolved molecular oxygen.85 In our analysis, the arbitrary
choice of either λ1̅ or λ3̅ seems not to represent a relevant
difference and could be indistinctly adopted to calculate the
activation energy.
It is instructive to analyze the components of ΔG† to explain

the behavior displayed in Figure 6. The leading term is
proportional to the ratio between the squared free energy
difference and the reorganization energy, as is shown in Figure
S2 of the Supporting Information. In Figure S3, the term
proportional to the reorganization energy is shown. The
influence of the chosen λ in the computations is apparent
through both figures, and their dispersions are consistent with
results presented in Figure 6, particularly that of the leading
term.
On the other hand, Figure S4 in the Supporting Information

displays the poor correlation between ΔG† data computed with
λ1 or alternatively with λ2, while Figure S5 shows the almost
perfect linear fit among the data computed with λ3̅ and with λ4̅.
Such a linear correlation remarks the arbitrary choice between
λ3̅ and λ4̅.
At this point, we discuss the predicted energetic barrier

differences when λ1̅ is replaced by λ3̅ in the four-point
calculation scheme, as shown in Figure 7. Values calculated
with λ3̅ are larger than those using λ1̅, leading to a decrease in
the predicted reaction rate. Such energetic differences are
suitable to be detected by experiments, as in most cases, that is,
in 64 pairs, energetic barrier differences are observed to be
larger than 10 meV, whereas in 54 pairs, differences are
observed to be larger than 20 meV. In D−A pairs (D2, D4, D5,
D6, D7, D8, D9)−A2, (D2, D4, D9)−A3, (D9, D10)−A5, and
(D2, D4, D9)−A11, we found differences larger than 100 meV.
To facilitate interpretation of the data, the numerical values
plotted in Figure 7 are presented in Table S4 of the Supporting
Information.
Now, we analyze the qualitative behavior of our results as a

function of the ratio λ1/λ2. With this aim, we construct relative
error plots using various references (assumed true values). In
these cases, we can neither calculate the error nor make a

Figure 4. Top: Variation of the relative error in the calculation of the
transition state energy (ΔG†) from the Marcus−Hush formula with
different curvatures: k1, k2, k1̅, k2̅, k3̅, k4̅ as a function of the curvature
ratio, k1/k2, for fixed k2 = 0.05711. Bottom: Detail of the previous plot.
Percentage can be obtained from the plots (see text).

Table 3. Activation Energy (in mHa) and Percentage Error
in the Marcus−Hush Formula Using Eq 2 with Different λ’sa

ΔG† % err

2.044
λ1 2.736 33.87
λ2 1.546 24.36
λ1̅ 2.139 4.65
λ2̅ 1.937 5.21
λ3̅ 2.038 0.28
λ4̅ 2.035 0.43

aThe first row corresponds to the analytical value.
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variation of the reorganization energies, instead in Figure 8, we
plot the error (eq 12) with respect to λ3̅. This plot is
constructed under the assumption that the only significant
feature of the D−A pairs is the ratio of the internal

reorganization energies; this hard assumption dismisses all
other geometrical parameters that can influence reorganization,
such as the number of atoms.
In Figure 8, we split the plot in two regions according to the

relative value of λ1 with respect to λ2 (λ1 < λ2 and λ1 > λ2),
showing that such an inequality does not influence the

Figure 5. Structures in the set of representative π-donors and acceptors used in this paper.

Figure 6. Comparison of ΔG† calculated with λ1̅, λ1, or λ2 and those
calculated with λ3̅. Linear fit equations are as follows: f(x) = 1.023x −
0.028, with R2 = 0.997 (blue); f(x) = 1.049x + 0.097, with R2 = 0.909
(red); and f(x) = 0.769x + 0.582, with R2 = 0.914 (orange). Main plot:
Results for 37 pairs with ΔG† below 2.0 eV. Inset: results for all the
120 pairs including unrealistic ΔG† up to 14 eV.

Figure 7. Energy differences ΔG†(λ3̅) − ΔG†(λ1̅) of the D−A pairs.
Differences larger than 10 meV are shown. The differences for the pair
A2−D9 (1.676 eV) and for the pair A2−D4 (0.542 eV) are not shown.
Horizontal lines are displayed at 0.015, 0.03, 0.05, 0.075, 0.1, and 0.15,
to facilitate interpretation.
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qualitative behavior of the plots: both regions display very
similar trends. We observe that λ4̅ values are the closest to zero
error because of their almost perfect linear fit (see Figure S5 in
the Supporting Information), which is also consistent with the
Al2 dimer. Using the other averages λ1̅ or λ2̅, we get smaller
errors than using the internal reorganization energies λ1 or λ2,
also in accordance with the benchmark.
As discussed above, the activation energy computed with λ1

is lower than that with λ3̅ for the case λ1 > λ2 (negative relative
error, bottom plot in Figure 8), whereas it is larger for the case
λ1 < λ2 (positive relative error, top plot). Few exceptions can be
observed through the plots, but they do not alter the overall
behavior. The inverse situation is true for data computed with
λ2, according to our discussion of Figure 6. Such a behavior is
quite consistent with the benchmark system, as can be assessed
by comparing Figure 8 with Figure 4.
On the other hand, relative error increases for all cases, with

the noteworthy exception of λ4̅ that lies close to zero for all
values of the ratio λ1/λ2 (Figure S5 can be used to understand
this behavior), also the benchmark displays such a feature: the
values calculated with λ3̅ and λ4̅ remain close to each other for
smaller values of the ratio (in particular, it is shown for the
interval λ1/λ2 < 3, see Figure 4). It can be observed that in most
cases, the ratio between the λ’s shows that one is twice the
other at most; this situation prevails despite the dissimilarity of
the considered molecules.
For the sake of completeness, we provide plots analogous to

