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Abstract

Childhood vaccination data are made available at a school level in some U.S. states. These data 

can be geocoded and may be considered as having a high spatial resolution. However, a school 

only represents the destination location for the set of students that actually reside and interact 

within some larger areal region, creating a spatial mismatch. Public school districts are often used 

to represent these regions, but fail to account for private schools and school of choice programs. 

We offer a new approach to estimate childhood vaccination coverage rates at a community level by 

integrating school level data with population commuting information. The resulting mobility-

adjusted vaccine coverage estimates resolve the spatial mismatch problem and are more aligned 

with the geographic scale at which public health policies are implemented. We illustrate the utility 

of our approach using a case study on diphtheria, tetanus, and pertussis (DTP) vaccination 

coverage for kindergarten students in California. The modeled community-level DTP coverage 

estimates yield a statewide coverage of 92.37%, which is highly similar to the 92.44% coverage 

rate calculated from the original school-level data.
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1. Introduction

The refusal or delay of childhood vaccinations has been identified in both the popular press 

and scientific literature as an increasing public health concern across the United States 

(Dempsey et al., 2011; Hayes, 2015; Hughes, 2006; Omer et al., 2006; Park, 2008). One 

common approach to encouraging or mandating childhood vaccination is through school 

entry vaccine requirements. Although there is strong scientific evidence for the safety and 

effectiveness of immunizations, concerns about the risks associated with vaccination (and 
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the increasing number of required and recommended childhood vaccines) have gained 

momentum in various popular and social media outlets. In the 2014–2015 school year, 

nearly 2% of all U.S. kindergarteners entered school with a nonmedical exemption (NME) 

from vaccination requirements (Seither et al., 2015).

Each U.S. state has autonomy to establish vaccination requirements for children enrolled in 

their school system (Salmon et al., 2005), and the level of restrictiveness varies from state to 

state (Yang and Debold, 2014). As a result, coverage among incoming kindergarteners for 

common vaccines such as diphtheria, tetanus, and pertussis (DTP); measles, mumps, and 

rubella (MMR); and varicella fluctuates substantially throughout the U.S. (Seither et al., 

2015). Some states, such as Arkansas and Colorado, have DTP and MMR coverage rates 

that are far below the thresholds required to ensure herd immunity (Seither et al., 2015), the 

percentage of the population that must be vaccinated in order to prevent outbreaks in the 

general population, which includes those with health problems that contraindicate 

vaccination.

Vaccine-related behavior also fluctuates considerably at a community or regional scale 

within states (Atwell et al., 2013; Birnbaum et al., 2013; Lieu et al., 2015; Omer et al., 2008; 

Yang et al., 2016). Examining vaccine coverage rates at the state level, using data such as 

that provided by the National Immunization Survey1 can be helpful, but obscures significant 

local variation in coverage rates throughout states and the associated risks of infectious 

disease outbreaks. The ability to identify highly vaccinated and undervaccinated 

neighborhoods, school districts, and other types of local communities or regions is important 

for policy makers, public health officials, and medical providers who aim to make informed, 

evidence-based decisions and recommendations for appropriate interventions and care 

strategies related to vaccine-preventable diseases (Lieu et al., 2015).

Several states make vaccination coverage information publicly available for specific 

checkpoint grade levels, such as kindergarten and sixth grade. While some states provide 

data aggregated by the county (e.g., Kansas) or public school district (e.g., New Mexico and 

Tennessee), others allow access to school-level data (e.g., California, Oregon, and Virginia). 

School-level data can be considered high spatial resolution information, since schools are 

located at precise locations, which can be georeferenced and integrated into a Geographic 

Information System (GIS). Analysis of the school-level data has the potential to provide 

important knowledge regarding regional or local trends in vaccination coverage. Yet, the 

particular nature of this data creates an interesting set of problems for GIS and spatial 

analysis efforts. The main limitation is that schools represent discrete point locations in 

space with a set of attributes, while the students who attend the schools reside and interact 

within some larger areal region, such as a school district. The school-level point data only 

represent a terminus location for a set of individuals whose residences are distributed 

spatially throughout some region. Previous estimates of vaccination coverage rates for local 

1Higher spatial resolution NIS data (by zip code) are available as a restricted dataset from the U.S. Centers for Disease Control and 
Prevention (CDC) Research Data Center. Access to this information requires payment of management fees. However, the relatively 
low number of children surveyed per state for the NIS (e.g., 23,248 children were surveyed in the entire U.S. in 2013) does not provide 
sufficient coverage for detailed spatial analysis of within state variation.
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communities have yet to fully account for the spatial mismatch between the school-level 

data and the area served by a particular school.

