
Novel Pediatric Automated Respiratory Score Using Physiologic 
Data and Machine Learning in Asthma

Amanda I. Messinger, MD1, Nam Bui, BS2, Brandie D. Wagner, Phd3, Stanley J. Szefler, 
MD1, Tam Vu, PhD2, and Robin R. Deterding, MD1

1Dept of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, The 
Breathing Institute

2Dept of Computer Science, University of Colorado Boulder,

3Dept of Biostatistics and Informatics University of Colorado School of Public Health,

Keywords

asthma; clinical prediction; machine learning

Introduction:

The use of pediatric clinical scoring systems in clinical care and research has exploded in the 

last decade. Clinical scoring systems appeal to multiple stakeholders because they are 

quantitative, can be validated and improve patient outcomes.1–4 Pediatric asthma is no 
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exception; as the most common chronic disease of childhood, development of clinical scores 

and guidelines have helped to streamline and improve pediatric asthma care delivery.5

Many hospitals have developed clinical care guidelines for management of acute asthma 

exacerbations built around manual, provider determined asthma severity scores. Examples 

include the Pediatric Asthma Score (PAS) and pediatric respiratory assessment measure 

(PRAM). These scores contain similar elements but are customized to individual hospitals.
6–8 The use of these scores to guide inpatient treatment of acute asthma exacerbations has 

improved patient outcomes including reduced length of stay, decreased admission rates and 

decreased medication burden in both the emergency department and inpatient wards5; 9–11.

Respiratory scores like PAS contain subjective elements like auscultation, have limited 

interrater reliability, and are less sensitive in older children and adolescents. They are used 

intermittently and depend on frequent reassessment, increasing the burden on staff.12 The 

provider-determined PAS score used in our institution includes qualitative measurements 

(Figure S1,13). Despite being useful on the wards, PAS scores are measured inconsistently in 

our ICU and not regularly used to make care decisions.

There is significant variation in care of PICU asthma patients, both within and across centers 

and hospitals.14 Despite the existence of stepwise guidelines for outpatient asthma 

management 15, there are no national or international guidelines to direct severe acute 

asthma exacerbation management in the pediatric ICU. Validated scores for asthma severity 

can be useful in clinical and quality research on asthma therapies such as intravenous 

bronchodilators and use of non-invasive ventilation.

The objective of this study was to produce a novel, automated acute asthma severity score 

using machine learning. Machine learning is built on a foundation of mathematics, logic, 

probability, neuroscience and decision theory. These foundational building blocks are used 

to generate computer algorithms that can keep a record of the relative strength of 

associations between data elements (similar to memory) through repeated training sessions. 

As a result, machine learning can identify patterns in complex data and then uses those 

patterns to construct models that can predict outcomes without relying on explicit human 

generated programming code. Supervised learning is a subfield of machine learning based 

on tools of classification and regression; it depends on input of a labeled training data set to 

help the computer “learn” relationships. That knowledge is then applied to an independent 

testing data set. Accuracy of outputs can then be analyzed. Artificial neural networks are a 

specific set of algorithms modeled after the structure of the human brain, designed to cluster 

and classify data and subsequently produce novel outputs.16

We hypothesized that application of machine learning algorithms to passively collected vital 

sign data (heart rate, respiratory rate, oxygen saturation) in critically-ill pediatric asthma 

patients can generate an automated respiratory severity score (pARS) that could eventually 

replace PAS. Once created, the pARS can be validated and applied prospectively in the 

PICU, wards and emergency department to aid in clinical research and provider decision 

support without increasing the burden of staff or utilizing subjective measures.
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Methods:

This was a single center study conducted at a large quaternary children’s hospital. The 

Colorado Multiple Institutional Review Board (COMIRB 16–1359) approved this study. 

Eligible patients were identified during a 1-year period, January 1, 2016 to January 1, 2017 

using data collected and stored during their clinical care.

Patient selection:

Inclusion criteria included patients admitted to the PICU age 2–18 years old with diagnosis 

codes for status asthmaticus across all severities. Data from patients who had ICD 9/ICD 10 

procedure codes within the encounter for intubation, or received continuous invasive 

mechanical ventilation were excluded. Diagnosis codes for other potentially confounding 

chronic respiratory and neurologic conditions also disqualified patients (Table S1 and S2).

Data collection:

Demographic variables and time stamped clinical data including charted PAS score, 

respiratory support and medications were obtained from the electronic health record (EHR). 

