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Abstract

Putamen is enriched with dopamine and associated with dopamine-related phenotypes including 

many neuropsychiatric and neurodegenerative disorders that manifest with motor impairment, 

impulsive behavior, and cognitive deficits. The gray matter volume of the putamen is age-

dependent and genetically controlled. In most neuropsychiatric and neurodegenerative disorders, 

including Parkinson’s spectrum disorders, Huntington’s disease, dementia with Lewy bodies, 

Alzheimer’s disease, multiple sclerosis, attention deficit hyperactivity disorder, developmental 

dyslexia, and major depression, the putamen volume is significantly reduced. On the other hand, in 

individuals with bipolar disorder, schizophrenia spectrum disorders, especially neuroleptics-

medicated patients with schizophrenia, autism spectrum disorders, obsessive-compulsive spectrum 

disorders, and cocaine/amphetamine dependence, the putamen volume is significantly enlarged. 

Therefore, the putamen volume may serve as a structural neural marker for many neuropsychiatric 

and neurodegenerative disorders and a predictor of treatment outcomes in individuals afflicted 

with these conditions. We provided an overview of the genetic bases of putamen volume and 

explored potential mechanisms whereby altered putamen volume manifests in these 

neuropsychiatric and neurodegenerative conditions, with a specific focus on dopaminergic 

processes.
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Together with the caudate nucleus and globus pallidus, the putamen forms the dorsal 

striatum, a main component of the basal ganglia to support a variety of motor and cognitive 

functions. The putamen is connected with the substantia nigra, globus pallidus, claustrum, 

thalamus, and many regions of the cerebral cortex [1, 2]. The nigrostriatal pathway, one of 

the major dopaminergic pathways in the brain and connecting the substantia nigra pars 

compacta (SNc) with the dorsal striatum, is best known for its association with the 

development of Parkinson’s disease (PD) [3]. A primary function of the putamen is to 

regulate movement planning and execution [4–8] and support the learning processes during 

various cognitive and affective challenges [9, 10]. Although the literature has focused on the 

role of the putamen in cognitive motor control, this subcortical structure may be involved in 

other functions, such as language [11], motor imagery [12, 13], and emotional processing 

[14–16], as well as in clinical conditions not directly related to motor control dysfunction, 

such as chronic pain [17, 18]. Imaging and lesion studies have implicated the putamen in a 

wide variety of neuropsychiatric conditions, including, for example, altered emotional 

processing in obsessive-compulsive disorder (OCD) [19], attention impairment in attention 

deficit hyperactivity disorder (ADHD) [20], and reward seeking in frontotemporal dementia 

[21].

Putamen functions are supported by a variety of neurotransmitters, including dopamine, 

gamma-aminobutyric acid, acetylcholine, and encephalin, among which dopamine is the 

most widely studied. The putamen receives extensive dopaminergic projections from the 

SNc. Loss of dopaminergic neurons in the SNc and consequent depletion of dopaminergic 

inputs in the striatum results in shrinkage of both the SNc and striatum, as in PD [22–25]. 

Conversely, increases in neuronal numbers are usually related to the increased size in 

nuclear gray matter volume (GMV) [26]. In addition to dopaminergic innervation, the 

putamen also receives extensive glutamatergic projections from frontal cortical regions [1]. 

Via output nuclei the basal ganglia project to the thalamus, which in turn innervates the 

cortical regions, forming a topographically organized cortical-striatal-thalamic-cortical loop 

[1]. Thus, altered putamen volume would likely influence a wide variety of motor and 

cognitive functions, as occurs in many neuropsychiatric and neurodegenerative disorders.

Genetics of putamen volume:

The heritability of putamen volume is approximately 71–79% [27]. Genome-wide 

association studies (GWAS) identified at least 30 genes that might regulate the putamen 

volumes, including KTN1 [27–30], SLC39A8 [31, 32], DCC [29, 30, 33], DLG2 [27, 29, 30, 

33] and others [27, 29–32, 34]. These genes were previously implicated in various 

phenotypes, including PD [35, 36], Huntington’s disease (HD) [37], ADHD [28], 

schizophrenia [33, 38], OCD [39], and others [27, 30]. Specifically, a common allele C of 

rs945270, a genetic marker at 3’-UTR of kinectin 1 gene (KTN1), showed genome-wide 

strongest (p=1.1×10−33), replicable, and specific effects on the putamen GMV [28, 29]. 