In this paper, we present a new data-integration method to estimate community-level 

vaccination coverage rates using school-level data and population mobility information. Our 

approach accounts for the spatial mismatch school-level point representation and the areal 

regions in which students reside. We incorporate aspects of both interpolation and 

aggregation, but tailor our approach for the particularities of U.S. school attendance 

geography to estimate the coverage rate for the DTP vaccine for California (CA) 

kindergarteners entering school in 2014. California experienced outbreaks of pertussis, also 

known as whooping cough, in 2010 and 2014 (California Department of Public Health, 

2015), which may signal that the vaccine coverage rate had dropped below the herd 

immunity threshold in some communities. We estimate DTP coverage percent for census 

blocks, the smallest areal units of census geography, providing a highly detailed spatial 

representation of community-level vaccination coverage throughout the state. The resulting 

map and areal-level data provide geographic visualization and spatial analysis opportunities 

that are not available when relying solely on the school-level point data.

2. Background

The two most commonly-used approaches for estimating areal data from a point 

observations are: (1) interpolation, which estimates values for locations without data using a 

set of known values from the surrounding region and (2) aggregation of the point data to 

preexisting areal units.

In the interpolation approach, known values from a point dataset are used to estimate values 

at unsampled locations. A significant problem arises if using interpolation to estimate 

vaccination coverage from school-level data. Interpolation assumes that the characteristic 

being studied is continuously distributed throughout space and the values at the known point 

locations represent a set of sample points drawn from this spatially distributed phenomenon. 

However, this assumption does not match the reality of the school-level vaccination 

coverage data. In this case, a school is not a sample point drawn from a continuous surface, 

but instead is a destination point for the students who reside at locations distributed 

throughout some region.

In the aggregation approach, a set of areal units is chosen, and then the points falling within 

each unit are aggregated and summarized into a single value representing the entirety of that 

unit. For estimating vaccination coverage rates, two important problems arise in this 

approach. First, if large areal units such as counties are chosen as the aggregation unit, the 

size of the areal units has the potential to obscure the geographic detail available from the 

school-level data. Second, if small areal units such as U.S. Census block groups are chosen, 

there is a possibility that some units will not contain a school and, therefore, require an 

additional decision rule and processing step to assign a vaccination coverage percentage to 

these units.
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In the U.S., the problems associated with the size of the areal units are exacerbated by the 

particularities of primary and secondary (grades K-12) school attendance geography, which 

are summarized below. Generally, schools in the U.S. fall into one of three broad categories, 

1) public schools, which are publicly-funded, free to attend, and have defined geographic 

service areas, 2) charter (and magnet) schools, which are publicly-funded and free, but only 

in some cases have specifically defined service areas, and 3) private schools, which do not 

receive public funds, may charge tuition for attendance, and do not have defined service 

areas (United States Network for Education Information, 2008).

The public school system provides much of the overall education in the U.S., and attendance 

at public schools is tied to the residential locations’ of the students (Danielsen et al., 2014). 

A public school district defines the areal extent of the region or catchment in which students 

must attend a particular public school or set of schools. When multiple public schools are 

located within a single district, the district is further divided into subregions that delineate 

the particular service area for each school. Historically in the U.S., public schools were 

distributed systematically to serve a single neighborhood or community and thus minimize 

travel for students (Bell, 2007). More recently, the link between geography, distance, and 

school attendance has been weakened via increases in the availability of both public and 

private school choice options (Ely and Teske, 2015; Henig, 2009). Public school choice 

provides parents with the option of sending their children to a school that is not located in 

the school district or subregion in which they reside (Ely and Teske, 2015).