Using bed numbers and admission/discharge time stamps, each patient’s continuous vital 

sign information was manually extracted from a central research database. This database 

stores vital sign data (numeric and wave form) from PICU patients attached to Phillips 

monitors. Data extracted for this study included time-stamped values for heart rate, 

respiratory rate, and pulse oximetry.

Data preparation:

The EHR respiratory flow sheet data were aligned with vital sign data using date and time 

stamps for PAS score in Matlab (version R2017a). The recorded PAS was used as an 

outcome to train the supervised machine learning models. Patient data with complete records 

for 3 parameters (heart rate, respiratory rate and pulse oximetry readings) overlapping with 

PAS time points were included. Patient data with incomplete alignment were excluded to 

create the final study cohort of 128 patients. For each PAS score recorded in the medical 

record, 20 minutes of vital sign measurements were associated with one PAS score via a 

standard one-to-many matching strategy to create discrete time periods for algorithm 

training (Figure S2). To control for age-based variability in heart rate and respiratory rate, z-

scores for each patient’s heart rate and respiratory rate were calculated using patient age and 

normalized percentile equations published by Bonafide et al. 2013.17 To exclude readings 

likely due to artifact, thresholds for heart rate, respiratory rate and oximetry values were also 

applied (see Additional Methods).

Statistical analysis:

Patients were randomly assigned into a training (80%) or testing (20%) set (balanced 

validation) and compared to ensure balance by demographic criteria and clinical criteria. A 

separate randomized 10-fold cross validation was conducted to further validate findings.
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Machine learning:

Supervised machine learning techniques use input and output data to find patterns and make 

predictions. A cascaded artificial neural network was used to predict a respiratory score 

ranging from 1–15, based on training inputs. Neural networks depend on linking “neurons” 

or multiple learning units to detect patterns in data. In comparison with the conventional 

feed-forward neural network, the cascaded network structure is more advanced. It augments 

a set of cascaded paths to direct the nodes in the preceding and current layers to be the input 

into the next layer (Figure S3). The cascaded artificial neural network included 8 hidden 

layers with 3 to 50 neurons in each layer. Machine learning regression models based on 

Normal and Poisson distribution were used for comparative purposes. Accuracy of machine 

learning models was assessed by comparison of the median absolute error for each of the 

testing sets. Matlab (version R2017a) was the program used to create the machine learning 

algorithm.

Results:

The health record query returned 186 eligible patients admitted to the PICU for status 

asthmaticus without potential confounding diagnosis as described in our exclusion criteria. 

Of the 186, 21 patients were excluded due to lack of stored vital sign data during the 

admission and an additional 37 patients were excluded due to lack of PAS scores that 

aligned with available extracted vital sign data. The remaining N=128 patients were included 

in our randomization and subsequent machine learning analysis (Figure 1). 50.8% of the 

inclusion cohort were male, with 34.4% Hispanic/Latino ethnicity and 19.5% identifying as 

African American/Black. The median age was 7.9 years old and the median length of 

hospital stay was 79 hours (Table 1).

In our training data we had 4943 original PAS scores or 12.5 manual scores calculated per 

day of hospitalization. The median (range) of PAS scores was 7 (5 to 15). Plots of PAS score 

vs heart rate z-score, PAS score vs respiratory rate z-score show a positive relationship 

(Figure S4).

The training (n=102) and testing (n=26) patients in our balanced set showed comparable 

distributions of demographic and clinical factors (heart rate z-score, respiratory rate z-score 

and PAS scores) (Table 1). The balanced training set (n=102 patients and 37,084 data points) 

was reduced slightly to 36,321 data points after application of the artifact thresholds for age 

adjusted heart rate and respiratory rate. For the 10-fold cross validation, the number of data 

points included in each fold of training varied from ~34,000 to 38,000.

Based on comparison of median absolute error for the balanced testing set for each of the 

machine learning models, the cascaded artificial neural network with 8 hidden layers trained 

with the balanced group yielded the smallest median absolute error (MAE) of 1.21. The 

median absolute errors across the balanced group Poisson and Normal models were 1.24 and 

1.25 respectively. The Poisson and Normal models each yielded slightly higher median 

absolute errors for the extreme values of the PAS scores (Figure 2). The most accurate 

predictions occurred in the mid-range values of 6–9, where the most training data existed 

(Figure 2).
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In our asthma clinical care guidelines, 2- point discrimination on the PAS scale is a clinically 

relevant range for guiding care. Thus, we also evaluated pARS predictability in the +/− 2 

point range. Specifically, 80% of the pARS scores produced by the ANN algorithm are 

within +/− 2.10 of the recorded PAS for the balanced testing set. The results from the 10-

fold cross validation are similar (Figure S5).

