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SUMMARY

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite 

the high rate of response in advanced melanoma, the majority of patients succumb to disease. To 

identify factors associated with success or failure of checkpoint therapy, we profiled 

transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients 

treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering, 

and associated with patient tumor regression or progression. A single transcription factor, TCF7, 

was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome 

in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape 

and clonality of these T cell states, and demonstrated enhanced anti-tumor immunity by targeting 

novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from 

tumors demonstrates a strategy for identifying predictors, mechanisms and targets for enhancing 

checkpoint immunotherapy.

Graphical Abstract
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IN BRIEF

Single cell analysis of immune cells from melanoma uncovers a TCF7+ memory-like state in the 

cytotoxic T cell population, and demonstrates its association with a positive outcome

INTRODUCTION

Antibodies that block immune checkpoint proteins, including CTLA4, PD-1 and PD-L1 

(Callahan et al., 2016), are FDA approved for treating a wide variety of cancers, including 

melanoma and non-small-cell lung carcinoma. In melanoma, despite the high response rate 

(Larkin et al., 2015; Robert et al., 2015), most patients are refractory to therapy or acquire 

resistance. Identification of components that drive or prevent effective responses to 

checkpoint therapy thus remains an urgent need for understanding and expanding the use of 

immunotherapy in patients.

Checkpoint therapies were developed to overcome the dysfunction or exhaustion of T cells 

(Speiser et al., 2016; Wherry et al., 2007) resulting from chronic antigen exposure and 

suppression by the tumor or cells in its microenvironment. However, it remains unclear why 

some patients respond to checkpoint therapy while others do not. One factor associated with 

outcome is the number of infiltrating CD8+ T cells detected before (Tumeh et al., 2014) or 

during early treatment (Chen et al., 2016). In addition, several studies have found a 

correlation with signatures of T cell states, including signatures of IFNγ responses, as well 

as those of T cell activation, exhaustion and cytotoxicity (Ayers et al., 2017; Prat et al., 2017; 

Riaz et al., 2017), abundance of partially exhausted CD8+ T cells in responding tumors 

(Daud et al., 2016) and magnitude of T cell reinvigoration in relation to pretreatment tumor 

burden in blood (Huang et al., 2017). Additional studies have implicated non-T cell factors, 

including PD-L1 protein expression (Larkin et al., 2015), load of tumor neoantigens (Rizvi 

et al., 2015; Snyder et al., 2014), defects in antigen presentation and IFNγ pathways (Gao et 
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al., 2016; McGranahan et al., 2017; Sade-Feldman et al., 2017; Zaretsky et al., 2016), and 

signatures of mesenchymal transition, wound healing and angiogenesis (Hugo et al., 2016).

One limitation of many of these studies is that the exact states of individual cells were not 

determined, either because bulk tumor biopsies or a limited set of pre-defined markers were 

used, thus limiting our ability to interpret the cellular basis for response to checkpoint 

inhibitors. To address these limitations, we applied high-dimensional single-cell RNA 

sequencing (scRNA-seq) to determine the states of immune cells from dissociated tumor 

biopsies of patients treated with checkpoint therapy. We focused our analysis on two unique 

states of CD8+ T cells that predicted the success or failure of checkpoint immunotherapy, 

and analyzed the immunological programs and functional properties of these T cells in the 

context of tumor immunity.

RESULTS

Single cell profiling of immune cells in tumors of patients treated with checkpoint 
inhibitors

To analyze immune cells associated with efficacy of checkpoint therapies, we performed 

scRNA-seq on immune cells isolated from 48 tumor biopsies taken from 32 metastatic 

melanoma patients treated with checkpoint therapy (with 35 anti-PD-1; 11 anti-

CTLA4+PD-1; and 2 anti-CTLA4 samples), including 11 patients with longitudinal biopsies 

and 20 patients with one biopsy (or 2 for one patient), taken either at baseline or during 

treatment (Figure 1A and Table S1). We used the following patient response categories 

defined by RECIST criteria: complete response (CR) and partial response (PR) for 

responders, or stable disease (SD) and progressive disease (PD) for nonresponders 

(Eisenhauer et al., 2009). However, to relate molecular and cellular variables with responses 

of individual lesions to therapy, we classified each of the 48 tumor samples based on 

radiologic assessments into progression/non-responder (NR, n=31, including SD/PD 

samples) or regression/responder (R, n=17, including CR/PR samples) (Table S1). Of 19,392 

sorted and sequenced CD45+ cells (using an optimized full length Smart-seq2 protocol 

(Villani et al., 2017) with a median of ~1.4 million paired-end reads per cell), 16,291 cells 

passed quality control, with a median of 2,588 genes detected per cell (Methods). Whole 

exome sequencing (WES) available for 20 patient tumor and normal pairs, identified 4 

tumors with somatic mutations in B2M, JAK1, STAT1 and IFNGR1 (Table S1), recently 

associated with primary or acquired resistance to checkpoint therapy in melanoma (Gao et 

al., 2016; Sade-Feldman et al., 2017; Zaretsky et al., 2016).

The immune cell composition of melanoma tumors and their association with response to 
checkpoint therapy

To define the immune landscape and its association with outcome in an unbiased manner, 

unsupervised clustering of 16,291 CD45+ cells was used to identify a robust 11 cluster 

solution (Methods), with 2 B cell clusters (G1- B cells; G2- plasma cells), 2 myeloid clusters 

(G3- monocytes and/or macrophages; G4- dendritic cells) and 7 clusters enriched for 

T/NK/NKT cells (G5–11) (Figure 1B,C and Table S1). While each patient showed changes 

in cluster frequencies between baseline and post-treatment samples (Table S1), there were 
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no consistent changes when aggregating all samples (Table S1). When we consider 

regression or progression of each lesion, 2 clusters (G1, p=0.003; G10- T cells, p=0.03; 2-

sided Wilcoxon test) were more frequent in responder lesions while 4 clusters (G3, p=0.003; 

G4, p=0.015; G6- T cells, p=0.005; G11- T/NK cells, p=1.3×10−5) were more frequent in 

non-responder lesions (Figure 1D and Table S1). G6 and G11 were both enriched for genes 

linked to T cell exhaustion (LAG3, PDCD1, HAVCR2, TIGIT, CD38, ENTPD1), and G11 

for cell cycle genes (CDK1, CCNB1, MKI67, CDK4, RB1, TP53) (Table S1). Consistent 

with the unsupervised analysis, known signatures of exhausted and activated T cells (Fuertes 

Marraco et al., 2015; Wherry et al., 2007) (Table S1) were enriched in non-responder 

(p=0.002) and responder lesions (p=2×10−4), respectively (Figure 1E), with no significant 

change between baseline and post-therapy samples (Figure S1 and Table S1); B cells, CD8+ 

and CD4+ memory T cells were enriched in responder (p=0.004, 0.001, 0.03, respectively; 

Figure 1F,G) and myeloid cells in non-responder lesions (p=0.002; Figure 1F). We also 

identified individual markers based on the fraction of cells expressing a marker in responder 

vs. non-responder lesions (Figure 1H and Table S1), including PLAC8, LTB, LY9, SELL, 
TCF7, IGKC, CCR7 in responder and CCL3, CD38, HAVCR2, ENTPD1, WARS in non-

responder lesions. Our analysis thus identified specific cell types, states and markers 

associated with regression or progression of individual tumors in response to checkpoint 

therapy.

Unbiased definition of CD8+ T cell states and their association with therapy response

Based on the high frequency of CD8+ T cells and the association of T cells states with 

clinical responses, as well as the established role of CD8+ T cells in recognition of tumor 

antigens and control of tumors (Pardoll, 2012; Tumeh et al., 2014), we focused our analysis 

on CD8+ T cells. Clustering all CD8+ T cells (n=6,350) revealed 2 major cell states: CD8_G 

with increased expression of genes linked to memory, activation and cell survival (e.g. IL7R, 

TCF7, REL, FOXP1, FOSL2 and STAT4) (Hurton et al., 2016) and reduced expression of 

co-inhibitory molecules; and CD8_B enriched for genes linked to cell exhaustion (e.g. 

CD38, HAVCR2, ENTPD1, PDCD1, BATF, LAG3, CTLA4 and PTPN6) (Figure 2A,B and 

Table S2). CD8_G cells mapped primarily to G10, G5 and G8 clusters, while CD8_B cells 

to G11 and G9 (Figure S2A), and both clusters were found in a published scRNA-seq 

dataset of melanoma (Tirosh et al., 2016) (Figure S2H,I and Table S2). CD8_G cells were 

enriched in responding lesions (2-sided Wilcoxon p=1.4×10−6) while CD8_B cells were 

enriched in non-responding lesions (p=0.005; Figure 2C) with both clusters coexisting in all 

lesions. Most responders had a cell number ratio of CD8_G/CD8_B>1, and most non-

responders a ratio<1 for both baseline and post-treatment samples (Figure 2D and Figure 

S2B,C). For the 9 non-responding lesions with a ratio>1, we hypothesized that these patients 

had productive immunity that selected for tumors with de novo resistance to checkpoint 

therapy. Based on WES, immunohistochemistry and flow cytometry, 6 of 9 samples (no 

DNA or slides were available for the other 3) showed complete loss of B2M or HLA-A,B,C, 

as previously reported (Sade-Feldman et al., 2017; Zaretsky et al., 2016) (Table S1 and 

Figure S2D,E). We classified lesions as responders or non-responders based on CD8_G/CD8 

ratios with high predictive power (AUC of ROC=0.87; one-sided Wilcoxon p=1.1×10−5). 