The use of public school district boundaries as an aggregation unit for the school-level 

vaccination data may appear to be a reasonable option. However, this approach generates at 

least three potential complications related to student attendance geography in the U.S. First, 

private and charter school student populations are not bound by the public school district 

geography. A private or charter school located within a public school district’s boundaries 

may have numerous students who reside outside of that particular district. Second, in states 

offering public school choice programs, students may attend a school located outside the 

public school district or subregion assigned to their residence. Third, some school districts 

have multiple public schools within their boundaries and do not provide the detailed 

subregion boundary information for each school in a useable format. Supplemental Figure 1 

provides examples of the potential complications arising from public school districts as an 

aggregation unit for the school-level data.

3. Community-level vaccination coverage

Our approach for estimating vaccination coverage at a community-level is based on two 

extensions of a traditional interpolation. The first extension is that we allow the distance 

decay function to vary spatially throughout the study region, as suggested by Lu and Wong 

(2008). The second extension is the incorporation of ancillary data within the interpolation 

process, a technique known as an intelligent method of interpolation (Zhang and Qiu, 2011). 

However, rather than estimating over an empty raster grid, we estimate the vaccination 

coverage rates for predefined areal units, which is more similar to an aggregation approach.
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We conceptualize that a community’s vaccine coverage rate can be estimated based on the 

coverage rates of nearby schools and the likelihood that students living within the 

community attend those nearby school locations. Our approach draws from a modified 

gravity model (Weibull, 1976), which incorporates supply, demand, and a distance decay 

function to calculate the attraction among locations. Although we use the concept of 

attraction in our model, because the attraction is only one-way (toward schools) in our 

approach, we do not consider the demand parameter. Hence, the attraction between a 

community’s students to a particular school is based on the enrollment size of the school 

(supply) and the distance from the community to the school (distance decay).

Rather than assigning a community’s students to a single school, we model school 

attendance as a set of probabilities that a community’s students attend schools located near 

the community. These probabilities are based on the relative attraction among the nearby 

schools, which are modeled as a function of the distance to the schools, the size of the 

schools, and the mobility of the adults in the community. This approach recognizes the 

effects of school choice programs, such that the students residing in one community may 

attend multiple schools. The three general assumptions in our school attendance model and 

vaccination coverage estimation approach are as follows:

1. Students are more likely to attend a nearby school rather than one located a long 
distance from their residences. In our model, the probability of a student 

attending a specific school is dependent on the distance from the student’s 

residence to the school while also accounting for the distance to any other 

schools in the student’s local area. This assumption incorporates the local nature 

of school attendance, while also acknowledging that students may not attend the 

nearest school if alternate options are present (i.e., school of choice).

2. The total number of students enrolled at a school affects the probability of 
attendance at that school. For example, when two schools are equidistant from a 

student’s residence, the probability that the student attends the larger of the two 

schools will be greater than the probability that the student attends the smaller of 

the two. In our model, the size of the school is expressed as the number of 

students enrolled, which is an observable indication of the attraction that school 

has on the surrounding communities.

3. The mobility of students’ parent(s) or guardian(s) will affect which school the 
students attend. We assume that residents with a long daily work commute 

overcome distance more readily than those with a short daily commute and are 

thus more mobile. Studies conducted in Minnesota (Wilson et al., 2007) and 

Oregon (Yang et al., 2012) report that students who attend a non-assigned public 

school travel longer distances on average than students attending their assigned 

school. Hence, we consider differences in parents’ ability to overcome distance, 

allowing mobility to modify the relationship between distance and the 

probability of attending a school (#1 above). For example, in our model, highly 

mobile parents would be more likely to choose a distantly-located school than 

their lower mobility counterparts, given the same set of schools to choose from.
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3.1 Case study

Our case study is conducted in California, which has a total population of roughly 37 million 

residents, a yearly elementary school population of approximately 3 million students 

(CalEdFacts, n.d.), and about 0.5 million students entering kindergarten each year (CDPH, 

Immunization Branch, 2015). Prior to the adoption of new legislation passed in 2015 

(SB277), California had a relaxed policy regarding NMEs from vaccination for school entry. 

Between 2010 and 2014, vaccination coverage among incoming kindergarteners has 

decreased, while NME use has increased (CDPH, Immunization Branch, 2015). During this 

time period, several outbreaks of vaccine-preventable diseases occurred within the state. 