The pARS values also aligned well with PAS when mapped over time across the course of 

individual patient encounters (Figure 3).

Discussion:

We successfully created pARS, a novel, pediatric automated asthma severity score, using 

physiologic data and machine learning. Using an artificial neural network trained with 3 

vital sign parameters, the pARS was well within 2 points of recorded PAS scores based on 

analysis of median absolute error. This level of accuracy makes the automated score non-

inferior to the manual Pediatric Asthma Score (PAS) used at our institution.

The pARS was most accurate in the mid-range of asthma severity between 6–9. This 

severity range is when critical decisions about patient care (transfer to ICU vs floor) are 

made, increasing the potential positive impact of an objective decision support tool that uses 

pARS.

This work is foundational in its use of the secondary electronic medical data merged with 

passive vital sign monitoring information collected in the course of patient care to create an 

automated pediatric respiratory score. The strengths of this machine score are its objectivity, 

and that it uses data collected automatically from monitors already in use. It also 

incorporates age-based parameters. It is unique in its ability to continuously monitor acute 

changes in asthma status with a computed score.

Because it is objective, automated and can be continuously generated, this score has 

potential to help standardize acute pediatric asthma care in the PICU. Studies of PICU 

management of severe asthma across pediatric hospitals and even within a single institution 

have revealed marked variability in practice. 14; 18 While there are global treatment 

guidelines for asthma in the primary care and emergency room setting 15; 19, acute care of 

life threatening pediatric asthma, particularly in severe exacerbations treated in PICU, is not 

standardized. Respiratory scoring systems for pediatric asthma have streamlined and 

improved inpatient care, but there is inconsistent use of any such scoring system in the 

PICU. Bartlett et al. implemented and studied a successful clinical care guideline in the 

PICU which included a bronchodilator weaning pathway based on a subjective staff 

generated respiratory score called the Modified Pulmonary Index Score (MPIS) and showed 

decreased length of stay in the hospital overall.5 An automated, quantitative score to replace 

these respiratory scores is appealing to critical care providers who are concerned about 

evidence based clinical decision making, interrater reliability and staff efficiency.

Currently no automated asthma severity score has been published that is sensitive to changes 

in acute respiratory status. Existing work in pediatric asthma prediction has focused on 

predicting the occurrence of asthma exacerbations and asthma control deterioration.20–24. 
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Other machine learning and predictive analytic work in pediatrics has targeted sentinel 

events such as sepsis, respiratory failure requiring intubation and cardiac arrest as outcomes. 

The frequency of these events is low and thus requires a large patient population and 

significant monitoring time to assess validity. The pARS score can be validated over a 

shorter time frame and in smaller populations because it assesses and learns the continuum 

of disease severity and can be associated with more common outcomes, for example 

decreasing length of stay in PICU rather than leveraging outcomes such as respiratory arrest 

and death that are discrete rare events.

Limitations of this study include incomplete data from the clinical record and vital sign 

database, which decreased our inclusion cohort. While data fidelity issues are innate to using 

electronic clinical record data for secondary research investigation, this highlights the 

importance of considering issues of data input and integrity as we build our health data 

systems, particularly as it becomes imperative to merge and map multiple data sources25. 

Due to the practice patterns in our PICU the PAS score is not recorded as frequently as on 

the inpatient floors which limited data analysis, further emphasizing the need for an 

automated score. Additionally, our algorithm training was restricted to the specific PAS 

score used at our center, and therefore may not generalize to systems that use other versions 

of manual clinical scoring. We were able to build this score using a heterogenous pediatric 

patient population at altitude (~5,280 ft) seen at an urban quaternary care center. All patients 

included were on oxygen while in the PICU as a part of standard of care. This introduces 

variability into the pulse oximetry data incorporated into the algorithm. Future prospective, 

multi-center study is needed to further elucidate the impact of oxygen therapy on vital sign 

parameters.

Our study algorithm was also not designed to include other clinical features or risk factors 

that can influence asthma severity. For example, acute bronchodilator use, effect of non-

invasive ventilation, as well as markers of chronic asthma severity including controller 

medication use and adherence, atopy, prior hospitalization history, recent exacerbations, 

symptom surveys, baseline FEV1%, environmental exposures could all impact pARS 

predictive ability. Prospective collection of some of these parameters in future studies may 

strengthen our model and allow further personal risk stratification and treatment algorithms. 