However, when excluding 6 samples known to lack B2M or HLA-A,B,C, the predictive 

power was boosted (AUC of ROC=0.95; p=3.8×10−7; Figure S2F). We also identified 

Sade-Feldman et al. Page 5

Cell. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual CD8+ T cell markers (based on fraction of cells expressing a marker) (Figure 2E, 

S2G and Table S2) associated with response (TCF7, IL7R) and lack of response (e.g., 

CCL3, CD38, CLTA, ENTPD1, EPSTI1, FABP5, HAVCR2, NDUFB3, PDCD1, PRDX3, 
SIRPG, SNAP47, SNRPD1, UBE2F and WARS). These analyses revealed exhausted-like 

and memory-like CD8+ T cell states and markers that associate with lesion-level response to 

checkpoint therapy.

Elevated frequencies of TCF7+CD8+ T cells in fixed tumor specimens predict positive 
outcome in an independent anti-PD-1-treated cohort

To test our findings in an independent melanoma cohort (33 patients treated with anti-PD-1, 

n= 43 samples) with a different method, we stained fixed sections for CD8 and TCF7, a top 

marker associated with responding lesions and expressed frequently in CD8_G cells (Table 

S3). TCF7 is part of the Wnt/b-catenin signaling pathway and is crucial for differentiation, 

self-renewal, and persistence of memory CD8+ T cells (Zhou et al., 2010) and reinvigoration 

and effective immunity of CD8+ T cells against chronic lymphocytic choriomeningitis 

mouse virus (LCMV) infection upon anti-PD-1 treatment (Im et al., 2016; Utzschneider et 

al., 2016). Based on automated image analysis with CellProfiler (Carpenter et al., 2006) 

(Figures 3A and 3B; File S1), we found more TCF7+CD8+ cells in responding (two sided 

Wilcoxon p=3.9×10−6) and more TCF7CD8+ cells in non-responding (p = 1.1 x 10-8; 

Figures 3C and 3D) samples. Most responders had a ratio of TCF7+CD8+ to TCF7CD8+ cell 

number >1, while non-responders had a ratio <1, in all (n=43; one-sided Wilcoxon 

p=2.4×10−6), baseline (n=24; p=0.001), or post-treatment (n=19; p=1.7×10−4; Figure 3E) 

samples. In contrast, the frequency of tumor-associated CD8+ T cells was not different 

between responder and non-responder patients (Figure 3F), as we found in the single-cell 

analysis (Table S1). The power to classify responses based on immunofluorescence analysis 

was high for all (AUC of ROC = 0.91), baseline (AUC of ROC= 0.88), or post-treatment 

samples (AUC of ROC= 0.98; Figure 3G). Finally, patients with a ratio>1 survived longer 

than those with a ratio <1 (Kaplan-Meier [KM] log rank p= 0.03, Figure 3H). Thus, staining 

of the TCF7 protein in CD8+ T cells may serve as a useful and practical marker of clinical 

outcome in patients treated with anti-PD-1 therapy.

Fine clustering of CD8+ T cells

While the 2 CD8+ T cell clusters were sufficient to separate responders from nonresponders, 

unsupervised clustering further defined 6 sub-clusters, with 3 that are mostly contained 

within CD8_G and 3 within CD8_B (Methods, Figure 4A,B,C). CD8_1 cells expressed 

markers of exhaustion and cell cycle (Table S4; similar to G11; Table S1), similar to 

terminally exhausted CD39+ (ENTPD1) CD8+ T cells from chronic infection with hepatitis 

C virus (Gupta et al., 2015). CD8_2 cells expressed many of the same exhaustion markers 

along with heat shock proteins (HSPB1, HSPA1A and HSPA4) and additional inhibitory 

receptors (ENTPD1 and KIR2DL4). CD8_3 cells expressed the known exhaustion markers 

(HAVCR2, CD38, PDCD1 and PTPN6) but lacked heat shock and cell-cycle genes. CD8_4 

(CCR7, IL7R, TCF7, TNF and S100A10), and CD8_6 (SELL, TCF7, LTB, IL7R, FLT3LG, 

IL16) cells were consistent with a memory and/or effector-like phenotype, while CD8_5 

cells had the phenotypes of memory and early activated cells (IL6ST, CXCL13, IL7R and 

CTLA4) with higher HAVCR2 and PDCD1 compared to CD8_4, 6, but lower than 
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CD8_1,2,3 (Figure S3A). Interestingly, GZMA, GZMB and PRF1 had much higher 

expression in CD8_1,2,3 (Table S4), resembling programs previously reported in melanoma 

(Tirosh et al., 2016), in a mouse model of chronic LCMV infection (Wherry et al., 2007), 

and in resident memory T cells (Mami-Chouaib et al., 2018). CD8_1 and CD8_3 were 

enriched in non-responder (1-sided Wilcoxon p=6.7×10−5, p=0.001, respectively) while 

CD8_4 and CD8_5 were enriched in responder lesions when excluding samples deficient for 

B2M or HLA-A,B,C (p=0.01 and p=0.02, respectively; Figure 4D). CD8_5 was found 

mostly in post-therapy samples (80%, Figure S3B,C) and appeared to have fewer TCF7-
expressing cells relative to CD8_4 and CD8_6 (Figure S3A). However, it split into 2 sub-

clusters (Figure 4E): CD8_5.1 (TCF7+GZMB−) and CD8_5.2 (TCF7−GZMB+) cells, both 

enriched in responder lesions (1-sided Wilcoxon p=0.01, 0.04, respectively). These findings 

are consistent with a recent study showing loss of TCF7 expression is associated with 

acquisition of effector phenotype in response to anti-PD-1 treatment in a mouse model of 

LCMV infection (Im et al., 2016). Since T cells transition to new states in cancer or chronic 

infections (Im et al., 2016; Speiser et al., 2016), we used trajectory analysis (Qiu et al., 

2017) to identify a main trajectory branch, and 2 side branches (Figure 4F), reflecting a 

possible path for differentiation (CD8_4, CD8_6, CD8_5 followed by CD8_3, CD8_2 and 1, 

with some overlap of clusters and with no information on the directionality) (Figure 4F and 

Figure S3D,E). The finding of transitional cells and the proximity between clusters suggests 

states that may arise or give rise to others. Our analysis of finer T cell states are consistent 

with our findings of the 2 CD8+ T cell clusters, but provide better resolution of cell states 

and suggest testable paths for differentiation.

TIM3 and ENTPD1 mark the exhausted-like state of CD8+ T cells

To isolate cells with the different CD8+ T cell states using flow sorting, we used the cell 

surface markers, CD39 (ENTPD1) and TIM3 (HAVCR2), which both had low expression in 

clusters associated with response and high expression in those associated with no response 

(Figures S3A and S4A; Tables S2 and S4). We used scRNA-seq to profile freshly sorted 

CD39+TIM3+ (DP, double positive) and CD39TIM3 (DN, double negative) CD8+ T cells 

from four melanoma patients (Figure S4B; Table S5) and found that the profiles 

recapitulated the original unsorted clusters (Figures 5A and 5B), DN with CD8_4 and 6, and 

DP mostly with CD8_2 cells. Since CD39 is an ectonucleotidase in the adenosine pathway 

that modulates immunity (Young et al., 2014), a marker for terminally exhausted CD8+ T 

cells in patients with chronic hepatitis C virus (HCV) and HIV infections (Gupta et al., 

2015), and a marker of exhaustion in tumor-infiltrating CD8+ T cells in melanoma and 

breast cancer (Canale et al., 2018), we analyzed the properties of CD8+CD39+ from 12 

melanoma patients treated with checkpoint blockade therapy (Table S5). We found that 

while CD8+CD39+ and CD8+CD39 T cells had equal expression of PD-1, CD39 turned out 

to be a key marker that separates all TIM3+ from TIM3 cells (Figure S4C), the latter being 

reported as a marker of T cell dysfunction in cancer and chronic infections (Anderson et al., 

2016). We prepared single-cell suspensions from the 12 patients and assessed their ability to 

produce cytokines in response to T cell receptor (TCR) (anti-CD3/CD28) stimulation. While 

CD39 and CD39+ cells contained equivalent percentages of IL-2-producing cells, CD39+ 

cells had a significant reduction in the number of TNF⍺- (unpaired- Student’s t test p= 

0.0016) and IFNγ-producing cells (p=5×10−4; Figure 5C).
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To address which of the two cell states (DN or DP) is important for tumor eradication upon 

anti-PD-1 therapy, we used a CT26GFP+ mouse tumor cell-line that exhibits modest 

regression when treated with anti-PD-1 in an ex-vivo 3-D microfluidic culture system for 

growing murine organotypic tumor spheroids (MDOTS) (Jenkins et al., 2018). We found 

anti-PD-1 mediated killing using this system was dependent on both CD8+ T cells and IFNγ 
(Figure 5D). Next, we isolated CD8+CD39−TIM3− (DN) and CD8+CD39+TIM3+ (DP) cells 

from CT26GFP+ tumors and immediately incubated each population or a mixed one (DN/DP, 

1:1 ratio) in the device with the MDOTS for five days with anti-PD-1 (or anti-IgG control 

antibodies), followed by live/dead staining and fluorescence microscopy to evaluate the 

viability of the CT26GFP+ MDOTS (Figure S4D). Addition of DN cells (which were also 

TCF7+) induced the most cell death with ~50% of GFP+ tumor cells eradicated after five 

days with anti-PD-1 antibodies, while DP cells reduced killing to control (IgG) levels 

(Figure 5D). We conclude that expression of CD39 and TIM3 discriminated exhausted from 

memory and/or effector cells, with DN cells supporting antitumor activity of checkpoint 

blockade ex vivo.

