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Abstract

The splicing factor RBM10 and the close homologues RBM5 and RBM6 govern the splicing of 

oncogenes such as Fas, NUMB and Bcl-X. The molecular architecture of these proteins includes 

zinc fingers (ZnF) and RNA recognition motifs (RRM). Three of these domains in RBM10, which 

constitute the RNA-binding part of this splicing factor, were found to individually bind RNAs with 

μM affinities. It was thus of interest to further investigate the structural basis of the well-

documented high affinity RNA-binding by RMB10. Here, we investigated RNA-binding by 

combinations of two or three of these domains, and we thus discovered that a polypeptide 

containing RRM1, ZnF1 and RRM2 connected by their natural linkers recognizes specific 

sequences of the Fas exon 6 mRNA with 20 nM affinity. NMR structures of the RBM10 domains 

RRM1, ZnF1, and the V354del variant of RRM2 further confirmed that the interactions with RNA 

are driven by canonical RNA recognition elements. The well-known high-fidelity RNA splice site 

recognition by RBM10, and probably by RBM5 and RBM6, can thus be largely rationalized by a 

cooperative action of RRM and ZnF domains.
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INTRODUCTION

The splicing factor RBM10 modulates the cellular isoform rates of multiple apoptotic genes, 

such as Fas1, NUMB2 and Bcl-x,3, 4 and has been linked to the onset of multiple types of 

cancer.5, 6 In their physiological functions, RBM5, RBM10 and the more distant homologue 

RBM6 mediate exon skipping as well as inclusion events, and participate in the processing 

of multiple oncogenes. While in some alternative splicing events the involvement of the 

three RBM proteins favors the same gene product, the individual splicing factors may also 

lead to the production of different isoforms.2 For example, in the alternative splicing of Fas, 
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RBM5 and RBM10 behave similarly, by promoting exon 6 skipping and thus increasing the 

yield of an antiapoptotic isoform. In contrast, in the processing of NUMB, RBM10 induces 

exon 9 inclusion, while RBM5 increases skipping.1, 2, 4, 7–9

RBM10, RBM5 and RBM6 share similar domain architectures, which include an N-terminal 

RNA recognition region consisting of a zinc finger (ZnF1) flanked by two RRMs (RRM1 

and RRM2),10–12 and a C-terminal protein-interacting region containing a second zinc finger 

(ZnF2), an OCRE sequence motif13, 14 and a G-patch motif (Fig. 1A). The RNA recognition 

domains in RBM5 and RBM10 have about 60% sequence identity, recognize similar splice 

sites, and together with the OCRE domain15–17 govern Fas isoform ratios. In this manuscript 

we report on recognition of the exon 6 in Fas by cooperative action of the RRM1, ZnF1 and 

RRM2 domains of RBM10, and present NMR structures of the individual RBM10 RNA-

binding domains.

RESULTS

The biological functions of RBM5, RMB6 and RBM10 indicate that these splicing factors 

bind to mRNA with high affinity.2, 4, 7, 9, 17–19 Here, we set out to investigate the structural 

basis of these implicated interactions. Working with RBM10, we measured the binding 

affinities for RNA fragments from exon 6 of Fas of the individual RRMs, the zinc finger, and 

of combinations of two and three of these globular domains. We also determined NMR 

structures of the individual domains, which may support future studies of the general 

mechanisms of action by this class of splicing factors.

Multidomain RNA recognition by the splicing factor RBM10

In order to investigate the impact of synergies between multiple RNA binding domains in 

RBM10 during Fas recognition, we prepared RBM polypeptide fragments of variable 

lengths and evaluated their affinities for the 22-nucleotide sequence 

UAAUUGUUUGGGGUAAGUUCUU found in exon 6 of Fas (Fig. 1B). High affinity was 

observed for a three-domain construct containing RRM1, ZnF1 and RRM2 connected by the 

natural linkers in RBM10 (RRM1–ZnF1–RRM2), with KD = 20 nM, as compared to 2.5 μM 

and 5.5 μM, respectively, for the individual domains RRM1 and RRM2, and 845 nM for 

ZnF1 (Fig. 1B). The KD value for ZnF1 is similar to the affinites observed for other 

members of the ZRANB2 family.11, 20 A construct of residues 128–250 containing RRM1 

and ZnF1 (RRM1–ZnF1) was found to bind with intermediate affinity (KD = 412 nM; Fig. 

