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Stochastic search and joint fine-mapping increases
accuracy and identifies previously unreported
associations in immune-mediated diseases
Jennifer L. Asimit 1, Daniel B. Rainbow 2, Mary D. Fortune 1, Nastasiya F. Grinberg 3,

Linda S. Wicker 2 & Chris Wallace 1,3

Thousands of genetic variants are associated with human disease risk, but linkage dis-

equilibrium (LD) hinders fine-mapping the causal variants. Both lack of power, and joint

tagging of two or more distinct causal variants by a single non-causal SNP, lead to inac-

curacies in fine-mapping, with stochastic search more robust than stepwise. We develop a

computationally efficient multinomial fine-mapping (MFM) approach that borrows informa-

tion between diseases in a Bayesian framework. We show that MFM has greater accuracy

than single disease analysis when shared causal variants exist, and negligible loss of precision

otherwise. MFM analysis of six immune-mediated diseases reveals causal variants unde-

tected in individual disease analysis, including in IL2RA where we confirm functional effects of

multiple causal variants using allele-specific expression in sorted CD4+ T cells from

genotype-selected individuals. MFM has the potential to increase fine-mapping resolution in

related diseases enabling the identification of associated cellular and molecular phenotypes.
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The underlying genetic contribution to many complex
diseases and traits has been investigated with great success
by genome-wide association studies (GWAS). Various

approaches have identified thousands of variants associated with
a spectrum of diseases. In particular, much progress has been
made in the genetics of immune-mediated diseases (IMD),
revealing a complex pattern of shared and overlapping genetic
etiology1,2.

Fine-mapping—the process of distinguishing causal genetic
variants from their neighbours—is an essential step to enable the
design of functional assays required to understand the mechan-
ism by which the region impacts disease risk, but it is complicated
by linkage disequilibrium (LD)3. The problem is often approa-
ched through stepwise regression4,5, which assumes that statis-
tical inference of the best joint model (i.e. a model with multiple
causal SNPs) can be derived by starting with the most
significant SNP, then conditioning on this and adding the next
most significant, continuing this conditioning until no con-
ditionally significant SNPs remain. It has been noted that the SNP
with the smallest p-value need not be causal, especially if it is in
LD with two causal SNPs6. Alternative Bayesian fine-mapping
methods have been developed, which use a stochastic search
instead of stepwise search7–9. Stepwise and stochastic search
results may disagree9 and although stochastic search generally
demonstrates improved accuracy10 these techniques have not yet
been widely adopted.

Here, we systematically compare stepwise and stochastic
approaches by application to dense genotype data for six IMD,
aiming to address the frequency and causes of disagreement
between results. We find that stochastic search solutions are more
likely to be correct than stepwise search results when sample sizes
are large, but that they can face similar issues to stepwise searches
when sample sizes are small. We also observe a striking sharing of
causal variants between different IMD, consistent with previous
reports1,2, which motivates us to propose a Bayesian multinomial
stochastic search method, in which multiple related diseases can
be simultaneously fine-mapped. This allows us to borrow infor-
mation between diseases and achieve correct fine-mapping solu-
tions at smaller sample sizes than when considering individual
diseases alone. We show that posterior probabilities under our
proposed model can be decomposed into quantities available
from single disease analyses, allowing it to be applied without
excessive additional computational overhead.

Results
Stochastic and stepwise search differences in 10% of regions.
We systematically applied stepwise and stochastic search fine-
mapping to dense genotyping data from ImmunoChip studies of
six IMD: type 1 diabetes (T1D)11, multiple sclerosis (MS)12,
autoimmune thyroid disease (ATD)13, celiac disease (CEL)14,
juvenile idiopathic arthritis (JIA)15 and rheumatoid arthritis (RA)
16 (sample sizes given in Supplementary Table 1) in 90 densely
mapped regions with at least one associated disease (Supple-
mentary Data 1), 204 disease-region combinations in total.
Results are given in Supplementary Data 2–3. For RA and CEL,
we performed parallel analyses in UK-only and UK+ interna-
tional samples (iRA and iCEL, respectively).