Dual inhibition of TIM3 and CD39 reduces tumor growth and improves survival

Because cells expressing CD39 and TIM3 were associated with non-responding lesions, and 

their expression was highly correlated with each other (relative to all pairwise correlations 

between top CD8_B markers, Table S5), we examined the combined effect of CD39 and 

TIM3 blockade. Mice transplanted with B16-F10 melanoma were treated with a small 

molecule, POM-1, that inhibits CD39 activity (Sun et al., 2010) and/or anti-TIM3 blocking 

antibodies (Figure 5E). While either monotherapy transiently reduced tumor growth through 

day 14, the combination strongly reduced tumor size and increased survival at day 40 to 

20% vs. 0% for monotherapy (Figure 5F,G and Figure S4E,F). Combined treatment of 

POM-1 with anti-PD-1 or anti-PD-1/CTLA4 also reduced tumor growth and increased 

survival, with POM1/PD-1/CTLA4 therapy having a strong synergistic boost of survival at 

day 40 to 60% (Figure 5H–K and Figure S4G–J). The effects of POM-1 were dependent on 

CD8+ but not CD4+ T cells (Figure S5A–E), and led to higher frequencies of IFNγ- but not 

GZMB/PRF1-producing CD8+ T cells (unpaired-student’s t-test p=0.04), and higher T cell 

proliferation in response to TCR stimulation (Figure S5F,G,H,I). While surface CD39 levels 

were not altered by POM-1 in CD8+ and B16-F10GFP+ cells (Figure S5J), ATP levels 

increased in whole tumor (p=0.02) or B16-F10GFP+ cells (p=0.02; Figure S5K), suggesting 

that CD39 ATPase is active in B16-F10 tumors. These results are consistent with prior 

studies in which inhibition of CD39 enzymatic activity enhances proliferation of T cells 

(Bastid et al., 2015). Altogether, we observed enhanced tumor control when targeting CD39 

in combination with TIM3 or other checkpoints, providing new and effective therapeutic 

combinations.

Chromatin states of exhausted-like and memory-like CD8+ T cells

To better understand the transcriptional regulation that explains the signatures observed in 

the exhausted-like and memory-like CD8+ T cells, DP and DN cells were isolated from five 

metastatic melanoma patients (Table S5), and open chromatin was quantified by assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) and transcript levels by 

scRNA-seq (Figure 6A). Of the differentially expressed transcription factors (TFs) by 
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scRNA-seq, DN cells expressed higher levels of TCF7, STAT4, FOXP1, and FOSB 
transcripts, as observed for stem cell memory CD8+ T cells (Hurton et al., 2016), and DP 

cells expressed higher BATF, PRDM1, TOX, HMGB2, and IRF2, as described for exhausted 

CD8+ T cells (Waugh et al., 2016; Wherry et al., 2007) (Figure 6B). These TFs were also 

detected in single cells sorted computationally based on expression of CD39 and TIM3 

mRNAs as well as in the original CD8_G and CD8_B clusters (Figures S6A and S6B). 

ATAC-seq identified differentially accessible regions in genes related to exhaustion and 

memory (Figures 6C, 6D, and S6C), with a smaller number in DN cells (424; Benjamini-

Hochberg false discovery rate [FDR] < 0.01; Table S5) when compared to DP cells (858; 

FDR < 0.01; Table S5), consistent with a previous study showing increased open regions as 

cells differentiate in response to chronic LCMV infection (Sen et al., 2016). Next, we 

searched for TF motifs enriched in open chromatin peaks and found BATF (and other TFs) 

motifs enriched in DP peaks and TCF7 and FOXP1 motifs in DN peaks (Figure 6E). 

EOMES was highly expressed in DP cells consistent with previous studies (Paley et al., 

2012; Wherry et al., 2007); however, differential peak motif enrichment was found in DN 

cells, suggesting that TF activity and expression are not coupled. Since BATF and TCF7 had 

the highest peak motif enrichment and the highest expression in DP and DN, respectively 

(Figures 6E and S6D), we compared whether differentially expressed genes near significant 

(FDR < 0.01) open chromatin regions (OCR) in DP or DN cells (as defined by GREAT 

[McLean et al., 2010]) contain enhancers with BATF or TCF7 motifs. We identified 95 

genes in DP (16%, including CXCL13, ENTPD1, CD38, CTLA4, and HAVCR2) and 6 

genes in DN cells (20%, including IL7R, PLAC8, and SELL), out of the total differentially 

expressed genes (584 for DP and 30 for DN), that meet these criteria (Figure 6F), suggesting 

that both BATF and TCF7 control the expression of key genes unique to each cell state. 

Furthermore, BATF was associated with nonresponder lesions when looking at all cells 

(Fisher’s exact test p= 7.2×10−49; Table S1) or CD8+ cells (p= 8.1×10−19; Table S2), and 

TCF7 with responder lesions (all CD45+, p= 8.03×10−50; CD8+, p= 3.02×10−20). Finally, we 

compared open chromatin in DP and DN cells to those of recently reported dysfunctional 

PD-1highCD8+ cells and central memory cells (CD45RA−CD45RO +CD62Llo) (Philip et al., 

2017). We found an overlap of DP with PD-1highCD8+ and DN with central memory cells 

but with some unique peaks in each (Benjamini-Hochberg FDR < 0.01; Figure S6E; Table 

S5), showing that they share some of their programs. Our analysis reveals key regulatory 

elements and TFs that regulate the exhaustion-like and memory-like programs in CD8+ T 

cells found in human melanoma.

TCR analysis identifies patterns of expansion associated with cell states and clinical 
outcome

We reconstructed T cell receptor (TCR) sequences for all identified CD8+ T cells and 

defined 4 patterns of TCR clonality based on shared CDR3 sequences in both α and β 
chains (Figure 7A, Methods): persistent TCRs detected in pre- and post-therapy samples 

from the same patient; enriched TCRs detected in more than one T cell in a single sample; 

singlet TCRs found in only one T cell at one time point; common TCRs shared across two or 

more patients. Since the overall number of persistent TCRs was very low, especially in 

responders, we could not make many conclusions about their relationships to clinical 

response; still, we detected a significant enrichment for persistent TCRs in non-responders 
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in clusters CD8_3 (2-sided Wilcoxon p=0.01) and CD8_6 (p=0.006) (Figure 7B), and when 

aggregating exhaustion clusters (CD8_1–3, p=0.02) but not the memory/effector ones 

(Figure 7C). Interestingly, very few persistent TCRs were detected in the CD8_5 cluster 

(which was present predominantly in post-therapy samples) when looking at all patient 

CD8+ cells (Figure 7D), suggesting that these T cell clones did not exist prior to therapy. 

Enriched TCRs were more common in exhausted clusters and singlet TCRs in effector/

memory clusters (Figure 7G,J), but both were enriched in non-responders for CD8_1–3 and 

in responders for CD8_4–6 (Figure 7F,I). We hypothesize that enriched TCRs are likely to 

have been exposed to persistent tumor antigen stimulation, explaining their higher 

proportions in the exhausted than effector/memory clusters, while singlet TCRs are not as 

expanded because they are more recently generated against tumor antigens (or are 

bystanders) and have fewer exhaustion markers. Although common TCRs were 

predominantly present in clusters CD8_2 and 3, no significant association was found with 

clinical outcome (Figure 7K,L,M). Collectively, this analysis allowed us to connect the 

transcriptional phenotype of cells and therapeutic outcomes with TCR clonality, and could 

aid in investigating T cell dynamics and cell state plasticity. Indeed, when looking at the 

transitions of T cell states (CD8_1–6) within a specific clone (based on identical TCR 

sequence) across longitudinal samples in the same patient (Table S6), we discovered 

bilateral transitions between exhausted and memory/effector states.

DISCUSSION

Although immune checkpoint blockade leads to durable responses in patients with 

metastatic melanoma, refractory disease and progression after initial response remain major 

causes of mortality (Larkin et al., 2015; Robert et al., 2015). By profiling single immune 

cells in baseline and on or post-therapy samples in melanoma patients treated with 

checkpoint therapy, we identified and characterized several CD8+ T cell states associated 

with lesion growth, and studied their properties using a series of molecular and functional 

experiments.