California provides school-level vaccination data for incoming kindergarten students for all 

schools having 10 or more incoming students. This provides researchers with a highly 

detailed record of childhood vaccination for the entire state. In 2010, “school of choice” 

legislation was enacted within the state, allowing schools to admit students that reside in 

other public school districts.

Data and methods

Vaccination—Vaccination data for kindergarteners entering California schools in the 

2014–2015 school year (n = 7,032 schools) were acquired from California Department of 

Public Health (http://www.cdph.ca.gov). For each school, the database contains the total 

number of students entering kindergarten, the number of students having medical and non-

medical exemptions, and the number of students having documented proof of vaccination for 

the state-mandated vaccines. For DTP, the kindergarten-entry requirement is DTP, or 

combination of DTP and diphtheria-tetanus toxoids (e.g., DTaP, DT), and to be considered 

vaccinated in the database a child had to have received at least 5 doses of the vaccine, 

although 4 doses was considered vaccinated if at least one dose was given on or after the 

child’s fourth birthday (California Code of Regulations, 2015). The school-level vaccination 

data were matched to school addresses gathered from California Department of Education 

(http://www.cde.ca.gov), then geocoded using Google’s Geocoding API (https://

maps.googleapis.com/maps/api/geocode/) and a custom R (R Core Team, 2015) script.

Population mobility—The most recent five-year (2009–2013) American Community 

Survey (ACS) block group data were gathered from http://www.census.gov/programs-

surveys/acs/ for all of California (n = 23,111). We used Journey to Work (JTW) information 

as a proxy measure of parent/guardian mobility. JTW data are reported as the proportion of 

the working population that travels a specific number of minutes to the workplace daily 

during a one-way commute, reported in 0–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–

39, 40–44, 45–59, 60–89, and ≥90 minute intervals. The original JTW data were converted 

to a cumulative probability distribution representation, such that each interval represented 

the proportion of the working population that travels each distance or more during their daily 

commute.

For each block group, a logistic-based distance decay function (de Vries et al., 2009) was fit 

to the JTW data using a nonlinear least squares regression. Observed cumulative probability 

served as the outcome variable and travel distance was the predictor variable in the 

regression model. The midpoint values of the JTW class intervals were used for the travel 

Delamater et al. Page 6

Appl Geogr. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cdph.ca.gov/
http://www.cde.ca.gov/
https://maps.googleapis.com/maps/api/geocode/
https://maps.googleapis.com/maps/api/geocode/
http://www.census.gov/programs-surveys/acs/
http://www.census.gov/programs-surveys/acs/


distance values, except for the ≥90 minute class, which was set to 90 minutes. The function 

takes the form

C d = γ

1 + d
β1

β0
Equation 1.

where C(d) is the cumulative probability; d is the travel time; γ is the Y intercept when d = 

0, so it is constrained to 1 (100% probability of traveling 0 minutes or more); and β0 and β1 

are the estimated parameters. This particular function was employed because it provides the 

requisite flexibility to estimate distance decay behavior (Delamater, 2013; Delamater et al., 

2013).

Overall, the nonlinear regression models provided highly accurate predictions of the 

observed JTW data; the mean R2 for the block group models was 0.98. Examples of the 

observed data, the modeled distance decay function, and estimated parameters for low, 

medium, and high mobility block groups are provided in Figure 1. In the Figure 1 examples, 

the overall differences in mobility can be most easily observed by viewing the median JTW 

time for each community, which is the travel time in which 50% or more of the community 

travels to work on a daily basis. For visualization purposes, the median JTW time was 

calculated for each block group by solving its particular distance decay function for C(d) = 

0.5 and is mapped for CA in Figure 2. As the map shows, median JTW varies substantially 

throughout the state.

Distance—Census block data for all of California (n = 710,145) were downloaded from 

https://www.census.gov/geo/maps-data/data/tiger-line.html. Many of the census blocks in 

California are unoccupied because they represent desert or mountain terrain. Only census 

blocks with a population greater than 0 in 2010 were retained for analysis (n = 403,398). 