Unlike stepwise search which produces a single best model,
stochastic search results are a posterior probability distribution
across typically thousands of potential causal variant models. To
make these more interpretable, SNPs in high LD which meet the
criteria of substitutability (see Methods) were grouped. The
identification of SNP groups is a feature of stochastic search—
generally, SNPs in a group have high LD and similar evidence for
association, such that a single candidate causal variant is not

statistically distinguishable within the group. When we discuss a
SNP group model, e.g. model A+ B, we mean the collection of
models that include exactly one SNP from group A and exactly
one SNP from group B, and no others. We consider posterior
support for each grouped model (GPP) as the sum of posterior
probabilities overall SNP models in that group when interpreting
the stochastic search results. SNP group membership is shown in
Supplementary Data 3.

While one of the strengths of Bayesian methods is that multiple
competing models can be identified with posterior support for
each, for the purposes of comparing stochastic search and
stepwise search results, we chose to focus on discrepancies
between the best models chosen for each. In all regions, the model
preferred by stochastic search either had equal or better Bayesian
Information Criterion (BIC) and equal or larger number of
variants compared to the model chosen by stepwise search
(Supplementary Fig. 6). For 16 regions (18 disease-region pairs)
the stepwise model was nested in that of stochastic search
(treating SNPs in the same SNP group as equivalent; Supple-
mentary Table 2). In six regions (6 disease-region pairs) there
appeared to be two separate signals, both weak (2 × 10–10 < p <
4 × 10−6 by single SNP logistic regression) with stochastic search
posterior support fairly evenly shared between the two
SNP groups, and the SNP selected by stepwise search falls in
the group with slightly less posterior support (Table 1). In a
further four regions (five disease-region pairs) we found
non-nested stochastic/stepwise mismatches, which could not be
explained simply.

Joint tagging of stochastic search models by stepwise SNPs. We
investigated these five mismatch cases further, both mathemati-
cally and using simulation, hypothesising that they may reflect
cases where the SNP with smallest p-value acts to tag both of two
distinct causal variants17. We walk through these results using the
example of ATD in a chromosome 10p region. Haplotype ana-
lysis, which estimates effects for all observed combinations of
alleles across these three SNPs, illustrates how the minor allele of
stepwise search-selected SNP rs706779 (a member of group J)
tends to be carried together with the minor alleles of stochastic
search-selected SNPs rs61839660 (group A) and rs11594656
(group C) (Fig. 1a). Considering the haplotypes formed from
rs61839660/A, rs706779/J and rs11594656/C, we see that while
haplotypes carrying the rs706779:C allele in the presence of either
rs61839660:T or rs11594656:A (haplotypes TCT or CCA) are
protective for ATD, a haplotype carrying rs706779:C in combi-
nation with rs61839660:C and rs11594656:T (CCT, frequency
13%) is indistinguishable from the common (susceptible) haplo-
type CTT (Fig. 1a, p= 0.24, Wald test).

Simulations showed that if the J model (any model with exactly
one SNP from group J) were true, both stepwise and stochastic
search would correctly identify it (Fig. 1b, Supplementary
Table 3). In contrast, if the A+C model (2-SNP model with a
SNP from each of groups A and C) were true, stepwise got stuck
on J, while stochastic search moved from selecting J at lower
sample sizes, to A+ C at higher sample sizes (Fig. 1b,
Supplementary Table 4, further examples in other regions/
diseases in Supplementary Tables 5–8, SNP group membership in
Supplementary Data 3). A small perturbation on the simulated
effect sizes for A+ C led both methods to select C or A+C
directly, indicating that the potential for joint tagging was
dependent on the combined effect sizes.

We explored a broader range of combined effect sizes
mathematically, finding that there was a high probability of J
having the smallest p-value when A and C were causal only when
A and C had similar odds ratios; and that our observed data fell
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within this region (Fig. 1c). A similar pattern was seen at all other
mismatch regions (Supplementary Fig. 7).

Finally, we showed that the pattern of LD between three SNPs
(two causal and a third tag), together with MAF (minor allele
frequency) and effect sizes, determine whether a tag SNP has the
smallest expected p-value (Fig. 2a, Supplementary Note 1). At the
extremes of this pattern, there is a non-zero probability that the
tag model will be erroneously selected, even by a criterion such as
BIC which penalises the larger model (Supplementary Note 2).
While we cannot identify how many cases of joint tagging may
exist in our GWAS data because the causal variants are unknown,
we can quantify what proportion of 3 SNP LD matrices match
this pattern under an assumption of equal odds ratios at the
causal variants. Doing so, we found that 20–40% of potential
common causal variant pairs (MAF > 5%) had a potential joint
tag, though this was highly variable across regions (Fig. 2b, c,
Supplementary Data 4) and should be considered an upper limit
because our assumption of equal effect sizes may not be justified.