A central finding from our study is that the presence of TCF7 protein in CD8+ T cells can 

predict clinical response to checkpoint therapy, suggesting that the state of T cells, in 

addition to the number of T cells and spatial distribution (Galon et al., 2006; Mahmoud et 

al., 2011; Sharma et al., 2007), found in a patient’s tumor is critical for induction of effective 

tumor immunity. Consistent with our findings, TCF7 (TCF1 in mice) is required for 

reinvigorating CD8+ T cells in response to PD-1 blockade to resolve chronic LCMV 

infection (Im et al., 2016; Utzschneider et al., 2016), and for the expansion of 

CXCR5+TIM3−CD8+ T cells (but not TIM3+cells) for control of virus in mice (Im et al., 

2016), although we did not observe CXCR5 expression in TCF7+ cells in human melanoma. 

Finally, our results also agree with recent studies showing a reduction in open chromatin 

regions at TCF7 sites in non-programmable, dysfunctional PD-1hi T cells (Philip et al., 

2017), and with the importance of TCF7 role for WNT signaling in stem cell-like memory 

cells (Gattinoni et al., 2009).

In contrast to TCF7+CD8+ T cells, we found cells expressing exhausted or dysfunctional 

signatures associated with lack of response to checkpoint therapy. Our finding of CD39 (an 
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enzyme in the adenosine pathway) as a marker of exhausted CD8+ T cells is consistent with 

recent observations in melanoma (Canale et al., 2018), and HCV and HIV infected patients 

(Gupta et al., 2015). The ability of CD39 inhibitors together with TIM3, PD-1 or PD-1/

CTLA4 blockade to reduce tumor growth and increase survival of mice with B16-F10 

tumors is consistent with studies using checkpoint blockade with inhibitors of CD73 (a 

downstream component of the adenosine pathway) (Allard et al., 2013), and suggests new 

therapeutic combinations for treating melanoma and other cancers.

Some studies used bulk tumor expression data to identify several signatures (IFNg, 

exhaustion, cytotoxicity, antigen presentation and others) that associate with outcome (Ayers 

et al., 2017; Prat et al., 2017; Riaz et al., 2017). However, since many distinct signatures are 

upregulated at the same time in responders, one interpretation of these findings is that the 

bulk transcriptome change (which mixes many immune and non-immune cells together) 

likely reflects an overall increase in the T cell infiltrate, and does not discriminate specific T 

cell states. Consistent with this notion, we find that signatures of CD8_G and CD8_B, as 

well as known markers of T cell states (exhausted, effector, memory), are equally correlated 

with CD3 transcript number in samples from these cohorts (Figure S7).

We also show evidence that T cells can transition between states based on identical TCRs in 

T cells from exhausted-like and memory-like states, but we do not know the order or the 

exact transitions between states. Surprisingly we found that CD 8_5 T cells, which were 

predominantly found in post-therapy tumor samples, hardly share TCRs with the baseline 

sample, suggesting that members of the CD8_5 cluster are generated outside of the tumor 

and subsequently migrate to the tumor, consistent with observations from a recent study 

(Spitzer et al., 2017) demonstrating that lymphoid-organ derived T cells are required for 

anti-PD-1 potency.

Future studies will need to purify cells in each of the different T cell states based on surface 

protein markers (which may not always correlate with transcripts), validate their purity by 

scRNA-seq, and study their properties (as we did for some of the states here). Indeed, we 

identified a T cell state associated with response and showed that CD39-TIM3−CD8+ T cells 

(which are TCF7+) contribute to the antitumor activity of anti-PD-1 therapy in culture, but 

we have yet not determined which cells kill the tumors, the role of PD-1 in this process or 

the factors that induce or attract TCF7+ T cells.

Our finding that specific memory-like signatures are associated with response, together with 

recent studies showing that chimeric antigen receptor (CAR) T cell activity is enhanced by 

generating more memory-like cells through IL-7 or IL-15 pathways, leading to better 

outcome in preclinical models (Hurton et al., 2016; Shum et al., 2017) —suggests that 

methods to increase the ratio of CD8_G to CD8_B would enhance immunotherapies. 

Indeed, we were able to increase ex vivo tumor killing by removal of CD39+TIM3+CD8+ T 

cells (from tumor infiltrates) prior to treatment with anti-PD-1.

Building on the results and datasets presented here, one can envision designing trials that 

select patients for anti-PD-1 therapy based on T cell states and markers, and then testing 

whether this strategy increases the rate of durable responses. In addition, it may be possible 
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to use the change in the ratio of T cell states as an assay to prioritize therapeutic approaches 

prior to anti-PD-1 therapy. Future studies will also need to test whether our predictive 

markers of response are relevant to other types of malignancies and therapies.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Nir Hacohen (NHACOHEN@mgh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples.—Metastatic melanoma patients treated with checkpoint blockade 

therapy at Massachusetts General Hospital (Boston, MA) and University of Texas MD 

Anderson Cancer Center (Houston, TX) provided written informed consent for the collection 

of tissue and blood samples for research and genomic profiling, as approved by the Dana-

Farber/Harvard Cancer Center Institutional Review Board (DF/HCC Protocol 11–181) and 

UT MD Anderson Cancer Center (IRB LAB00–063 and 2012–0846). For the single cell 

RNAseq analysis 48 tumor samples at baseline and/or after checkpoint treatment were 

collected from 32 patients, with 20 patients having matched normal blood samples for whole 

exome sequencing.

Mice.—Female C57BL/6 or BALB/cJ mice, age of 8–9 weeks were purchased from 

Jackson Laboratory and were housed at Massachusetts General Hospital under SPF 

conditions. All experiments followed protocols approved by the Massachusetts General 

Hospital Institutional Animal Care and use Committee (IACUC).

In vivo tumor transplant experiments.—B16-F10 and CT26 cells were generously 

provided by Mikael Pittet and Umar Mahamood respectively. B16-F10 or B16-F10GFP+ cells 

(0.5×106) were intradermally injected into the right flank using a 30g needle and tumors 

were measured every 4 days in two dimensions using a digital caliper. Tumor volume (mm3) 

was calculated using the following formula V= (L * W2)/2 (V=volume, L= tumor length, 

tumor width). For MDOTS experiments, CT26GFP+cells (2×106) were subcutaneously 

injected into the right flank using a 27g needle and tumors were harvested 14 days post 

transplantation. All blocking treatments started on day 4 post transplantation after 100% of 

tumors were visible. Invivo plus rat IgG2a isotype control (BioXCell; 2A3; BE0089) 100μg/

dose was intraperitoneally (i.p.) injected to the control (untreated) group every 3 days. Invivo 
plus anti-mouse TIM3 (BioXCell; RMT3–23; BE0115) 100μg/dose, Invivo plus anti-mouse 

PD-1 (BioXCell; 29F.1A12; BE0273) 200μg/dose and Invivo plus anti-mouse CTLA4 

(BioXCell; 9D9; BE0164) 100μg/dose were i.p. injected every 3 days. POM-1 

(polyoxometalate-1) 5mg/kg/day (Santa Cruz Biotechnology; sc-203205), a CD39 inhibitor, 

was i.p. injected on a daily basis, starting on day 4 post transplantation.

METHOD DETAILS

Sample dissociation.—Fresh isolated tumor samples were collected immediately after 

surgery and were dissociated within 1 hour using the human tumor dissociation kit (Miltenyi 
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Biotec; 130–095-929) with the following modifications. Tissue was minced into small pieces 

using a scalpel and put into a 1.5ml eppendorf tube containing 100μl of enzyme H, 50μl of 

enzyme R, 12.5μl of enzyme A (all provided in the kit), and 837.5μl of RPMI, followed by a 

20 minute incubation in a thermomixer (Eppendorf; F1.5) at 37°C, 600 rpm. After 

incubation, debris were removed by filtering through a 70μm cell strainer, followed by 

mincing of the remaining tissue left on the strainer with a plunger in order to increase cell 

yield. Dissociated cells were subsequently washed with cold 1X PBS containing 1.5% heat 

inactivated FCS, spun down at 1300 rpm, 4°C for 5 minutes, resuspended, and counted for 

yield and viability with trypan blue using a Countess automated cell counter (Invitrogen).