Block polygons were converted to geographic (geometric) centroid locations and the 

Euclidean distance (kilometers) from each centroid to each kindergarten location in 

California was calculated. Measuring the distances over a travel network was deemed 

impractical, as the operation would require roughly 2.8 billion unique shortest path distance 

calculations.

To link the Euclidean distance data with the JTW travel time data, a conversion between the 

two distance measures (kilometers and minutes) was necessary. To accomplish this, 2,000 

tuples (d ≤ 200 km) were sampled from the block-school origin-destination matrix. A 

custom R script was implemented to query Google’s Distance Matrix API (https://

maps.googleapis.com/maps/api/distancematrix/) for travel time information for the 2,000 

samples. Visual interpretation of the scatterplot between Euclidean distance (kilometers) and 

travel time (minutes) showed a non-linear relationship for shorter distances and a linear 

relationship at further distances, which was evocative of the variogram plots used in 

geostatistical operations (Burrough and McDonnell, 1998; Goovaerts, 1997). We chose a 

Gaussian variogram function (Goovaerts, 1997; Kupfersberger and Deutsch, 1999), as it 
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provided the requisite flexibility to characterize the observed relationship. The function 

takes the form

d = s − n 1 − e

−h2

r2
+ nh Equation 2.

where d is the travel time; s, n, and r are the parameters to be estimated; and h is the 

Euclidean distance. A nonlinear least squares regression was used to estimate the model 

parameters. As Figure 3 shows, the non-linear model provided an adequate model fit (R2 = 

0.834) for the process of converting between the two distance measures.2

Blocks were assigned the JTW function of the block group they were located within. Using 

the modeled function from Equation 2, all Euclidean distance measurements in block-school 

origin-destination matrix were converted to travel times. In this step, all distances greater 

than 60 minutes were removed from the matrix and replaced with “no data” entries, as 60 

minutes one-way from a child’s residence was considered to be an appropriate cutoff value 

for a 0% likelihood of attending a particular school for kindergarten3

Mobility-adjusted community-level estimation—For each block, the weighted sum 

of the number of students enrolled and the number of students vaccinated for DTP were 

calculated for all schools falling within 60 minutes travel time of the block. This approach 

can be represented as

Si = ∑
j ∈ di, j ≤ 90

wi, j
2 S j Equation 3.

where Si is the number of kindergarteners in block i; Sj is the number of kindergarteners at 

school j; di,j is the travel time between block i and school j; and w2
i,j is the probability 

weight squared for block i and school j, calculated as C(di,j) using block i’s mobility 

function from Equation 1 and di,j. All potential weights (wi,j) fall between 0 and 1, with 

higher weights assigned to shorter distances. Because the distance decay curve functions in 

Equation 1 were estimated using cumulative probabilities, we square the w term in Equation 

3 to reinforce the local nature of school attendance and emphasize the probability of 

attendance at a nearby school, rather than distantly located schools. Si is calculated 

separately for both kindergarten enrollment (SENR) and the number of kindergarteners with 

2The relationship was also tested using a multiple linear regression model, with the addition of population density of the block group 
as a proxy variable to capture differences in the urban/rural nature of travel time. However, the inclusion of this information provided a 
negligible improvement in model fit.
3The mean distance for all blocks to their nearest school was 2.69 minutes. Only 7.8% of all blocks are located more than 10 minutes 
from the nearest school. These percentages fall to 0.7% and 0.09% for blocks located more than 30 and 50 minutes (respectively) from 
the nearest school. For 142 blocks (0.035% of all blocks), the nearest school was located more than 60 minutes away. For these cases 
only, the maximum distance threshold was extended to include the nearest school.

Delamater et al. Page 8

Appl Geogr. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the DTP vaccination (SDTP). DTP vaccination coverage for each block is calculated as a 

proportion by dividing the sum of the kindergarteners having the DTP vaccination by the 

sum of all kindergarteners.

Figure 4 provides example calculations of Equation 3 to illustrate the effect of incorporating 

differing adult mobility on the block-level DTP coverage estimates. In the figure, three 

schools with varying enrollments and school-level DTP coverage are located at 5, 8, and 25 

minutes from the centroid of the population unit. In the example on the left, the population 

has low mobility, while the population in the example on the right is extremely mobile. The 

relative probabilities of attendance for each school, given the specific distances and 

enrollments are School 1 = 0.875, School 2 = 0.119, and School 3 = 0.005 for the low 

mobility community and School 1 = 0.395, School 2 = 0.077, and School 3 = 0.528 for the 

high mobility community. In this example, the probability of students attending School 3 

(lower DTP coverage) is much higher because many in the community have a long daily 

commute (represented by higher w values at greater distances), which results in a lower DTP 

coverage estimate compared to the low mobility community.