Three other markers at KTN1, i.e., rs2181743 (5’-UTR), rs8017172 (3’-UTR) and 

rs17253792 (3’-UTR), were also significantly associated with putamen GMVs [p=4.0×10−8, 

(6.7×10−34 to 3.0×10−14) and 3.2×10−7, respectively] [27, 30]. All of the common alleles G 

of rs8017172, T of rs17253792 and C of rs945270 significantly increased the KTN1 mRNA 

expression in the putamen (p=0.049, 0.010 and 0.049, respectively) [40, 41].
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Allele C of rs945270 showed a significant, positive effect on the severity of hyperactivity 

symptoms of ADHD patients. In boys, the C allele was associated with lower putamen 

activity during successful response inhibition in a cognitive control task; in girls, activation, 

most significantly in the right putamen, during reward anticipation in a monetary incentive 

delay task increased with the number of C alleles [28]. Another GWAS identified two SNPs 

at DCC (rs4632195) and DLG2 (rs11233632) that affected putamen volume; and these two 

variants predisposed individuals to schizophrenia [33]. Most recently, a minor T allele of 

rs13107325 in SLC39A8, a gene implicated in the pathogenesis of schizophrenia, was 

associated both with greater putamen GMV and with lower mRNA expression of SLC39A8 
specifically in the putamen [31]. These genetic studies broadly support an association and 

shared genetic factors between putamen volume and neuropsychiatric and neurodegenerative 

disorders. Altered putamen volume may represent a risk or etiological factor of the 

neuropsychiatric conditions.

Putamen volume and neuropsychiatric and neurodegenerative disorders:

Putamen volume decreases with age [42] and shows a significant difference between men 

and women [43, 44]. The age-dependent reduction of GMV holds for bilateral putamen and 

both men and women [45], but appears to be more severe for right-hemispheric putamen 

[43].

Putamen volume decreases in most neuropsychiatric and neurodegenerative disorders:

Many neuropsychiatric and neurodegenerative disorders manifest with putamen-related 

motor control dysfunction. For example, individuals with Tourette Syndrome suffer 

difficulties in movement control; patients with PD exhibit “automatic” performance of 

previously learned movements [46]; and HD patients demonstrate significant involuntary 

movements or chorea. It has been reported that the putamen volume loss is associated with 

deficits in motor control [47]. Children with complex motor stereotypies demonstrated 

significant reductions in total putamen volume [48]. Further, many neuropsychiatric and 

neurodegenerative disorders, e.g., ADHD, are known to exhibit impulsive behavior, in 

relation to smaller post-commissural putamen volumes [49]. Together, these findings suggest 

an association of reduced putamen volume with neuropsychiatric and neurodegenerative 

disorders that manifest with motor control deficits and/or impulsivity behaviors.

The central pathological features of PD include the selective loss of dopaminergic neurons in 

the SNc and consequent dopamine depletion in the striatum. Individuals with PD 

demonstrate significant motor symptoms including tremors, rigidity, hypokinesia and 

postural imbalance [50]. Importantly, reported consistently across all independent studies, 

putamen volumes were significantly decreased in PD patients regardless of medication status 

[24, 51–54]. This reduction has also been observed in X-linked dystonia-parkinsonism 

(XDP) [55] and REM sleep behavioral disorder that reflects a pattern of neurodegeneration 

predicting the development of PD [56]. Furthermore, putamen is reported to decrease by 

50.1% in volume, showing the greatest atrophy of all brain regions, in people with HD as 

compared with control subjects [57]. The atrophy of putamen appears at the time when 

motor symptoms manifest during the course of HD [58]. Atrophy of the putamen, as a 

Luo et al. Page 3

World J Psychiatry Ment Health Res. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurodegenerative trait, is also a feature of dementia with Lewy bodies (DLB) [59] and 

Alzheimer’s disease (AD) [27, 60] and multiple sclerosis [61]. The decrease in putamen 

volume is linearly correlated with impairment in global cognitive performance [27, 60].