Flow cytometry and cell sorting.—For both flow cytometry and cell sorting, Human or 

mouse TrueStain FcX (Biolegend, 422302 or 101320) was used for blocking Fc receptors 

before labeling cells. To discriminate live from dead cells, we used Zombie Violet Dye 

(Biolegend, 423114) or Zombie Green (Biolegend, 423111) for 15 min at 4°C, followed by 

surface labelling of cells for 30 min at 4°C, using standard protocols. The antibodies used 

for cell surface labelling were PE anti-human CD45 (Biolegend, 304008), APC anti-human 

CD3 (Biolegend, 300412), FITC anti-human HLA-A,B,C (Biolegend, 311404), APC/Cy7 

anti-human CD235a (Biolegend, 349116), PE/Cy5 anti-human CD3 (Biolegend, 300309), 

BV421 anti-human PD-1 (Biolegend, 329919), PE/Cy7 anti-human TIM3 (Biolegend, 

345013), APC/Cy7 anti-human CD39 (Biolegend, 328226), AF700 anti-human CD4 

(Biolegend, 317425) and BV650 anti-human CD8 (biolegend, 301041). Antibodies used for 

cell surface of mouse cells were AF647 anti-mouse CD39 (Biolegend, 143808), BV605 or 

Pacific blue anti-mouse CD3 (Biolegend, 100351 or 100334), PE/Cy5 or FITC anti-mouse 

CD8a (Biolegend, 100710 or 100705), APC/Cy7 anti-mouse CD4 (Biolegend, 100414), 

BV650 or FITC anti-mouse CD45.2 (Biolegend, 109836 or 109806) and APC or Pacific 

Blue anti-mouse Thy1.2 (Biolegend, 140312 or 105324). The antibodies used for 

intracellular staining were FITC anti-human IFNγ (Miltenyi Biotec, 130–097-936), PE anti-

human IL2 (Miltenyi Biotec, 130–099-391), APC anti-human TNFα (Miltenyi Biotec, 130–

099-197), APC anti-mouse TNFα (Biolegend, 506307), PE anti-mouse IL2 (Biolegend, 

503807), FITC anti-mouse IFNγ (Biolegend, 505805), PE anti-mouse Perforin-1 

(Biolegend, 154305) and APC anti-mouse Granzyme-B (Biolegend, 372203). Intracellular 

cellular labelling for granzyme-B and perforin-1 was performed following surface staining, 

fixation and permeabilization using the BD Transcription Factor Buffer Set (BD, 562574) 

according to the manufacturer’s instructions. Sorting of single cells was performed on a BD 

Fusion instrument using the following antibody panel: Zombie dye, CD45, CD235a and 

HLAA,B,C. CD45+ cells from dissociated samples were sorted into 96-well plates 

(Eppendorf, 951020401) containing 10μl of lysis buffer (TCL buffer, Qiagen 1031576, 

supplemented with 1% β-mercaptoethanol), sealed, vortexed, spun down at 2500 rpm for 30 

seconds, immediately placed on dry ice, and then stored at −80°C until processing with the 

Smart-Seq2 protocol. Sorting of human and mouse CD8+CD39+TIM+(DP) and 

CD8+CD39−TIM3−(DN) was performed using the following antibody panel: Zombie dye, 

CD45, CD3, CD8, CD39, and TIM3. For flow cytometry, we used the Beckman Coulter 

CytoFLEX instrument and analyzed the data with FlowJo 10.4.2 software.
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Single cell RNA sequencing procedure.—Libraries from single cell lysates were 

generated with the Smart-Seq2 protocol (Picelli et al., 2013) with some modifications in the 

reverse transcription step as recently described (Villani et al., 2017). 96-well plates 

containing cell lysates were thawed on ice, spun down at 1500 rpm for 30 seconds, and 

mixed with Agencourt RNAClean XP SPRI beads (Beckman Coulter) for RNA purification. 

Purified RNA was resuspended in 4μl of Mix-1, denatured at 72°C for 3 min and placed 

immediately on ice for 1 min before 7μl of Mix-2 was added (Table S6). Reverse 

transcription was carried out at 50°C for 90 min, followed by 5 min incubation at 85°C. 14μl 

of Mix-3 was added in each well and the whole-transcriptome amplification step was 

performed at 98°C for 3 min, followed by 21 cycles at (98°C for 15 sec, 67°C for 20 sec and 

72°C for 6 min), and final extension at 72°C for 5min. cDNA was then purified with 

Agencourt AMPureXP SPRI beads (Beckman Coulter) as described (Villani et al., 2017), to 

remove all primer dimers residues. Quality control steps were performed on samples before 

library construction and included the following steps: (1) concentration measurements, using 

the Qubit dsDNA high sensitivity assay kit on the Synergy H1 Hybrid Microplate Reader 

(BioTek); (2) cDNA size distribution using the High-Sensitivity DNA Bioanalyzer Kit 

(Table S6). Libraries were generated using the Nextera XT Library Prep kit (Illumina) with 

custom indexing adapters (Villani et al., 2017) in a 384-well PCR plate, followed by a 

cleanup step to remove residual primer dimers. Combined libraries from 384 cells were then 

sequenced on a NextSeq 500 sequencer (Illumina), using paired-end 38-base reads.

Immunofluorescence assay and analysis.—Multiplex staining was performed on 

4μm formalin-fixed paraffin-embedded sections using the Opal multiplex IHC system 

(PerkinElmer; NEL800001KT) according to the manufacturer’s instructions. Briefly, slides 

were baked for 1 hour at 65C followed by deparaffinization with xylene and a graded series 

of ethanol dilutions (100%, 95% and 70%), fixation with 10% neutral buffered formalin for 

30 minutes, microwave antigen retrieval using the AR9 buffer (PerkinElmer; 

AR900250ML), and blocking. Primary antibodies used for staining were: CD8a (Biolegend; 

C8/144B; 372902; 1:100) detected with OPAL520 (1:100; Cy2); TCF7 (Cell Signaling; 

#2203; 1:100) detected with OPAL690 (1:100; Cy5.5). Counterstain was done using DAPI 

(1:1000) and subsequently mounted using Vectashield (Vectra; H-1000) fluorescence media. 

Slides were imaged using the Olympus IX83 confocal microscope by scanning 10 random 

fields on each sample at 40X magnification, and analyzed with CellProfiler 2.2.0 (Carpenter 

et al., 2006) to detect the total number of nuclei, CD8+, TCF7+, and CD8+TCF7+ cells. Due 

to cellular heterogeneity between different slides/patients, in each sample the percentage of 

CD8+TCF7− or CD8+TCF7+ was calculated out of the total nuclei detected. For the analysis, 

a new pipeline was made for detection of cells positive for CD8 and TCF7 (File S1).

Immunohistochemistry.—Procedures were done on the automated Ventana Discovery 

Ultra staining system, using 4μm formalin-fixed paraffin-embedded sections. Sections were 

deparaffinized in xylene and graded alcohols, followed by antigen retrieval (EDTA), 

blocking with Discovery inhibitor (Ventana; 760–4840), incubation with primary antibodies 

for 16 minutes, washing and incubation with a secondary antibody conjugated with 

horseradish peroxidase (HRP). Sections were developed with discovery purple chromogen 

kit (Ventana; 760–229) and were then counterstained with hematoxylin. Primary antibodies 
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used were: B2M (Abcam; ab27588; 1:1000); anti melanoma triple cocktail (Ventana; 790–

4677; 1:100) containing antibodies against melanosome (HMB45), Mart-1/melan A (A103), 

tyrosinase (T311). The melanoma triple cocktail was used to separate tumor from normal 

cells enabling detection of B2M in the cancerous cell fraction.

Intracellular cytokine detection.—For intracellular cytokine analysis of human CD8+ T 

cells, 5×105 cells from dissociated samples (n=12) were cultured in the presence of soluble 

LEAF purified anti-CD3 (Biolegend, 317303, 2μg/ml), anti-CD28 (Biolegend, 302913, 

1μg/ml) and GolgiPlug (BD, 555029) for 6 hours at 37°C. Intracellular cytokine labelling 

was performed following surface staining, fixation and permeabilization using the BD 

Cytofix/Cytoperm Plus kit (BD, 555028) according to the manufacturer’s instructions.

Generation of B16-F10GFP+ and CT26GFP+ cells.—B16-F10 and CT26 cell lines 

were transduced with the lenti-GFP+virus FUGW (a gift from David Baltimore; Addgene, 

14883) (Lois et al., 2002), and GFPhigh-positive cells were sorted on day +5 to generate 

B16-F10GFP+ and CT26GFP+ cells. Before each experiment the percentage of GFP+ cells 

was evaluated by flow-cytometry. For lentivirus production 293T cells were transfected with 

psPAX2 (a gift from Didier Trono; Addgene, 12260), FUGW and pMD2.G (a gift from 

Didier Trono; Addgene, 12259) at a 10:10:1 ratio using TransIT-LT1 reagent (MIRUS, 

MIR2300) according to the manufacturer’s guidelines.

In vivo depletion of CD4+ and CD8+ T cells.—For depletion of CD4+ and CD8+ T 

cells 400μg/dose of Invivo MAb anti-mouse CD8a (BioXCell; 2.43; BE0061), 400μg/dose 

Invivo MAb anti-mouse CD4 (BioXCell; GK1.5; BE0003–1) or 400μg/dose rat IgG2b 

isotype control (BioXCell; LTF-2; BE0090), were i.p injected every 3 days, starting from 

day +7 post tumor transplantation until day +21. Depletion efficacy was evaluated on day 

+14 by flow cytometry analysis.