Model validation—The accuracy of the community-level DTP vaccination coverage 

estimates cannot be empirically verified with publically available data, because that would 

require protected personal information including the vaccination status and residential 

location of all California kindergarten students in 2014. However, the approach can be 

validated by integrating the modeled block-level coverage estimates with an independent 

representation of the residential distribution of the kindergarten population. Because 

students generally enter kindergarten between the ages of 4 and 6, this population is not well 

defined. Hence, block-level residential distribution of 5-year-olds was used as a proxy 

representation of the kindergarten population. 2010 U.S. Census data were employed, as this 

was the most recent data source meeting both the age and spatial requirements. The 2010 

census data has a total age-5 population of 505,175, which is similar in magnitude to the 

531,940 enrolled kindergarteners in the 2014 school-level data.

For each block, the estimated DTP coverage was multiplied by the age-5 population, which 

produced the number of age-5 residents that were vaccinated for DTP. This representation of 

DTP vaccination coverage for the kindergarten population differs from the original school-

level data by considering the residential location of students, rather than only the terminus 

location of the schools the students attend. To compare the block-level estimates to the 

school-level data, we examined the state-level DTP vaccination produced by each. For the 

block-level data, the estimated number of vaccinated age-5 residents were summed and then 

divided by the total number of age-5 residents in the state. For the school-level data, the 

similar approach was implemented using the sum of vaccinated kindergarteners and all 

kindergarteners.

4. Results

Community-level mobility-adjusted DTP coverage for California kindergarteners entering 

school in 2014 is mapped in Figure 5. In the map, the color scheme for DTP coverage 

diverges at 92% with red shading indicating low coverage and green shading indicating high 

Delamater et al. Page 9

Appl Geogr. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coverage rates. Estimates of the herd immunity vaccination threshold for pertussis range 

from 92% to 96% (Anderson and May, 1985; Fine, 1993), meaning that 92% can be 

considered a conservative estimate of the herd immunity threshold. Figure 5 highlights the 

general variation in DTP coverage across the state, with the lowest coverage areas found in 

the northernmost part of the state and highest coverage areas found in the central valley 

region. Other urban regions along the Pacific coast appear as regional pockets of lower DTP 

coverage. The smooth appearance of the DTP coverage map is partially due to the small size 

of the block-level units and partially due to the use of distance decay in our approach, which 

produces an overall smoothing effect.

Figure 6 highlights undervaccinated regions, as defined by 92% and 96% herd immunity 

vaccine coverage thresholds for pertussis. For mapping and display purposes, census blocks 

with DTP coverage estimates less than the threshold value were merged into a contiguous 

region if within 1 mile of another block less than the threshold. Regions with a DTP 

coverage rate greater than the threshold value, but smaller than 1 square mile and completely 

contained within a region under the threshold value, were consolidated into the 

undervaccinated regions. As Figure 6 shows, many of California’s communities were below 

these critical thresholds in 2014.

Using the raw 2014 school-level data, the overall DTP vaccination coverage for all 

California kindergarteners was 92.44%. For comparison, the block-level mobility-adjusted 

coverage estimates in combination with the as of 92.37%. The high level of agreement 

supports the validity of the community-level estimation approach, especially when 

considering that the two statewide figures were calculated using completely independent 

representations of the school-age population.