Putamen may also be involved in impulsivity trait or impulsive behavior that has long been 

linked to dopamine [62]. A critical dimension of personality, impulsivity represents a major 

symptom dimension of many neuropsychiatric disorders, including ADHD, bipolar disorder, 

antisocial personality disorder, borderline personality disorder, and some neurodegenerative 

diseases. Impulsivity or hyperactivity is perhaps best known in ADHD. In healthy people, 

the right putamen is smaller in volume than the left putamen [63]; however, children with 

ADHD (mostly unmedicated) more frequently have a smaller left than right putamen, and 

the reversal of this structural symmetry may relate to ADHD symptomology [63]. The 

primary pharmacological treatments for ADHD are methylphenidate (Ritalin) and 

amphetamine (Adderal) that block re-uptake of dopamine and norepinephrine into the pre-

synaptic neurons and, as a result, increase the synaptic levels of the catecholamines. Of these 

two monoamines, increased availability of dopamine is generally considered the primary 

mechanism of the therapeutic effects of ADHD medications. In support, lesions within the 

dopamine-rich ventral putamen have been reported to increase the risk of ADHD in humans 

[64]. Furthermore, as described above, the putamen volume declines with age [42]; however, 

this shrinkage was independent of age in patients with ADHD and their unaffected siblings, 

suggesting a critical link to familial risk for ADHD [65]. In addition to ADHD, putamen 

volume may be related to other disorders that manifest with developmental delays in 

cognition. For example, individuals with developmental dyslexia show reduced left putamen 

volume, which is suggested to contribute to phonological deficits [66]. Decreased 

myelination of the ventral putamen has been associated with premature responding, a sign of 

impulsivity, in a serial reaction time task in youth [67].

More broadly, the basal ganglia are recognized as putative mediators of certain cognitive and 

behavioral symptoms of major depression. Patients with basal ganglia lesions exhibit 

significant affective symptomatology, including apathy, depressive mood, and psychosis. 

Depression patients demonstrate significantly smaller putamen [68, 69] and age-dependent 

putamen shrinkage is accelerated in young [70] (60–65 years) but not older [71] patients 

with major depressive disorder. Thus, the putamen may contribute to depressive 

psychopathology and represent a useful target for the treatment of MDD at younger ages.

Putamen volume increases in other neuropsychiatric disorders:

When the dopaminergic neurons are overly expressed in the nigrostriatal pathway, the 

dopamine-rich putamen may be enlarged, causing dopamine-excessive phenotypes such as 

bipolar disorder, schizophrenia spectrum disorders, including schizophrenia and schizotypal 

personality disorder, autism spectrum disorders, including autism and Tourette syndrome 

(TS), obsessive-compulsive spectrum disorders, including obsession and compulsion traits 

and OCD, and restless leg syndrome (RLS). Although other neurotransmitters are likely 

involved in the pathophysiology, abundant evidence suggests that schizophrenia and other 

psychoses are hyperdopaminergic disorders [72, 73]. Likewise, although studies have 

focused on histamine and other molecular systems, extensive evidence supports a 
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hyperdopaminegic state in TS and antidopaminergic medications represent the most 

effective treatment of TS [74]. PET imaging studies showed decreased striatal dopamine 

D2/3 receptor availability in both TS and OCD, reflecting higher endogenous dopamine 

levels in these disorders [75]. Finally, although the etiologies of RLS are far from clear, 

increased levels of the dopamine metabolite 3-ortho-methyldopa in the cerebrospinal fluid 

and significant decrease in dopamine D2 receptors in the putamen as shown in postmortem 

studies are consistent with a hyperdopaminergic state in RLS [76]. The neuropsychiatric 

conditions that involve hyperdopaminergic states all appear to be associated with increases 

in putamen volume.

A meta-analysis showed increases in right-hemispheric putamen volume in bipolar disorder 

[77]. Larger putamen sizes have also been reported in antipsychotic-naïve individuals with 

schizotypal personality disorder [78] or schizophrenia [79], suggesting that excessive 

dopamine may underlie schizophrenia spectrum disorders and that enlarged putamen may be 

an important neural marker of these disorders. The patients with enlarged putamen are 

usually sensitive to and benefit from treatment with antipsychotics that block dopamine 

neurotransmission [79–81]. In contrast, if dopaminergic hyperfunction is not a predominant 

cause, patients may not respond to typical antipsychotics that target primarily dopaminergic 

neurotransmission [82]. Perhaps as a compensatory response to the blockage by typical 

antipsychotics, the putamen may further expand to maintain dopaminergic 

neurotransmission [81, 83], consistent with the finding that the neuroleptic-medicated 

schizophrenia patients have larger putamen sizes [84]. Further, patients with good treatment 

outcomes have larger putamen than those with poor outcomes or healthy controls, in support 

of enlarged putamen as a physiological correlate of neuroleptic responsiveness and a 

predictor of treatment outcome [79–81].