Together, these results better characterise and quantify the
potential frequency of joint tagging, in which a non-causal SNP
carried on population haplotypes together with distinct causal
SNPs with similar effects may have a smaller single SNP p-value
than either causal variant itself. This can cause stepwise search to
get stuck on the tag, whereas stochastic search will find both
causal variants, if the sample sizes are large enough. With smaller
sample sizes, stochastic search may also choose the tag, because
such samples may not contain enough information to overcome
the strong penalty needed by more complex models to avoid
over-fitting. Thus, joint tagging may potentially affect many more
cases than identified above by the simple comparison of stepwise
and stochastic search results from fixed sample sizes.

Proposed method for fine-mapping multiple diseases. We
noticed a striking overlap between the fine-mapping results for
different diseases in these regions, with 20 of 30 regions with two
or more associated diseases showing evidence of overlap (Sup-
plementary Fig. 8), consistent with previous reports of shared
genetic etiology between the diseases2, which inspired the crea-
tion of the ImmunoChip. This motivated us to exploit the sharing
between diseases, extending the stochastic search approach to
jointly analyse multiple diseases, borrowing information between
them, to help overcome sample size limitations. We use a mul-
tinomial logistic regression framework, the natural extension of
the binomial logistic model, where each individual is assumed to
belong to exactly one disease group or a pooled group of controls
shared between diseases. This formally accounts for the sharing of
controls between diseases in different studies.

We introduce the concept of configurations—sets of causal
variant models for each disease, and we borrow information
between the diseases by means of a prior, which upweights
configurations that share one or more causal variants between
diseases by a factor κ (Fig. 3). Such a parameter is also used in
colocalisation analysis, with values ranging from 1001,18 to
100019. In the case of MFM, it may be easier to elicit a prior on
the chance of any sharing in causal variants between a pair of
diseases, and we show in Supplementary Note 3 how this value
can be used to derive κ for two or more diseases. In all our
simulations and analyses, we chose κ so that the prior on any pair
of diseases sharing at least one causal variant in a region where
they are both associated is 0.5, compatible with conclusions of
previous IMD studies of IMDs1.

One obvious challenge for dealing with configurations, is that
the number of models that needs to be considered for each
disease is already large, and the number of possible configurations
is the product of these. This implies that exponentially increased
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computational time and memory will be required to evaluate all
configurations, and to store these results. We provide solutions
for both challenges. First, we show the log Bayes factor for a
multinomial model that simultaneously considers all diseases can
be approximated by a quantity that can be rapidly calculated—the
sum of the log Bayes factors for the corresponding logistic models
for each individual disease and an offset term determined by
sample and model sizes (Supplementary Note 3). Second, we
show that the marginal (single disease) model posteriors from the
multinomial model can be calculated without needing to store the
individual configuration Bayes factors (Supplementary Note 3).
These insights solve both computational time and memory
challenges: joint analysis of 2–6 diseases in the IL2RA region,
(after individual stochastic search results were generated with

GUESSFM), takes only 15–83 s. We can deal with multiple
populations, with not all populations represented for all diseases,
by noting that when controls are not shared, the joint log Bayes
factor is a simple sum of logistic log Bayes factors, allowing us to
fit a multinomial to the samples from common populations with
shared controls, and add disease-specific log Bayes factor terms
from logistic models fitted to the distinct populations.

Finally, to enable interpretation of the posterior probability of
thousands of models for each disease, which typically contain
many models differing only by the exchange of one SNP for
another in high LD, we formalise the method for grouping SNPs
across multiple diseases by hierarchical clustering of SNPs
according to their LD (r2) and the probability of being jointly
required to explain disease, grouping SNPs selected with some
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nominal posterior probability, which are in high LD and rarely
selected together in any model (Methods).

MFM increases chance of selecting the correct model. We
examined the performance of MFM by simulation. We found that
when causal variants overlapped between diseases, MFM was able
to recover the correct models at smaller sample sizes than indi-
vidual disease analysis (Fig. 4a, b, Supplementary Data 5, 6), i.e.
sharing information between diseases contributed to a gain in
accuracy similar to increasing sample size for each disease. When
no causal variants were shared, multinomial and independent
approaches gave similar results (Fig. 4c, Supplementary Data 7),
i.e. sharing information did not tend to mislead as long as there
were strong signals in each disease. When one disease had no
causal variants, multinomial and independent results were again
similar (Fig. 4d, Supplementary Data 8); i.e. no information is
gained but there is also no noticeable loss in accuracy in doing so.