Although the overall statewide DTP vaccination coverage between the two approaches is 

extremely similar, the relative distribution of coverage varies considerably within the 

observation units (schools vs. communities). To illustrate the effects of the community-based 

approach, the distribution of vaccination coverage for both the school-level (kindergarten 

enrollment) and block-level (age-5 population) data are plotted in Figure 7. The plot shows a 

somewhat bimodal distribution for vaccination coverage by school in California, with a large 

number of schools reporting DTP coverage of greater than 98% and another smaller peak 

representing schools with DTP coverage of 60% or less. These schools often coexist with the 

same geographic communities, such as when a public elementary school reports complete 

coverage but a private school in the same neighborhood reports a very low rate. School-level 

data obscures the fact that multiple public and private schools may serve the school-age 

children in a particular community. Thus, the utility of the community-level estimation 

approach is demonstrated in Figure 7, showing that the dichotomous nature of the school-

level data has been smoothed toward the middle when accounting for the residential 

distribution of students, rather than only their destination points. The smoothing effect of the 

method is further demonstrated in Figure 8, which provides an example of the school-level 

data and block-level estimates from a small region in northern California.

Delamater et al. Page 10

Appl Geogr. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Discussion and conclusions

Increased use of NMEs (and thus lower vaccination coverage) has been linked to a higher 

risk of measles and pertussis outbreaks in Colorado (Feikin et al., 2000), Michigan (Omer et 

al., 2008), and California (Atwell et al., 2013). In the Michigan and California studies, 

school-level data were employed to make inferences regarding regions or communities. 

Although the oft-used Kulldorff spatial scan statistic (Kulldorff, 1997) was used to identify 

clusters with high exemption rates in both studies, each relied on a simple geographic 

overlay to link the school-level point data to US census tracts. As mentioned previously, this 

approach underestimates the complex nature of linking school attendance data with student 

residential distribution.

Our mobility-adjusted approach to estimate vaccination coverage at a community level 

offers a solution to the spatial mismatch between the school-level representation of student 

vaccination coverage and the community or regional spatial scale at which public health 

interventions and care strategies are generally implemented. Importantly, the our school 

attendance model was constructed using a robust theoretical representation of student 

population distribution, which accounts for the particular problems associated with school-

level geography, such as differences among public, charter, and private school attendance, 

multi-school school districts, and school of choice programs.

Using the California kindergarten data from 2014, the usefulness of the community-level 

output is demonstrated via the clear representation of spatial variability in DTP coverage 

throughout the state (Figure 5). Attempting to view these broad-scale statewide spatial trends 

in DTP coverage using the raw school-level (point) data is much more difficult due to the 

discrete nature of point data, the highly uneven spatial distribution of schools within urban 

and rural regions, and the large geographic extent of California. At a local scale, Figure 8 

provides a detailed example of the DTP coverage estimates, illustrating the discrete nature of 

the school data and the continuous nature of the community-level output.

We used our DTP coverage estimates to identify regions falling under the 92% and 96% 

DTP vaccination coverage level required for herd immunity for pertussis. As Figure 6 

shows, many regions throughout California fell below these critical threshold values and 

were possibly at risk for a disease outbreak. Yet, a simple dichotomous characterization of 

coverage percent is just one of many analysis options available with the community-level 

estimates. The continuous representation of vaccination coverage and the high spatial 

resolution provide an opportunity to examine the spatial distribution of vaccination coverage 

at a detailed scale, as well as the opportunity to identify and stratify regions based on precise 

estimates of coverage status.

Limitations

Although our approach for estimating community-level vaccination coverage does provide 

progress toward the ability to distinguish geographic regions by their vaccination coverage 

status, we do acknowledge its limitations. First, although public school districts appear to be 

influenced by geography (e.g., proximity to the schools in the district), the school attendance 

model does not explicitly include these boundaries in the probability calculations. The use of 
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distance to schools and school attendance (size) does serve as an imperfect proxy of school 

districts, while also accounting for private school attendance and the school of choice 

program. However, in regions where the school populations are well defined by the school 

district, our approach may overemphasize the likelihood that students attend an out-of-

district school. Without detailed information regarding the geographic distribution of each 

school’s student population, the effects of this limitation cannot be fully examined.

A second limitation in our approach stems from the use of journey to work data as a proxy 

for parental/guardian mobility. The JTW information provides important information 

regarding population commuting patterns and mobility, but has not been previously used to 

model school attendance patterns. Although our approach incorporates the JTW information 

to modify the relative probabilities of school attendance, the principal influences of 

attendance in our model are distance to nearby schools and school enrollment. By squaring 

the weight values in Equation 3, our school attendance model emphasizes the probability of 

attending the nearest school and deemphasizes the attraction of distant schools.