Figure 8 but with different references in the Supporting
Information. Figures S6−S8 display the relative error data
calculated when λ1̅, λ2̅, or λ4̅ are the references, respectively.
Figures S9 and S10 display the data of λ1 and λ2 as references,

respectively. The same trends discussed for Figure 8 can be
recovered from these plots.
To end this section, we mention that in our exploration of

the methylated D−A pairs, we found 43 systems (36% of the
considered cases) with potential application to practical OPV
devices because they presented activation barriers smaller or
around 2 eV. We present these pairs and their activation
energies in Table 4. Additionally, we display the energy
differences predicted by the use of the geometric average, λ3̅,
instead of the arithmetic one λ1̅, and we observe that in 16
cases, such a difference is larger than 10 meV.
We analyze the impact of using the geometric average on the

ET reaction rate in these cases. For such a purpose, we

Figure 8. Variation of the relative error in the calculation of the
activation energy (ΔG†) from the Marcus−Hush formula with λ1, λ2,
λ1̅, λ2̅, and λ4̅ with respect to the reference λ3, as a function of the
reorganization energy ratio, λ1/λ2. Values for all the 120 D−A pairs are
shown. Top: λ1 < λ2 case. Bottom: λ1 > λ2 case.

Table 4. D−A Pairs with Practical Relevancea

acceptor donor ΔG†(λ3̅) ΔΔG† k(λ1̅)/k(λ3̅)

A1 D6 0.662 0.018 2.02
D4 1.918 0.007 1.31
D7 0.807 0.005 1.21
D8 2.025 0.012 1.60
D10 1.379 0.021 2.27

A4 D6 1.212 0.008 1.37
D7 1.403 0.006 1.26
D10 2.045 0.028 2.97

A6 D1 0.207 −0.001 0.96
D2 0.242 −0.001 0.96
D3 0.291 0.000 1.00
D5 1.560 0.003 1.12
D8 1.878 0.000 1.00
D9 1.810 0.005 1.21
D10 2.088 0.061 10.75

A7 D6 1.508 0.000 1.00
D7 1.737 0.000 1.00

A8 D2 2.034 0.015 1.79
D4 1.362 0.002 1.08
D5 1.814 0.001 1.04
D6 0.366 0.001 1.04
D7 0.473 0.000 1.00
D8 1.470 0.001 1.04
D9 2.143 0.010 1.48
D10 0.980 0.030 3.22

A9 D6 0.945 0.014 1.72
D7 1.132 0.011 1.53
D10 1.770 0.027 2.86

A10 D4 1.878 0.000 1.00
D6 0.675 0.000 1.00
D7 0.818 0.000 1.00
D8 1.990 0.000 1.00
D10 1.413 0.050 7.01

A11 D6 1.693 0.047 6.23
D7 1.955 0.042 5.13

A12 D2 1.967 0.003 1.12
D4 1.313 0.002 1.08
D5 1.807 0.019 2.10
D6 0.297 0.001 1.04
D7 0.402 0.002 1.08
D8 1.426 0.004 1.17
D9 2.149 0.000 1.00
D10 0.947 0.068 14.12

aPredicted activation energy, ΔG†(λ3̅), differences in activation energy
from two different averages, ΔΔG† = ΔG†(λ3̅) − ΔG†(λ1̅), and ratio of
predicted rate constants at room T. All energies in electronvolt.
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compute the ratio between the rate constant computed with the
geometric average, k(λ3̅), and the rate constant computed with
the arithmetic average, k(λ1̅), and present the results in the last
column of Table 4. It can be observed that many of the
predicted energetic differences should lead to experimentally
detectable predictions in reaction rates because in many cases,
the factor is two or more, with respect to those rates calculated
with λ1̅.
Future work focused on finding species with practical

relevance should consider several refinements of these data,
as well as the study of different substituents. A remarkable
refinement would be the consideration of quantum effects on
the reaction rates, such as in the Marcus−Hush−Jortner97−99
formalism. Also, the consideration of solvent effects on the
reorganization energies through the inclusion of implicit solvent
models could be important. It is worth to mention that all these
effects may lower the computed energies and lead to
technologically relevant findings.