Work by Luo et al. in 2015 was able to merge 2 years of pediatric asthma personal 

symptoms data collected via a mobile application with patient attributes and environmental 

variables to successfully predict a child’s asthma control deterioration 1 week ahead.23

Our study analyzed vital sign parameters measured at 1 min intervals. Because of limited 

computing power and data storage and access limitations, we were not able to analyze the 

dense data contained in these vital sign waveforms. The ability to apply deep or 

unsupervised machine learning to high data density vital sign wave forms has enormous 

predictive potential. For example, trends in heart rate variability have been used to predict 

neonatal sepsis and arterial waveforms analyzed to predict hypovolemic shock.26–28 

Advances in mobile and hospital-based monitoring and cloud based analytics are 

innovations that will help facilitate research and clinical application of high resolution 

physiologic data, conquering current challenges of poor fidelity data due to artifact and 

variable collection and the size of the data files.
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Any decision support tool is only useful if providers trust and utilize it. Implementation and 

adoption of this tool in the PICU will require significant changes to work flow with patients 

and use of the EHR. Significant quality improvement and culture change work will be 

needed to adopt this scoring system as a clinical decision-making tool.

Given these limitations and context, the next steps are to work prospectively to validate 

pARS as a research instrument and associate it with meaningful clinical outcomes first in 

our institution, and then more broadly. Technologic innovation addressing issues including 

integration of data sources and the EHR, computing power and speed to run machine 

learning methods continuously will be required to translate this score into a clinician 

decision support tool. With prospective validation, real time implementation and work flow 

adoption, we believe a score like pARS can drive higher quality care, improve patient flow, 

decrease length of stay and medication burden (facilitate timely weaning of continuous 

medications).

Conclusion:

This study shows that creation of an automated pediatric acute respiratory score (pARS) 

leveraging machine learning techniques such as artificial neural networks to analyze simple 

vital sign parameters and limited clinical data is feasible. The potential impact of such a 

score to improve and standardize PICU management of acute asthma exacerbation is 

significant. Our study revealed multiple barriers to integration of disparate clinical data 

sources and was also weakened by incomplete EHR and monitor data, both common 

challenges in studies using secondary retrospective queries on data produced by routine 

clinical practice. Further prospective validation of our algorithm is imperative to improve 

data integrity, refine and expand contributing features, and assess impact of pARS on 

clinical outcomes including length of stay, and medication burden and operational impacts 

such as staff efficiency.
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Figure 1: 
Consort diagram illustrating the cohort used for analysis
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Figure 2: 
Absolute error of pARS plotted at each PAS value for the ANN, Poisson and Normal 

Models in the balanced test set. The distribution of the absolute errors are represented using 

box plots, the boxes extend to the 25th and 75th percentiles, the median values are indicated 

with a line inside the box and means are denoted with a large circle. The whiskers extend to 

1.5 times the interquartile range and values outside of that are indicated with points. A 

reference line at 2 is plotted. A histogram of the PAS scores is displayed at the bottom of the 

figure.
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Figure 3: 
pARS scores (grey lines) overlaid on PAS scores (thick black lines) plotted over time for 4 

example subjects.

Messinger et al. Page 12

Pediatr Pulmonol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Messinger et al. Page 13

Table 1:

Cohort Description and Demographics, Distribution of Demographics Within Balanced Testing and Training 

Sets, Reported Race and Ethnicity

N (%) or median (IQR) Full cohort (n = 128) Training
(n = 102)

Test
(n= 26)

Sex= male 65 (50.8%) 50 (49.0%) 15 (57.7%)

Age (years) 7.9 (4.4 – 11.4) 7.6 (4.0 – 11.4) 9.0 (5.4 – 11.4)

Hispanic or Latino Ethnicity 44 (34.4%) 34 (33.3%) 10 (38.5%)

Race

White 66 (51.6%) 51 (50.0%) 15 (57.7%)

Black/African American 25 (19.5%) 19 (18.6%) 6 (23.1%)

Other
* 37 (28.9%) 32 (31.4%) 5 (19.2%)

Length of Stay (hours) 79 (42 – 117) 71 (39 – 112) 85 (50 – 138)

Max PAS score 10 (9 – 12)  9 – 12)  11 (10 – 12)

PAS score, median (range) 7 (5 – 15)  7 (5 – 15)  8 (5 −13)

*
Other race includes: American Indian/Alaska Native (n = 1), Asian (n = 1), Native Hawaiian/Other Pacific (n = 1), Unknown/Not Reported (n = 

3), Other (n = 23) and More than one Race (n = 9)
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