In our school attendance model, the attractiveness of a school was based only on the 

kindergarten enrollment and distance. Although Bell (2007) notes that “geography matters in 

parents’ decisions regarding schools,” this assumption may be more valid for communities 

with limited alternative school choices. Past research has shown that parents consider a 

multitude of factors in determining which school to send their children, including academic 

quality and safety among others (Bell, 2009). If school-level data were available for these 

characteristics, they could potentially be incorporated into an improved school attendance 

model, thereby improving community-level vaccination coverage estimates.

The case study includes data limitations that may affect the interpretation of the resulting 

DTP coverage estimates. First, the California exemption and vaccination database does not 

include information for schools with less than 10 students. Although there is evidence that 

these small schools have higher exemption and lower vaccination coverage rates, their 

geographic location and coverage status cannot be estimated given the publically available 

data. Next, for each school the number of students reported as having the DTP vaccination 

does not include those students who may be vaccinated, but do not have proof upon school 

entry (called conditional entrants). The school database does not include follow-up 

information for these students, thus the community-level DTP estimations may be 

underestimated as a result. Again, the analysis is limited to the publically available data, 

which only reports the status of students having proof of vaccination at the time of school 

entry.

Conclusions

We provide a novel approach to estimate mobility-adjusted community-level vaccination 

coverage using school-level data. Importantly, our approach addresses the spatial mismatch 

problem stemming from the high resolution provided by school-level point data and the 

geographically distributed nature of the students that attend these schools. By incorporating 

school size, distance to schools, and parental mobility, we account for the particularities of 

school attendance geography in the U.S. Importantly, our approach overcomes the problems 

with traditional aggregation and interpolation approaches used in previous research.
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In the case study, we estimate community-level DTP vaccination coverage of kindergarten 

students for the state of California at a US census block-level. This is the smallest unit of 

census geography and blocks can easily be aggregated to larger, more conventional areal 

units, such as neighborhoods, regions, or cities. In California, the recent policy change to 

eliminate NMEs will undoubtedly affect the spatial distribution of vaccine coverage for 

children throughout the state (Delamater et al., 2016), underscoring the importance of 

mapping and monitoring efforts. Throughout the U.S., the noted changes in the use of 

NMEs, their associated effects on childhood vaccination coverage, and the amplification of 

vaccine-preventable disease outbreaks highlight the dynamic and changing geography of 

vaccination. The ability to distinguish local regions and communities by their vaccination 

status may provide an extremely important resource for future mitigation and intervention 

efforts dedicated to reducing vaccine-preventable disease outbreaks.
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Highlights

- We provide an approach to estimate vaccination coverage for local 

communities

- The approach addresses spatial mismatch between schools and student 

distribution

- Case study shows spatial distribution of DTP coverage in California 

kindergarteners
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Figure 1: Distance decay functions for examples of low, medium, and high mobility block groups.
Dashed lines show the Median journey to work (JTW) time, the travel time that 50% or 

more of workers commute daily.

Delamater et al. Page 17

Appl Geogr. Author manuscript; available in PMC 2019 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Mobility for California residents.
Median journey to work (JTW) time is the travel time that 50% or more of workers commute 

daily.
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Figure 3: 
Relationship between travel time and Euclidean distance
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Figure 4: Example DTP coverage calculations for communities with low (left) and high (right) 
mobility.
The circle represents the population location (block) and the squares represent schools. 

Travel time is represented by d. The school locations are labeled with the number of students 

with the DTP vaccination, the total number of students, and the percent of students with the 

DTP vaccination. The graph shows the block-specific mobility function, with the weight 

values (w) for d = 5, 8, and 25 minutes.
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Figure 5: 
Mobility-adjusted community-level DTP coverage in California, 2014.
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Figure 6: 
Regions in which DTP coverage is less than the herd immunity threshold of 92% (left) and 

96% (right) in California, 2014
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Figure 7: 
Stratification of DTP vaccination coverage for kindergarteners in 2014 by school (blue) and 

age-5 population in 2010 by block (green).
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Figure 8: 
Comparison of original school-level DTP vaccination coverage data (left) and block-level 

mobility-adjusted estimates (right).
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