■ CONCLUSIONS
The four-point Nelsen scheme to compute activation free
energies through the Marcus−Hush theory was appraised in
two different contexts with the purpose of explicitly considering
differences in the curvatures of the parabolas involved. This
situation is very common in its chemical and biological
applications.
The first assessment was performed in the context of the

aluminum dimer, Al2, a system that can be solved analytically
under the Marcus−Hush theory assumptions. We applied the
four-point Nelsen scheme involving different averages of the
calculated parabolic curvatures and then compared the results
with the analytical solution. The main result of this part is that
the geometric average (λ3̅) and the composed average (λ4̅)
drastically diminish the error for all the considered values of the
ratio between the curvatures.
For a second assessment on more realistic systems, we

studied 120 D−A pairs with technological interest in the OPV
field. For these systems, we employed the four-point Nelsen
scheme to compute the free energy barriers associated with the
ET reactions considering different averages of the internal
reorganization energies and found that the computations
strongly depend on our choice. In particular, our interest was
focused on the predicted differences between the values
calculated with the geometric and the arithmetic averages.
We found that predicted differences can be quite significant. In
all cases, an increase in the energetic barrier (slower ET) is
predicted when the geometric averages are employed.
On the other hand, the overall trends displayed by both the

geometric and arithmetic averages on the 120 considered data
are very similar despite the differences predicted when each
individual pair is considered. Despite the hard assumptions of
this work, we found an improvement on the values that can be
experimentally tested.
To validate our choice of λ3̅ as the most suitable quantity for

the four-point Nelsen scheme, we built relative error plots for
the 120 D−A pairs, using different references. All the relative
error plots are very similar to those of the benchmark, showing
the strong dependence of the error on the ratio of the
reorganization energies. It must be stressed that this striking
similarity occurs under the hard assumption that the only
relevant feature is the ratio between the internal reorganization
energies, hence dismissing any other feature of the molecular
systems. In all cases, the obtained plots can be rationalized with

the aid of Al2, where the plotted values were computed
analytically.
Finally, in 36% of the considered cases, we predict activation

energies that may have practical relevance. Data calculated with
λ1̅ and λ3̅ present reaction rates that are different enough as to
be discriminated experimentally.

■ METHODS
D−A OPV Systems. The Gaussian 09 suite95 was employed

to perform the DFT computations. The exchange and
correlation including dispersion ωB97XD100 functional was
employed. A correlation consistent triple-ζ basis set cc-
pVTZ101 was employed. A vibrational analysis was performed
to verify the local minimum for each molecular geometry. As a
first approximation, we only considered the nuclear harmonic
contributions to the partition function for computation of the
free Gibbs energy, and a future detailed treatment would
evaluate the influence of anharmonicity on the results.
To get the relevant parameters of the left parabola, we

optimized the neutral molecule to obtain G1(x1), following
Figure 1, and then performed a single-point calculation with
this coordinates but changing the charge to get the anionic
species to compute G2(x1). For the right parabola, by an
analogous procedure we obtain G2(x2) and G1(x2). We
obtained the reorganization energies through eq 3 and then
used them and their averages, in addition to the reaction driving
force, ΔG0, in eq 2 to get the corresponding activation energy
barriers. In other words, what is needed to apply the presently
proposed technique is to calculate the four-point Nelsen
quantities and average them in the manner proposed by eq 10
or 11.
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(92) Loṕez-Estrada, O.; Orgaz, E. Theoretical Study of the Spin
Competition in Small-Sized Al Clusters. J. Phys. Chem. A 2015, 119,
11941−11948.
(93) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(94) Schaf̈er, A.; Huber, C.; Ahlrichs, R. Fully Optimized Contracted
Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr.
J. Chem. Phys. 1994, 100, 5829−5835.
(95) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; et al. Gaussian 09, Revision E.01; Gaussian Inc.:
Wallingford, CT, 2009.
(96) Das, A.; Ghosh, S. Supramolecular Assemblies by Charge-
Transfer Interactions Between Donor and Acceptor Chromophores.
Angew. Chem., Int. Ed. 2014, 53, 2038−2054.
(97) Bixon, M.; Jortner, J. Intramolecular Radiationless Transitions. J.
Chem. Phys. 1968, 48, 715.
(98) Ulstrup, J.; Jortner, J. The Effect of Intramolecular Quantum
Modes on Free Energy Relationships for Electron Transfer Reactions.
J. Chem. Phys. 1975, 63, 4358−4368.
(99) Bixon, M.; Jortner, J. Quantum Effects on Electro-tranfer
Processes. Faraday Discuss. Chem. Soc. 1982, 74, 17−29.
(100) Chai, J.-D.; Head-Gordon, M. Long-range Corrected Hybrid
Density Functionals with Damped Atom-Atom Dispersion Correc-
tions. Phys. Chem. Chem. Phys. 2008, 10, 6615.
(101) Kendall, R. A., Jr.; Dunning, T. H.; Harrison, R. J. Electron
Affinities of the First-row Atoms Revisited. Systematic Basis Sets and
Wave Functions. J. Chem. Phys. 1992, 96, 6796−6806.

ACS Omega Article

DOI: 10.1021/acsomega.7b01425
ACS Omega 2018, 3, 2130−2140

2140

http://dx.doi.org/10.1021/acsomega.7b01425

