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Abstract

Mutations in the Isocitrate Dehydrogenase 1 (IDH1) gene occur in 70% of grade II and grade III 

gliomas, 10% of acute myeloid leukemia, as well as cholangiocarcinomas, melanomas, and 

chondrosarcomas. Numerous mechanisms have been proposed to illustrate the biological function 

of mutant IDH1. Most functional studies of mutant IDH1 have been conducted in exogenous 

overexpression systems with the IDH1 wild type background. This mini-review comments on 

recent publication by Wei et al, in which a highly efficient “single base editing” approach was 

employed to generate monoallelic IDH1 R132H mutation without the induction of a double strand 

break in the IDH1 gene.
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3. Introduction

Gliomas are the most prevalent type of tumors of the central nervous systems, accounting for 

up to 30% of all primary lesions and nearly 80% of all malignant forms [1,2]. Given their 

anatomical localization and locally infiltrative nature, these tumors are associated with high 

morbidity and mortality. Despite radical surgical resection coupled with chemo- and 

radiotherapy, these tumors often recur, leading to a dismal overall prognosis. With an 

approximate incident rate of 6.6 per 100,000 individuals annually in the USA, these 

malignancies result in a majority of deaths from primary brain tumors. Historically, gliomas 

have been classified based on their histological features and graded by their degree of 
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anaplasia according to WHO criteria, serving as a “gold standard” for decades. However, in 

the case of low grade gliomas and particularly diffusely infiltrative gliomas, these methods 

are subject to intra observer variability. Thus, with the advent of molecular profiling, these 

tumors have now been further interrogated to identify diagnostically relevant alterations, 

including genomic, transcriptomic, and epigenetic variants, complementing the histological-

based classification system [3–5].

3.1. IDH1 Mutation in Glioma

The recent identification of frequent mutations in the metabolic gene Isocitrate 

Dehydrogenase (IDH) 1 and 2 suggests the existence of different molecular subclasses of 

diffusely infiltrative gliomas with distinct biological and clinical attributes, prompting the 

WHO to propose revised classification guidelines [6]. Originally discovered in 2008 [7], it is 

now appreciated that 70–80% of grade II/III and 20% grade IV gliomas harbor mutations in 

IDH1; and that these alterations frequently coexist with TP53, ATRX mutations, and co-

deletions of chromosome 1p and 19q [8,9]. Prior studies have identified mutations in IDH1 

as one of the earliest events in gliomagenesis, possibly playing a significant role during 

tumor initiation and subsequent transformation [9–11]. The majority of IDH1 mutants 

contain heterozygous single amino acid missense mutation in its active site at arginine 132, 

altering its enzymatic activity that results in the neomorphic production of the 

oncometabolite 2-Hydroxyglutarate (2-HG) using α-ketoglutarate (α-KG) [12]. This 

aberrant production of 2-HG in turn inhibits α-KG-dependent dioxygenases, including 

histone demethylases and DNA demethylase Ten-Eleven Translocation 2 (TET 2) [13–15]. 

Consequently, IDH mutation is associated with global changes in DNA and histone 

methylation patterns as indicated by widespread hypermethylation of CpG islands [16]. 

Clinically, mutations in IDH1 prolong survival of glioma patients [8]. Given the pronounced 

frequency of IDH1 mutation in gliomas coupled with its impact on the biology and clinical 

progression of the disease, it is vital to further delineate the role of monoallelic IDH1 point 

mutations in gliomas.

3.2. Current Models for Mutant IDH1

While previous studies have investigated the biological function of mutant IDH1 in the 

context of tumorigenesis and tumor progression, these studies are often limited by the 

paucity of appropriate endogenous mutant IDH1 systems [17,18]. For instance, most prior 

studies have relied on the use of overexpression systems, which do not necessarily 

recapitulate the naturally occurring heterozygous IDH1 mutational status in this cancer [17]. 

Moreover, the underlying wild type IDH1 background in these exogenously overexpressing 

IDH1 mutant clonal cells may obscure the true biological and clinical impact of IDH1 

mutation in this cancer. Although techniques to establish primary cultures carrying 

monoallelic IDH1 mutants from human tumor samples has been improved, it remains 

difficult to generate isogenic cellular models to study the function of mutant IDH1, 

especially during tumorigenesis [19]. Likewise, while orthotopic xenograft models are 

available, their utility is often limited [20]. Thus, it is important to establish clinically 

relevant cellular models that recapitulate the parental disease to methodically characterize 

the role of IDH1 mutation in this cancer. Such clinically representative in vitro disease 
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models will enable systematic delineation of the molecular network driven by mutated 

IDH1, a prerequisite for effective therapeutic design.

3.3. An Efficient Approach to Create Heterozygous IDH1 R132H Mutation

To this end, we recently demonstrated the use of “Single base editing” method to generate 

isogenic cellular models carrying monoallelic IDH1 mutants [21]. Using a recently reported 

CRISPR-Cas9 technology which functions without the induction of a double strand break in 

IDH1 [22], we precisely introduced heterozygous IDH1 R132H point mutation in human 

astroglial cells with a successful rate of 20%. Compared with other nuclease and homology 

directed repair-based knock-in methods used to date [23–25], our work provides an efficient 

and easy approach to generate monoallelic IDH1 R132H mutation, and can be valuable to 

others in the field searching for models of endogenous heterozygous IDH1 mutation.

The monoallelic IDH1 mutants in our model displayed global alterations in DNA 

methylation and gene expression pattern coupled with dramatic changes in cellular behavior 

including decreased cell proliferation. Notably, we uncovered a previously unknown link 

between expression of YAP, an effector of the pro-growth Hippo pathway, and IDH1 

mutation status (Figure 1). Specifically, our work revealed a Hippo-independent, 2-HG-

dependent regulation of YAP expression in these monoallelic IDH1 mutant astroglial clones. 

The Hippo-YAP pathway has emerged as a critical network driving tumor growth and 

progression [26–28]. Thus, it is of interest to identify potent regulators of YAP and their role 

in cancer development. Our study suggests that YAP is responsive to changes in metabolic 

state, highlighting the intimate relationship between proto-oncogenes and cellular 

metabolism. While further mechanistic investigation is warranted to precisely elucidate the 

biological implication of YAP inhibition by IDH1 mutation, this study lays the groundwork 

in establishing a novel connection between oncometabolite production and activity of pro-

growth signaling network in early disease development. Overall, this versatile and efficient 

“Single base gene editing” technique will permit thorough interrogation of the biological 

function of heterozygous IDH1 mutants in the context of glioma development and 

progression, and serve as a valuable model to test effective therapies for the management 

and treatment of gliomas.
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Figure 1: 
Schematic of the mechanistic details and functional effects of mutant IDH1-YAP signaling.
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