Ex vivo culture and live/dead imaging of Murine-derived Organotypic Tumor 
Spheroids (MDOTS).—CT26GFP+ tumors from untreated BALB/cJ mice were harvested 

on day +14 following implantation. MDOTS (S2 fraction; 40–100μm) isolation was 

performed as previously described (Jenkins et al., 2018). Following isolation, MDOTS were 

resuspended in type I rat tail collagen and the spheroid-collagen mixture was injected into 

the center gel region of the 3D microfluidic culture device (10μl per AIM device). After 

incubation (30 min, 37°C in sterile humidity chambers), the collagen-MDOTS mixture was 

hydrated with media (10% FBS in RPMI) with the indicated therapeutic monoclonal 

antibodies: isotype control IgG2a (10μg/ml, BioXCell, BE0089), anti-PD-1 (10μg/ml, 

BioXCell, BE0146), anti-IFNγ (10μg/ml, BioXCell, BE0054), and anti-CD8a (10μg/ml, 

BioXcell, BE0004–1). For TIM3/CD39 subpopulation studies, sorted CD8+ double-positive 

derived from the S3 (<40μm) MDOTS fraction (DP; CD39+TIM3+), double-negative (DN; 

CD39−TIM3−) and mixed (1:1 mixture of DP and DN cells) populations were pelleted and 

resuspended in MDOTS/collagen mixture at an estimated effector:target (E:T) ratio of ~1:3–

1:4 (based on estimated ~10,000 cells per device). MDOTS were cultured in the DAX-1 3-D 

cell culture chip from AIM Biotech, as described (Jenkins et al., 2018). On day +5 live/dead 

fluorescence staining was performed as previously described (Jenkins et al., 2018) with the 
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following modifications. After incubation with Hoechst/PI (40 min, 37oC, 5% CO2) images 

were obtained. Image-capture and analysis were performed using a Nikon Eclipse 80i 

fluorescence microscope equipped with Z-stack (Prior), motorized stage (ProScan) and 

ZYLA5.5 sCMOS camera (Andor) and NIS-Elements AR software package. Live/dead cell 

quantification was performed by measuring total cell area of each dye in GFP-positive CT26 

cells.

CFSE labeling and ex vivo proliferation assay.—Single cell suspensions (10×106) of 

digested B16-F10GFP+ tumors isolated on day 14 post implantation (from POM-1 treated 

and untreated mice) were incubated with PBS (without Ca2+ and Mg2+) containing 5μM 

CFSE (Biolegend, 423801) for 10 min at 37°C. Heat inactivated fetal calf serum (FCS) was 

then added for 1 min, and cells were washed three times in RPMI + 10% FCS. CFSE-

labeled cells (3×105) were seeded in triplicates in a 96-flat bottom plate with or without the 

presence of 1μg/ml anti-CD3/CD28 antibodies (Biolegend, 100314 and 102112) for 72h. 

The number of cell divisions of Thy1.2+CD8+ cells was determined by flow-cytometry 

analysis.

Intra-tumoral ATP level measurements.—Intra-ATP levels were measured 

immediately either in total single cell suspensions of digested B16-F10GFP+ tumors or sorted 

B16-F10GFP+ cells (1×105), isolated from POM-1 treated and untreated mice on day 14, 

using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, G7571) according to 

the manufacturer’s guidelines. ATP levels were measured (in triplicates) using the Synergy 

H1M plate reader (BioTek), and its concentration was calculated using an ATP standard 

curve.

ATAC-seq tagmentation.—Methods for tagmentation are as previously reported (Corces 

et al., 2016). Briefly, 5,000–10,000 cells were cell sorted into RPMI containing 10% FBS, 

1% Pen/Strep, 1% L-Glutamine, and 1% HEPES. The cells were then centrifuged at 500xg 

at 4°C for 10 minutes, the supernatant aspirated, and resuspended in tagmentation mixture 

(25 μl tagmentation buffer (Illumina, FC-121–1031), 2.5 μl TBE (Illumina, FC-121–1031), 

0.5 μl 1% digitonin (Promega, G9441), and 22 μl H2O). The cells were then incubated at 

37°C in a thermomixer, mixing at 300 RPM for 30 min. Following tagmentation, the sample 

was immediately purified via minElute PCR cleanup column (QIAGEN, 28006), and eluted 

in 10 μl. The tagmented DNA was then PCR’ed using Nextera indexing primers with 

sequencing adapters for 5 cycles in a 50 μl reaction. 5 μl of the reaction was then used for 

qPCR to determine the remaining number of PCR cycles required (as determined by the 

cycle number of each sample when it reaches 1/3 the fluorescence threshold), followed by 

PCR of each individual sample according to this cycle number. The samples were purified 

using 1.5X Agencourt AMPure XP beads (A63880), followed by two 70% EtOH washes, 

and elution of DNA in 15 μl buffer EB (QIAGEN, 19086). Each sample was quantified by 

Qubit, and measured for fragment lengths on a Tape Station. The samples were pooled and 

sequenced on an Illumina Nextseq 500 using 75 bp PE reads to a sequencing depth of 30 

million reads per sample.
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Whole exome sequencing (WES).—WES of DNA from tumor and matched normal 

blood samples was done as previously described (Sade-Feldman et al., 2017). Briefly, 250–

500ng of extracted DNA, using Qiagen AllPrep DNA/RNA Mini Kit (cat# 80204), was used 

as input for library preparation. Sample were barcoded using unique 8 base molecular 

barcodes followed by a library enrichment process, and all libraries above 40ng/μl were 

considered acceptable for solution-phase hybrid selection and sequencing. Libraries 

preparation was carried out using the SureSelect Target Enrichment System Sequencing 

Platform Library Prep v2 (Agilent Technologies, G3360–90000), according to 

manufacturer’s specifications, followed by quantification and normalization using 

PicoGreen to ensure equal concentration. Libraries were then quantified using qPCR (KAPA 

Biosystems, KK4832), denturated with 0.2M NaOH and diluted to 20pM using 

hybridization buffer (Illumina). Cluster amplification was performed according to the 

manufacturer’s protocol (Illumina), HiSeq 2500 v4 cluster chemistry and flowcells, as well 

as Illumina’s Multiplexing Sequencing Primer Kit. Libraries were sequenced using the 

HiSeq 2500 v4 Sequencing-by-Synthesis method (paired end 76bp reads) followed by 

analysis with RTA v.1.12.4.2. The minimum depth of coverage was 150X and 80X for tumor 

and normal samples respectively. All procedures were done at the Genomics Platform of the 

Broad Institute of Harvard and MIT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA-seq data generation and processing.—FASTQ files were aligned 

to the NCBI Human Reference Genome Build GRCh37 (hg19) using STAR (Dobin et al., 

2013). Expression levels were quantified as Transcripts Per Million (TPM) and were 

computed by the RSEM tool (Li and Dewey, 2011). For each cell, we used three quality 

control (QC) measures. We excluded: (1) cells with a zero expression of both CD45 and 

CD3E; (2) cells expressing less than 1000 genes; (3) cells with an average expression of 

housekeeping genes (Table S6), log2(TPM+1) < 2.5. For downstream analysis, we focused 

on protein coding genes (Table S6), out of which, we used the set of genes with expression 

levels log2(TPM+1) > 4.5 in at least 10 cells per sample or genes with a particularly high 

expression level (log2(TPM+1) > 12) in one or more cells, per sample.

Supervised classification of single cells to cell types.—To classify each single cell 

that passed QC to a pre-defined cell type, we performed a supervised analysis based on a list 

of known marker genes (Table S1). This was done by defining a set of genes per cell type 

which must or must not be expressed. On average, this approach led to the unambiguous 

classification of 80% of the cells. The remaining cells were then annotated using a manual 

review process. Following this step, we validated that no cell had an ambiguous 

classification (e.g., a T cell and a B cells).

Dimensionality reduction—The t-Distributed Stochastic Neighbor Embedding (t-SNE) 

method (Maaten and Hinton, 2008) was used for dimensionality reduction with the default 

perplexity parameter of 30 and initial dimension parameter of 10. Of note, t-SNE was used 

only for visualization and not for clustering, as defined below.
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Unsupervised clustering of immune cells.—To cluster all cells that passed QC we 

applied the k-means algorithm with a correlation distance metric, testing k = 3 … 15. The 

algorithm was applied using all genes with variance >6, yielding ~4000 genes. This value 

was selected based on the relation between the variance and the fraction of cells expressing 

each gene (Figure S8A). To determine the optimal number of clusters we applied the 

following steps: (1) We first examined how much of the complexity each cluster captures by 

applying the elbow method. This was done by computing the Pearson correlation matrix R 
and the distance matrix as D (1 − R). We then computed the sum of pair-wise distances 

between all cells in different clusters Disb = ∑l = 1
k ∑i ∈ cl, j ∉ cl

D i, j  and the total distance 

Dist= ∑i,j D(i,j). The ratio between these two measures V = Disb/Dist was used to estimate 

the variance explained by a given solution (Figure S8B), such that in the extreme case where 

all cells are clustered together or the case where each cell is a single cluster, this ratio would 

be 0 and 1, respectively. Exploring this ratio, we then select the solutions that are near 

plateau (k = 10, … ,15). (2) We then performed differential expression analysis (see below) 

to search for gene markers that are significantly more highly expressed in a specific cluster 

as compared to all other clusters. Then, in order avoid complex solutions, we excluded 

solutions with clusters that have too few marker genes (<20) distinguishing between them 

and the rest of the cells. (3) Finally, we performed a robustness analysis and selected the 

clustering solution with the highest median robustness score. Specifically, to determine the 

robustness of each clustering solution, we performed 100 iterations in which we randomly 

removed 10% of the cells, and re-ran the k-means algorithm and checked the stability of the 

clustering solution. We quantified the agreement of a given solution with the original one as 

the number of pairs of cells that were either clustered together, or not clustered together, in 

both solutions, divided by the total number pairs shared between the runs. This process 

yielded a median robustness measure of 0.96 for the selected = 11 (Figure S8C).