MFM analysis of up to six IMD. We applied MFM to all 30
ImmunoChip regions with at least two associated diseases (Sup-
plementary Data 9, visualised at https://chr1swallace.github.io/
MFM-output/index.html). We identified seven regions for which
the top model by independent stochastic search and MFM dif-
fered (Table 2). Four of these were single SNP models under
independent analysis, which moved to an alternative single SNP
in MFM. For three of these four, the difference was seen in
analysis of a UK-only subset, so that we could consider inde-
pendent analysis of the UK+ international data, which included
more samples but used the more conventional analysis method as
an adjudicator. In all three cases, this adjudicator matched the
MFM analysis of the UK-only data, suggesting that UK inde-
pendent analysis was limited by power, and that UK MFM ana-
lysis increased power, allowing conclusions to be drawn that were
consistent with those seen in a larger single disease analysis.

One of the multi-SNP regions that showed differences across
multiple diseases was on chromosome 2q, harbouring the
candidate gene CTLA4. In stepwise analysis, iRA, T1D, ATD
and CEL all converge on a single SNP model, in the group
labelled G in the stochastic search results, while for iCEL a single
SNP is selected in group I (Table 3, Fig. 5a). For single disease
stochastic search, we find CEL (UK-only) and ATD have a single
signal in the group labelled G, matching the stepwise results,
while RA and T1D both have two signals, in groups labelled E
and H, represented by causal variant configuration E+H. The
iCEL result is more uncertain, with the posterior spread between
I+ K, I or E+G. Note that K is also the second selected SNP for
iCEL stepwise regression (p= 4 × 10–6), although it doesn’t reach
our adopted significance threshold. Simulations show that G may
tag an E+H model (Fig. 5b-c, Supplementary Tables 5–6, SNP
group membership in Supplementary Data 3).

MFM finds increased support for E+H for RA and T1D while
the CEL and iCEL results become more concentrated with
support for G or E+G (Table 3). While we suggested G may tag
E+H, MFM maintains strongest support for G in ATD, although
there is also posterior support for H in combination with other
groups (group marginal posterior probability of inclusion,
gMPPI= 0.60). A previous attempt to fine-map autoimmune
disease association, by colocalisation analysis of T1D, RA and
CEL (using the same UK data as here) came to similar
conclusions, finding strong support for E+H models for iRA
and T1D and either G or E+G for CEL1. However, a more
recent analysis of T1D and RA, also in largely the same samples,
identified a different pair of variants, rs3087243 (G) and
rs117701653 (C)20 for both diseases using an exhaustive search
of all one and two SNP models.

We compared the models suggested by all these studies across
all diseases by BIC (Supplementary Data 10) and using haplotype
analysis (Fig. 5d). This visually highlighted rs117701653/C
identified for iRA by exhaustive search20 and rs76676160/K
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identified by stochastic search for CEL and iCEL as having similar
protective effects across all diseases and low minor allele
frequencies (<0.05). The two SNPs are unlinked (r2 < 0.01) and
in low LD with other genotyped or imputed SNPs outside their
groups (r2 < 0.2). The 2-SNP models E+H identified here, and
G+ C20 have similar BIC in our data for iRA and iCEL
(Supplementary Data 10), but the greater number of SNPs in the
E and H groups mean that E+H encompasses many more
possible causal variant pairs and so has greater grouped posterior
support. Additionally, individual E+H models have a clearly
better fit than G+C for T1D (Supplementary Data 10). In total,
results in this region exemplify the difficulty with fine-mapping
multiple causal variants in the presence of complex LD, and
suggest the region likely contains three common causal variants,

in groups E (CEL, RA, T1D), G (CEL and ATD) and H (RA and
T1D, and possibly ATD) and possibly two low frequency causal
variants in groups C and K (RA, CEL).