Presynaptic transporters play a central role in maintaining physiological levels of synaptic 

dopamine by removing dopamine molecules from the synaptic terminals [85]. Cocaine acts 

by binding to the presynaptic dopamine transporters, blocking the removal of dopamine 

from the synapses and thus reducing the number of recyclable dopamine molecules [83, 86]. 

On the other hand, chronic cocaine use leads to down-regulation of post-synaptic dopamine 

receptors [86]. As a result, chronic cocaine use may result in putaminal hypertrophy as a 

compensatory process to produce more dopamine to maintain dopaminergic transmission. 

Individuals who engage in chronic use of psychostimulants, including cocaine and 

amphetamine, showed increases in putamen volume [83, 87–89]. These findings are 

intriguing because cocaine induced oxidative stress and vasoconstriction and would typically 

lead to GMV loss, as observed in all brain regions other than the putamen. It is possible that 

chronic exposure to stimulants may have led to down-regulation of dopamine receptors, and, 

as a result, compensatory increase in putamen volume. Alternatively, higher putamen 

volume may be a premorbid risk factor that disposes individuals to stimulant misuse. Indeed, 

Ersche and colleagues showed in another study that putamen is enlarged both in stimulant-

dependent individuals and their non-dependent siblings, suggesting that this structural 

change in the striatum may be a neural marker of genetic predisposition to drug use rather 

than a consequence of chronic consumption of stimulants [90].
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Additionally, larger putamen volumes have also been reported for autism spectrum 

disorders. Increased putamen volume was found in adults with autism spectrum disorder 

[91] and boys with Tourette syndrome [92]. The enlargement of bilateral putamen may also 

reflect dopaminergic dysfunction underlying these disorders [91]. Total putamen volumes 

were correlated positively with repetitive behaviors, particularly OCD-like repetitive 

behaviors, in individuals with of autism [93]. Individuals with restless leg syndrome showed 

increases in bilateral putamen volume as well as altered resting-state putamen connectivity, 

as compared to healthy controls [94]. Dysfunctional cortico-anterior striatal pathway may 

underlie subclinical obsessions and compulsions [95]. Volumetric analysis revealed a 

positive relationship between the Maudsley Obsessive Compulsive Inventory (MOCI) total 

score and bilateral putamen volumes in healthy populations [95]. Patients with OCD 

demonstrated increases in the GMV of the basal ganglia, including the putamen, 

independent of antidepressant treatment [96, 97]. Further, a GWAS identified a set of 

markers of increased putamen volumes and the risk for OCD [39]. These studies suggest an 

association between OCD spectrum disorders and hypertrophy of putamen.

Summary:

Putamen is dopamine-rich, and its volume is age-dependent and genetically controlled. 

Putamen volume is associated with many dopamine-related phenotypes that usually involve 

motor control dysfunction (e.g., PD, HD, Tourette syndrome, and catatonic schizophrenia) 

and/or impulsive behavior (e.g., ADHD, schizophrenia, substance use disorders, bipolar 

disorder, antisocial personality disorder, some neurodegenerative disorders and OCD). In 

most neuropsychiatric and neurodegenerative disorders, including PD spectrum disorders, 

HD, DLB, AD, multiple sclerosis, ADHD, developmental dyslexia, and major depression, 

the putamen volume is significantly reduced. However, in bipolar disorder, schizophrenia 

spectrum disorders, especially the neuroleptics-medicated schizophrenia, autism spectrum 

disorders, OC spectrum disorders, and stimulant dependence, the putamen volume is 

significantly enlarged. Interestingly, the volumetric features of the putamen were observed 

independent of other nuclei of the basal ganglia or cortical structures [48, 57, 79, 80, 83, 84], 

suggesting a specific role of putamen in the pathophysiological processes underlying these 

disorders. The putamen volume may represent a neural marker that predicts vulnerability to 

many neuropsychiatric conditions and/or treatment responsiveness in patients afflicted with 

these conditions.
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