1B). Overall, the data of Fig. 1B show that synergies among three RBM10 domains can 

afford high-affinity recognition of a sequence Fas mRNA.

NMR Structures of the RBM10 domains RRM1, ZnF1 and RRM2[V354del].—For 

the NMR structure determinations we followed the J-UNIO protocol with non-uniform 

sampling of the 3D heteronuclear-resolved [1H,1H]-NOESY data sets21–23, high-quality 

structures were thus obtained, as indicated by the statistics presented in Table 1.

RRM1 shows a variation of the canonical RRM architecture, with a four-stranded 

antiparallel β-sheet and two α-helices (Fig. 2A).24, 25 The helices α1 and α2 contain the 

residues 141–153 and 181–191, and β-strands are formed by the polypeptide segments 128–
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132 (β1), 157–162 (β2), 174–178 (β3), 195–198 (β3’) and 201–205 (β4). The unique 

feature of RRM1 is that the linker between α2 and β4 forms an additional strand, β3’, which 

is not part of the canonical RRM β-sheet.10, 24, 25

The ZnF1 domain adopts a ZRANB2-like structure (Fig. 2B)11, 20 containing an α-turn with 

residues 240–244 and four short β-strands of residues 315–318, 324–328, 336–338 and 340–

344. Zn2+ is coordinated by four cysteines in positions 319, 322, 333 and 336, which are 

located within or near the four β-strands.

The RRM2[V354del] structure contains the helices α1 and α2 with residues 310–324 and 

351–359, and the four β-strands are formed by the polypeptide segments 301–305 (β1), 

329–334 (β2), 344–349 (β3) and 378– 381 (β4) (Fig. 2C). RRM2[V254del] thus adopts a 

canonical RRM structure, and therefore it did not come as a surprise that this deletion did 

not have a significant effect on RNA binding (Fig. 3). In view of the near-identity of these 

domain structures with those for which detailed studies of RNA-complexation have been 

reported10,24,25, we hypothesize that they also have similar patterns of contacts with RNAs.

DISCUSSION

The function of RBM10 in the regulation of Fas alternative splicing has been shown to be 

based on both, specific recognition of oligonucleotide motifs in the mRNA and interactions 

with supplementary splicing factors1,10. While the C-terminal region of RBM10 is involved 

in protein recruitment, the N-terminal region with the three RNA binding domains RRM1, 

ZnF1 and RRM2 ensures recognition and binding of specific splice sites on the mRNA, 

which is the focus of the present work. Previous studies with tandem RRM constructs 

showed enhanced affinities when compared with respect to the individual RRMs.24–29 

RBM10 now provided an opportunity to investigate possible cooperativity between RRMs 

and a zinc-finger domain, which exhibits a different structure and a different mode of RNA 

recognition. Introduction of non-RRM domains into splicing factors obviously carries the 

promise to diversify RNA recognition, which has found extensive use in nature (Fig. 1A)

Individually, the RRMs and ZnF1 in RBM10 have nearly identical structural properties to 

corresponding domains in other splicing factors,10, 12, 24–26, 30–33 with the sole exception 

that RBM10-RRM1 includes an additional, non-canonical regular secondary structure 

element, β3’ (Fig. 2A). We now showed that recognition of exon 6 in Fas by the 

combination of the three RNA binding domains of RBM10 results in low nM binding 

affinities, although the individual domains have weak affinities for RNA binding (Fig. 1B).