Our previous report of stochastic-stepwise mismatch focused
on MS and T1D in the IL2RA region9. We identified four groups
of SNPs corresponding to four causal variants for T1D, with
results agreeing between stepwise and stochastic search9. How-
ever, while stepwise search identified a single SNP for MS,
rs2104286 (group B), stochastic search identified two distinct
variants in groups A and D (posterior probability 55%), and
suggested that rs2104286/B was a joint tag for these groups (r2=
0.334 and 0.301, respectively)9, a conclusion supported by
haplotype analysis and simulations here (Fig. 6, Supplementary
Tables 7, 8).
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While our previous analysis included UK and non-UK
(international) cases and controls for MS, here we used only the
UK subset, and both stepwise and stochastic search identified B
(group posterior probability, GPP= 0.632), with the A+D model
having only GPP= 0.188, consistent with results that stochastic
selection of a joint tag depends on sample size (Table 3). A more
recent stepwise analysis of a larger, international sample has
identified two SNPs, rs11256593 and rs1272255921. rs12722559
(r2 0.323 with rs2104286/B) is in our group H (GPP= 0.114, third
strongest stochastic search model) while rs12722559 (r2 0.482 with
rs2104286/B, MPPI= 1.20 × 10−5) was not in our SNP groups. In

our UK data, we found the best fitting models were A+D (BIC
19299.46) and B (19302.88), both significantly better fits than
rs11256593+ rs12722559 (BIC 19320.06).

For ATD, stepwise search identified a 1-SNP model, rs706779/
J, consistent with previous analyses of ATD13,22, and matching
the top reported SNP for another IMD, Vitiligo23, while
stochastic search selected a two SNP model, A+ C (Table 1,
Supplementary Data 11). MFM maintained support for the A+ C
model for ATD, and preferred the 2-SNP A+D model for MS
(Table 3), agreeing with our previous stochastic search results for
a larger UK+ international MS dataset9. Limited power may also

Other
Other

Null

D

A
C

B

A.D

Null

D

A

C

B

A.D

OtherOther

Null

DA

C

A.C

Null

C

DA

A.C

Disease 1 Disease 2

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Sample size (1000 s)

P
ro

pn
 s

im
ul

at
io

ns
a

OtherOther
Null

C

A.C

C

Null

A.C

OtherOther
B

D

Null

A.D

Null

B

D

A.D

A < C A < D

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

Sample size (1000 s)

P
ro

pn
 s

im
ul

at
io

ns

b

Other Other

Null

C

D

B

A.D

NullC

D

B

A.D

Other
Other

Null

C

A.C

Null

C

A.C

A = D C

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Sample size (1000 s)

P
ro

pn
 s

im
ul

at
io

ns

c

otherOther

Null

D

A

B

A.D

Null

D

A

B

A.D

Other
Other

DB

Null

D B

Null

A = D NULL

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Sample size (1000  s)

P
ro

pn
 s

im
ul

at
io

ns

d

Method a aIndependent Shared

Fig. 4 Comparison of MFM analysis and single disease analysis. Causal variants were simulated for two diseases with models defined by SNP groups from
the IL2RA region. MFM is shown by solid lines and independent analyses by dashed lines. Throughout, disease 1 has causal variants A+D, while causal
variants for disease 2 vary. a, b Disease 2 has causal variants A+ C and the odds ratio of A, ORA, is the same for both diseases; a A has a stronger effect
than C and D; ORA= 1.4 (both), ORD= 1.25 (disease 1), ORC= 1.25 (disease 2). b A has a weaker effect than C and D; ORA= 1.25 (both), ORD= 1.4
(disease 1), ORC= 1.4 (disease 2). c Disease 2 has only C causal; ORA=ORD= 1.25 (disease 1), ORC= 1.25 (disease 2). d Disease 2 has no causal variants
(no association). Potential models include A (red), B (green), C (blue), D (yellow), A+D (orange), A+ C (purple) and null (black); any other models are
grouped together as grey. The y-axis shows the average posterior probabilities for each model. a, b MFM can identify the true two causal variant model at
smaller sample sizes than independent analysis in simulated data when there is sharing between diseases. c, dWhen there is no sharing (c) or one disease
has no true associations (d), no information is gained by using MFM but there is only minimal loss in accuracy in doing so. Source data are provided in
Supplementary Data 5–8

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11271-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3216 | https://doi.org/10.1038/s41467-019-11271-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


affect RA-international in this region, for which individual
analysis picked group I (97%) and MFM support was split
between groups A (20%) and I (70%).