To examine if there is a significant difference between responders and non-responder lesions 

for a given cluster, we computed the fraction of cells in each lesion assigned to cluster, and 

applied the Wilcoxon rank-sum test to the corresponding values of responder and non-

responder lesions. P-values were corrected using the Benjamini-Hochberg False Discovery 

Rate (FDR) procedure and were considered significant if the FDR q-value was 0.1.

Unsupervised clustering of CD8 T cells.—To identify different CD8+ T cell clusters 

we first extracted all single-cells classified as CD8+ in our supervised analysis. Our 

clustering process for CD8+ T cells followed the exact steps described above, testing 

possible clustering solutions for k = 2, … ,13 (Figure S8D). We then further explored the 

solutions with the highest variance explained (k = 6, … ,13), and identified = 6 as the 

optimal number of clusters, with a median robustness value of 0.93 (Figure S8E). In 

addition, we note for k = 2, … ,6 solutions had a hierarchical pattern in which whenever we 

increased k, a single cluster was split into two sub-clusters (Figure S8F,G). Similar to the 

analysis of all cells, to examine if there is a significant difference between responder and 

non-responder lesions for a given cluster, we computed the fraction of CD8+ cells in each 

lesion assigned to cluster, and applied the Wilcoxon rank-sum test to the corresponding 

values of responders and non-responder lesions. P-values were corrected using the 
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Benjamini-Hochberg False Discovery Rate (FDR) procedure and were considered 

significant if the FDR q-value was ≤ 0.1.

Differential expression analysis.—In all cases, differential expression analysis was 

applied to all genes that had an average expression level log2(TPM+1) > 2 in either tested 

groups, % and %&. Then, for each gene, we count the number of cells in % and %& that 

express it with an expression level log2(TPM+1) > 2 or ≤ 2. We then apply Fisher’s Exact 

test for the corresponding 2×2 table. To identify significant differences we considered genes 

with a Bonferroni-corrected q-value ≤ 0.05 and log2(fold-change) > 0.5.

Trajectory analysis of CD8+ T cells.—To analyze the trajectory of CD8+ T cells based 

on single-cell RNA-seq expression data, we used Monocle v. 2.5.4 (Qiu et al., 2017). As 

input to Monocle’s Reversed Graph Embedding algorithm, we selected a set of 426 genes 

that was the union of the top 100 differentially expressed genes ordered by ascending q-

value (as described above) for each of the six CD8+ T cell clusters (or all such genes for two 

clusters that had fewer than 100 significant genes).

T cell Receptor (TCR) reconstruction.—We applied the MixCr tool for reconstructing 

TCRs from all identified T cells (Bolotin et al., 2015). We defined persistent TCRs as TCRs 

having an identical CDR3 sequence in both chains and were detected in baseline (pre-

therapy) and post-therapy samples from the same patient. Enriched TCRs were defined as 

TCRs having an identical CDR3 sequence in both chains and detected in the same patient at 

a single time point, or in two parallel time points (e.g., multiple biopsies collected at the 

same time point). Singlet TCRs found in only one T cell at one time point. Lastly, common 
TCRs were defined as those having an identical CDR3 sequence in both chains and detected 

in different patients. P-values were corrected using the Benjamini-Hochberg False Discovery 

Rate (FDR) procedure and were considered significant if the FDR q-value was 0.1.

ATAC-seq analysis.—Sequencing reads for each sample were aligned to hg19 using 

Bowtie 2.2.1 (Langmead and Salzberg, 2012) with a max insert size of 2000 bp. SAM files 

were converted to BAM files and sorted using Samtools 1.3 (Li et al., 2009). Duplicate (as 

defined by http://broadinstitute.github.io/picard) and mitochondrial reads were removed, and 

peaks were called, initially by making tag directories according to chromosome and then by 

finding peaks (areas with more sequencing reads than expected by chance) for each sample, 

using the “DNase” peak finding style (‘makeTagDirectory –format sam’ and ‘findPeaks -

style dnase’, Homer version 4.9) (Heinz et al., 2010). Overlapping peaks were then merged. 

The number of Tn5 transposition events (5’ ends of reads) lying within each peak were 

quantified for each sample, yielding a matrix of peaks by samples containing ATAC read 

counts. EdgeR 3.14.0 was used to call CD39+TIM3+(DP)/CD39−TIM3− (DN)-specific 

peaks, first by grouping the samples by cell type (DP and DN) and pairing the samples from 

each patient, and then using EdgeR (Robinson et al., 2010) to estimate the tagwise 

dispersion using generalized linear models (estimateGLMTagwiseDisp function). We then 

performed a likelihood ratio test to identify differential accessibility between paired samples 

from each patient (glmFit, glmLRT). We obtained the top differential peaks (topTags), 

sorting peaks by their FDR q-value. Differential peaks between DP and DN were called 
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significant if their FDR q-value was 0.01. Similar analysis was performed on the data set 

(GSE89308) from the Schietinger group (Philip et al., 2017), for the identification of unique 

peaks in PD-1high and central memory (CM) cells.

Motif analysis.—To identify TF motifs that distinguish DP- and DN-specific peaks from 

non-specific (background) peaks, each peak was scanned with the human motifs from the 

CIS-BP database (Weirauch et al., 2014), using the GOMER approach (Granek and Clarke, 

2005), yielding a binding score for each peak for each TF motif. The minimum 

hypergeometric (minHG) test was then used to gauge how well motif scores enrich DP-or 

DN-specific peaks (FDR q < 0.01) compared to background peaks, considering the top N (1 

up to 3000) highest scoring peaks. Here, background peaks included those whose ATAC DP-

vs-DN FDR was over 0.1 (i.e. not significantly DP- or DN-specific) and had an average 

count per million (CPM) greater than the minimum CPM of DP/DN-specific peaks (i.e. 

enough reads that a difference could have been detected). MinHG P-values were corrected 

by Benjamini-Hochberg FDR, counting each minHG test as independent (resulting in more 

conservative FDR q-values).

Survival analysis.—We used the TCF7+CD8+/TCF7−CD8+ ratio generated from our 

immunofluorescence analysis to split samples into two groups (ratio>1 and <1). A standard 

Kaplan-Meier survival analysis was then used to determine the association of these groups 

with survival rate. In case where two or more samples for the same patient exist, we selected 

the baseline sample for this analysis.

Mutation calling pipeline.—WES BAM files were aligned to the NCBI Human 

Reference Genome Build GRCh37 (hg19) and were checked for contamination by DNA 

originating from a different individual using ContEst (Cibulskis et al., 2011). Somatic single 

nucleotide variations (sSNVs) were then detected using MuTect (Cibulskis et al., 2013). 

Following this standard procedure, we filtered sSNVs by: (1) removing potential DNA 

oxidation artifacts (Costello et al., 2013); (2) realigning identified sSNVs with NovoAlign 

(www.novocraft.com) and performing an additional iteration of MuTect with the newly 

aligned BAM files; (3) removing technology- and site-specific artifacts using a panel of 

~7000 TCGA normal samples (PoN filtering)(Ellrott et al., 2018). Finally, sSNVs were 

annotated using Oncotator (Ramos et al., 2015).

Whole transcriptome analysis of bulk tumor samples.—We used bulk RNA-seq 

data from the Van Allen et al. (Van Allen et al., 2015) (n=37) and Riaz et al. (Riaz et al., 

2017) (n=51) datasets. To make our comparison consistent with our single cell dataset, we 

aligned the RNA-seq reads with the protocol described above and used log2(TPM+1) values 

for quantification of expression levels. To compute the bad and good signature scores we 

computed the average expression of each set of marker genes (CD8_G=34 genes, 

CD8_B=1114 genes, Table S2).