Complementarity of the biological functions of the splicing factors RBM5 and RBM10 has 

previously been extensively investigated.2, 4, 7, 17–19, 34, 35 The high sequence homology and 

the close similarity of the three-dimensional structures of their RNA binding domains, in as 

far as they are available,11, 12 suggest a homologous RNA recognition mode, which 

coincides with evidence that the two splicing factors may target closely related mRNA 

motifs.2, 32, 35
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Abbreviations:

APSY automated projection spectroscopy

ASCAN software for automated side-chain resonance assignment

ATNOS software for automated NMR peak picking

CANDID software for automated NOE assignment

CYANA software for NMR structure calculation

EDTA ethylenediaminetetraacetic acid

HSQC heteronuclear single-quantum coherence spectroscopy

J-UNIO protocol for automated determination of NMR structures of proteins

MATCH software used for backbone NMR chemical shift assignments

NOE nuclear Overhauser effect

NOESY nuclear Overhauser effect spectroscopy

PDB protein data bank

RMSD root-mean-square deviation

TEV tobacco etch virus
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Figure 1. RBM5/6/10 domain architectures and recognition of exon 6 from Fas by RBM10 
fragments.
(A) Schematic representation of the domain architectures of the three proteins. The three 

globular domains studied here are highlighted in color. At the bottom, the RRM1–ZnF1 and 

RRM1–ZnF1–RRM2 polypeptide fragments of RBM10 used for RNA binding assays are 

indicated by thick colored lines and indication of the chain ends. (B) Protein–RNA 

association curves with a 22-nucleotide RNA sequence from exon 6 of Fas, 

UAAUUGUUUGGGGUAAGUUCUU. The data were obtained using nitrocellulose binding 

assays with the RBM10 polypeptide fragments indicated in the figure. The same color code 

is used as in panel (A). Average values from three independent experiments are shown as 

geometric symbols, and the standard deviations are represented as vertical bars. KD values 

obtained with Hill-equation fitting are indicated in the lower right.
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Figure 2. NMR structures of RBM10 domains.
The RBM10 domains RRM1(A), ZnF1(B) and RRM2[V354del] (C) are represented by 

bundles of 20 conformers (left) and ribbon presentations of the conformer closest to the 

mean coordinates (right). The chain ends are identified by N and C.
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Figure 3. Association curves of RRM2 and RRM2[V354del] with the 22-nucleotide RNA 
fragment UAAUUGUUUGGGGUAAGUUCUU from exon 6 of Fas.
Same measurement details and presentation as in Fig. 1(B).
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Table 1.

Input for the structure calculations and characterization of bundles of 20 energy-minimized CYANA 

conformers representing the NMR structures of the RBM10 domains RRM1, ZnF1 and RRM2[V354del].

Quantity
a RRM1 ZnF1 RRM2[V354del]

NOE upper distance limits 1960 420 1693

Intraresidual 457 135 442

Short range 540 109 556

Medium range 376 77 278

Long range 587 99 417

Dihedral angle constraints 385 179 336

Residual target function value (Å2) 1.66 ± 0.30 0.34 ± 0.05 1.44 ± 0.24

Residual NOE violations

Number ≥ 0.1 Å 5 ± 2 1 ± 1 6 ± 1

Maximum (Å) 0.14 0.12 0.13

Residual dihedral angle violations

Number ≥ 2.5° 1 ± 1 1 ± 1 0 ± 0

Maximum (°) 1.56 1.78 0.87

Amber energies (kcal/mol)

Total -3462 ± 105 -1117 ± 87 - 3801 ± 57

Van der Waals -279 ± 18 -208 ± 15 - 223 ± 18

Electrostatic - 3994 ± 92 - 1519 ± 112 - 3291 ± 68

RMSD from ideal geometry

Bond lengths (Å) 0.0091 0.0081
6 0.0078

Bond angles (°) 1.48 1.31 1.44

RMSD to the mean co-ordinates
b
 (Å)

b

bb 0.46 ± 0.06 0.41 ± 0.07 0.68 ± 0.08

ha 0.93 ± 0.09 1.01 ± 0.12 1.04 ± 0.09

Ramachandran plot statistics (%)
c
 
c

Most favoured regions 83.5 85.3 74.5

Additional allowed regions 13.9 13.3 21.3

Generously allowed regions 2.6 0.9 3.1

Disallowed regions 0 0.5 1.1

a
Except for the top six entries, which describe the input generated in the final cycle of the ATNOS/CANDID/CYANA calculation,36–38 the last 

entries refer to the 20 best CYANA conformers after energy minimization with OPALp (see text). Where applicable, the average value for the 
bundle of 20 conformers and the standard deviation are given.

b
bb indicates the backbone atoms N, Cα, and C’; ha stands for all heavy atoms.

c
As determined by PROCHECK.
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