Our results emphasise the importance of the A group, which is
selected for three of the four diseases (T1D, MS and ATD). This
group of SNPs have been previously associated with variation in
the expression of IL2RA mRNA and of its encoded protein,
CD25, in CD4+ memory T cells24,25, and a recent allele-specific
expression (ASE) study has pinpointed the causal variant
affecting mRNA expression among the set as rs6183966026—
notably the same variant identified in an IBD GWAS of 67,852
individuals27 and an eczema/dermatitis phenotype in a GWAS of
thousands of phenotypes for 337,000 samples in the UK
Biobank28, supporting the notion that this SNP has a common
effect across multiple diseases that is missed in stepwise analysis
of MS and ATD. We note that the direction of effect for
rs61839660 is opposite in IBD and eczema/dermatitis (risk allele
T) compared to T1D, MS, ATD and JIA15 (risk allele C). We note
also that the minor alleles of group I SNPs (represented by

rs706778 and rs11256557 in the haplotype analysis, Supplemen-
tary Fig. 9) selected for RA-international are carried along with
the minor protective alleles of groups A, C and D and it is
possible that the group I SNPs are tagging three IL2RA SNP
groups.

Allele-specific expression confirms functional effects. In addi-
tion to linking group A SNPs to IL2RA expression, we have
shown that SNPs in group D decrease the percentage of CD25
expressing naive T cells9,24. Here, we extend our analysis of
IL2RA mRNA expression to examine any effects of rs2104286/B
in the context of groups A and D. ASE assays compare relative
expression between paternally and maternally inherited chro-
mosomes in individuals heterozygous for a putative functional
SNP according to the allele each chromosome carries at the SNP.
It is a powerful design, because the within-individual comparison
controls for between individual biological variation resulting
from other genetic and environmental differences. We quantified
ASE of IL2RA mRNA in memory and naive CD4+ T cells

Table 2 Regions with conflicting models chosen by independent disease analysis and MFM

Region Disease Other
diseases

Independent MFM Mean r2

between groups

1p-2406887-2785671 (MMEL1, TNFRSF14) RA CEL, MS D/rs4648662 C/rs10752749 0.36
1p-2406887-2785671 (MMEL1, TNFRSF14) iRA iCEL, MS C/rs141426426 C/rs10797431 1
6q-90806835-91039808 (BACH2) RA ATD, T1D G/rs56258221 C/rs72928038 0.33
6q-90806835-91039808 (BACH2) iRA ATD, T1D C/rs72928038 C/rs72928038 1
18p-12738413-12924117 (PTPN2) CEL T1D F/rs34799913 C/rs12967678 0.4
18p-12738413-12924117 (PTPN2) iCEL iRA, T1D C/rs67878610 C/rs12967678 1
7p-37363978-37440453 (ELMO1) MS CEL A/ rs1962401 C/rs77801025 0.47
2q-204446380-204816382 (CTLA4) iCEL ATD, iRA, T1D I/rs2162610+

K/rs76676160
G/rs3087243+
E/rs3116499

(I,G): 0.14 (I,E): 0.17
(K,G): 0.031 (K,E):
0.004

10p-6030000-6220000 (IL2RA) MS ATD, iRA, T1D B/rs2104286/ A/rs12722496+
D/rs7089861

0.2
0.3

16p-11017058-11307024 (DEXI) MS T1D A/rs11643622 B/rs12708716+
D/rs4780346

0.3
0.3

Each row summarises results for a single region, defined by chromosome, start and end coordinates (hg19), with a previously reported candidate gene name shown for orientation. The best model for
each method is selected by group posterior probability (GPP) and for each method the best SNP models for each group(s) are given as representatives of the group models. The last column gives the
mean r2 between the SNP group(s) of independent analyses and those of MFM. The other diseases that were used in MFM are listed under Other Diseases

Table 3 Summary results for fine-mapping in CTLA4 and IL2RA

Region Disease SW model SW P Indep. model Indep. PP MFM (UK) model MFM
(UK) PP

MFM
(Int.) model

MFM
(Int.) PP

CTLA4 ATD G/rs11571297 1.22 × 10−24 G 0.842 G 0.593 G 0.374
G+H 0.349 H+ I 0.273

G+H 0.236
E+H 0.102

CEL G/rs3087243 1.48 × 10−12 G 0.641 G 0.517
G+ K 0.136 E+G 0.281

iCEL I/rs2162610 3.74 × 10−14 I+ K 0.351 E+G 0.829
I 0.14
E+G 0.115

iRA G/rs3087243 1.54 × 10−7 E+H 0.753 E+H 0.805
A+ E+H 0.142

T1D G/rs3087243 3.89 × 10−17 E+H 0.765 E+H 0.687 E+H 0.904
G 0.135

IL2RA ATD J/rs706779 4.63 × 10−8 A+ C 0.954 A+ C 0.985 A+ C 0.986
MS B/rs2104286 1.13 × 10−13 B 0.632 A+D 0.883 A+D 0.901