DATA AND SOFTWARE AVAILABILITY

Data availability.—Raw sequencing data (single cell RNAseq, WES and ATACseq) from 

this study have been deposited in dbGAP database (https://www.ncbi.nlm.nih.gov/
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projects/gap/cgibin/study.cgi?study_id=phs001680.v1.p1) under accession code 

phs001680.v1.p1. Processed Single cell RNAseq data discussed in this publication have 

been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series 

accession number GSE120575 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE120575). The Van Allen (Van Allen et al., 2015) bulk RNA dataset used in this 

study is available in dbGAP database under accession number phs000452.v2.p1. Data from 

Riaz (Riaz et al., 2017) and Tirosh (Tirosh et al., 2016) studies used in this paper are 

available in GEO with the accession number GSE91061 and GSE72056 for the Riaz and 

Tirosh datasets respectively. ATAC-seq data from the Schietinger group (Philip et al., 2017), 

used for the identification of unique peaks in PD-1high and central memory (CM) cells is 

available in GEO with the accession number GSE89308.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

1. Single cell RNA-seq reveals distinct CD45+ cells associated with clinical 

outcome

2. The balance between two CD8+ T cell states is linked with tumor regression

3. TCF7+CD8+ T-cell frequency in tumor tissue predicts response and better 

survival

4. Dual blockade of CD39 with different checkpoint proteins enhances 

immunity
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Figure 1. The immune landscape of tumors from patients with melanoma treated with 
checkpoint therapy.
A. Schematic of cohort. B. tSNE (t-distributed stochastic neighbor embedding) plot of all 

CD45+ cells that passed QC. Cells are colored based on 11 clusters defined by k-means 

clustering. C. Heatmap displaying scaled expression values of discriminative gene sets per 

cluster as defined in (B). A list of representative genes is shown per cluster. D. Box plots 

showing the % of cells (of all CD45+ cells) per sample for clusters that had a significant 

difference in frequency between responder and non-responder lesions. Each point represents 

a single lesion. E-G. Box plots comparing % of cells between responder and non-responder 

lesions with exhausted or activated signatures for CD45+CD3+ cells (E), B cells and 

myeloid cells (F) and memory CD8+ and CD4+ T cells (G) based on known markers (Table 

S1). Each symbol represents a single lesion. H. Heatmap displaying scaled expression 

values of genes that best discriminate between responder and non-responder lesions for all 
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CD45+ cells. Best marker genes are sorted by fold-change (Table S1). Colored circles on left 

show the cluster in which the gene is enriched. Data are represented as mean±SEM.
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Figure 2. Identification of CD8+ T cell states associated with clinical outcome.
A. tSNE plot of all CD8+ T cells collected in this study, with cells colored based on 2 

clusters found by k-means clustering. B. Heatmap showing scaled expression values of 

discriminating genes for same 2 clusters as in (A). Numbers on right margin indicate number 

of genes shown in heatmap of the total differential per cluster. C. % cells in CD8_G or 

CD8_B clusters (of all CD8+ T cells) per sample, in responder and non-responder lesions. D. 

log10 ratio of number of cells in CD8_G compared to CD8_B per sample for responder and 

non-responder lesions. Circles outlined in white represent samples with defects in antigen 

presentation or IFNγ pathways. E. Heatmap displaying scaled expression values of 

discriminative gene sets from all CD8+ T cells between responder and non-responder 

lesions. Top marker genes are shown for each group (Table S2). Top bar shows mapping of 

each cell to CD8_G and CD8_B. Data are represented as mean±SEM.
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Figure 3. Immunofluorescence staining and automated image analysis for the quantification of 
CD8+ T cells expressing TCF7.
A. Schematic illustration of the immunofluorescence (IF) analysis pipeline. B. 
Representative images from the multiplex IF of tissue stained for nuclei using DAPI (blue), 

CD8 (green) and TCF7 (red) from a responder and non-responder patient prior to therapy 

with anti-PD-1. Original magnification X400. C. % of CD8+TCF7+ and CD8+TCF7− cells 

showing each sample. D. % TCF7+ and TCF7− cells, out of all CD8+ T cells, per sample, 

with clinical status above bars. E. TCF7+CD8+/TCF7−CD8+ cell number ratio. F. % of 

CD8+cells out of all nuclei. ns-non-significant. G. Receiver operating characteristic (ROC) 

analysis was constructed to evaluate the prognostic power of the TCF7+CD8+/TCF7−CD8+ 

ratio. The area under the ROC curve (AUC) was used to quantify response prediction. H. 
Kaplan-Meier survival curve for 33 patients treated with anti-PD-1 therapy. Patients were 

divided into two groups based on TCF7+CD8+/TCF7−CD8+ ratio (n=16 >1; n=17 <1) from 

IF. Data are represented as mean±SEM.
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Figure 4. CD8+ T cell state heterogeneity and its association with clinical response.
A. tSNE plot of all CD8+ T cells collected in this study, with cells colored based on 6 

clusters found by k-means clustering. B. Heatmap showing scaled expression values of 

discriminating genes for same 6 clusters as in (A). Numbers on right margin indicate number 

of genes shown in heatmap of the total differential genes per cluster. Bottom bar depicts 

mapping of each cells to CD8_G and CD8_B, respectively. C. Hierarchical tree structure for 

6 clusters, with each split showing genes up-regulated in the corresponding cluster relative to 

the rest of the cells found in the last common ancestor. D. % of cells in CD8_1 to 6 clusters 

(out of all CD8+ T cells). E. tSNE plot of CD8+ T cells with coloring of CD8_5 according to 

TCF7 expression upper panel and TCF7 and GZMB expression, lower panel. F. Trajectory 

analysis for the 6 CD8+ T cells clusters. Cell expression profiles in a two-dimensional 

independent space. Solid black line indicates the main diameter path of the minimum 

spanning tree (MST) and provides the backbone of Monocle’s pseudotime ordering of the 
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cells. Each dot represents an individual cell colored by cluster (left plot) or by pseudotime 

(right plot). Data are represented as mean±SEM.
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Figure 5. Discriminating exhausted from memory cells using TIM3 and CD39.
A. Heatmap showing scaled expression values of discriminative gene sets between CD8_2 

(exhaustion-like) and CD8_4+6 (memory/effector-like) using original unsorted, and sorted 

(CD39+TIM3+ and CD39−TIM3−) cells. B. Heatmap of scaled expression values of 

discriminative gene sets between sorted CD39+TIM3+CD8+ and CD39−TIM3−CD8+ T cells. 

Colored bars above heatmap show the CD8+ cluster (as in Figure 4A) in which the gene is 

enriched C. Representative flow cytometry plots for intracellular staining of IL-2, IFNγ and 

TNFα in CD39− and CD39+ cells, with quantification below for 12 patients. Data were 

combined from 2 replicate experiments. D. Quantification of live/dead cells based on 

staining of CT26GFP+ MDOTS on day 5 of ex vivo culture. One of two independent 

experiments is shown, with n=3 replicates per group per experiment. 2-way ANOVA, 

Tukey’s multiple comparisons test. E. A schematic summary of the therapy regimen used in 

the transplantable B16-F10 mouse model. F. Tumor volumes for all 4 groups. G. Survival of 
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B16-F10 tumor-bearing mice treated with CD39i in combination with anti-TIM3. H. Tumor 

volumes for untreated, anti-PD-1, CD39i and anti-PD-1+CD39i treated groups. I. Survival 

of B16-F10 tumor-bearing mice treated with CD39i + anti-PD-1. J. Tumor volumes for 

untreated, anti-PD-1/CTLA4, CD39i, anti-PD-1/CTLA4+CD39i. K. Survival of B16-F10 

tumor-bearing mice treated with CD39i and anti-PD-1/CTLA4. Data are represented as 

mean±SEM. For in vivo mouse tumor models one of two independent experiments is shown.
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Figure 6. Differential chromatin accessibility in CD39+TIM3+ and CD39−TIM3− cells.
A. Schematic of ATAC-seq analysis performed on sorted CD39+TIM3+ and CD39−TIM3-

cells. B. Heatmap describing averaged scaled expression values of differentially expressed 

transcription factors for sorted CD39+TIM3+ and CD39−TIM3− cells. C. Heatmap 

describing patient specific (n=5) differentially accessible regions (FDR<0.01) in 

CD39+TIM3+ and CD39−TIM3− sorted populations. D. ATAC-seq traces for open chromatin 

regions near selected genes in CD39+TIM3+ (orange) and CD39−TIM3− (blue) cells. E. 
Graph depicting enrichment of TF motifs based on open chromatin specific to CD39−TIM3− 

(blue) vs. CD39+TIM3+ (orange) cells (x-axis), and differential expression of TFs (y-axis). 

F. Left, enhancer binding sites for BATF and TCF7 near the listed genes. Significant genes, 

red; non-significant, white. The same genes are also differentially expressed between 

Sade-Feldman et al. Page 35

Cell. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD39+TIM3+ cells and CD39−TIM3− cells. Right, the number of genes that are 

differentially expressed with a corresponding differential peak containing BATF or TCF7 is 

shown.
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Figure 7. TCR analysis and its relationship with cell state and clinical outcome.
A. Schematic illustration of the TCR analysis pipeline. B, E, H, K. tSNE plot delineating 6 

CD8+ T cell clusters and persistent (B), enriched (E), singlet (H) and common (K) TCRs. 

Bar plot summarizes fraction of TCRs per patient across the different clusters between 

responder (R) and non-responder (NR) lesions. C, F, I, L. Fraction of persistent (C), 

enriched (F), singlet (I) and common (L) TCRs per patient, aggregated for CD8_1,2,3 and 

CD8_4,5,6 clusters for R and NR lesions. D, G, J, M. Fraction of persistent (D), enriched 

(G), singlet (J) and common (M) TCRs in each cluster, out of total persistent, enriched, 

singlet and common TCRs. Data are represented as mean±SEM.
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