A+D 0.188
H 0.114

iRA I/rs706778 7.55 × 10−8 I 0.966 I 0.695
A 0.201

T1D A/rs61839660 3.60 × 10−34 A+ C+ E+ F 0.622 A+ C+ E+ F 0.684 A+ C+ E+ F 0.674
C/rs11594656 5.85 × 10−12 A+ E+ F+H+ I 0.201 A+ E+ F+H+ I 0.178 A+ E+ F+H+ I 0.191
E/rs12220852 8.79 × 10−10

For each disease, the following are provided: selected stepwise (SW) model and conditional SNP p-values, high PP models (and PP) for each of independent analyses (Indep.), MFM (UK samples only)
and MFM with international samples. CTLA4 and IL2RA are the regions 2q-204446380-2048163 and 10p-6030000-6220000, respectively
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models include E (red), G (yellow), H (blue), E+H (purple) and null (black); any other models are grouped together as grey. The y-axis shows the
proportion of simulations in which the stepwise approach chose the indicated model (adding SNPs while p < 10-6) or the average posterior probabilities for
each model for the stochastic search approach. Sample size (x-axis) is the number of cases and controls. c Assuming E and H are causal, this plot shows
the probability that G has the smallest p-value as a function of the effect sizes (log odds ratios) at E and H. The estimated effects for E and H from T1D data
are shown by a point, and the simulations from b by < and > for E < H and E > H conditions, respectively. d Haplotype analysis of SNP groups with support in
any analysis. Each row represents one SNP, with possible alleles colour coded according to major or minor. Each column is a haplotype—a specific
combination of alleles across all SNPs—with frequency in UK controls and effect on disease risk (log OR+ 95% CI). MAF is shown as a percentage on a log
scale to allow frequencies of rarer haplotypes to be distinguished. Source data for b are provided in Supplementary Tables 5, 6
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isolated from 36 donors selected by genotype from a bioresource
(www.cambridgebioresource.org.uk) to be heterozygous at SNPs
in group A (A-het), D (D-het) or both (A+D-het). To control
for other potential effects, we chose donors homozygous for SNPs
in groups C and F. The pattern of LD in the region means that the
large majority of A-het and D-het individuals are also hetero-
zygous at the B SNP and A+D-het individuals are homozygous
at the B SNP (Fig. 7a, Supplementary Data 12), allowing us to
directly compare the effects of SNPs in groups A, B and D.

In memory CD4+ T cells, A-het and A+D-het individuals
showed an allelic imbalance with the MS-protective A haplotype
producing more IL2RA mRNA, inconsistent with B causing the
imbalanced expression since A+D-het individuals tested are
homozygous for B (Fig. 7b). Also inconsistent with B causality is

the lack of allelic imbalance in memory T cells from D-het
individuals who are heterozygous at B. In naive CD4+ T cells,
D-het as well as A+D-het heterozygotes had an allelic imbalance
with the protective D haplotype producing less IL2RA mRNA
than the susceptible or protective A haplotypes, confirming our
previous observations of decreased CD25+ naive CD4+ T cells
associated with donors having the protective D haplotype9. Again,
this is inconsistent with B causality, since only D-het and not A
+D-het individuals are heterozygous at B. In A-het donors there
appears to be an allelic imbalance in naive CD4+ T cells
favouring the MS-protective versus susceptible haplotype, which
is the opposite direction to that observed with protection at D and
could reflect an anticipatory differentiation of naive T cells
toward the memory lineage and its phenotype of increased CD25
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Fig. 6 Analysis of chromosome 10p region containing IL2RA aMap showing positions of SNPs (GRCh37) in groups A, B and D. SNPs in the same group are
in high LD, with colour used to indicate group membership. b Haplotype analysis of SNPs selected by stepwise search and GUESSFM for MS. Each row
represents one SNP, with possible alleles colour coded according to major or minor. Each column is a haplotype—a specific combination of alleles across all
SNPs—with frequency in UK controls and effect on disease risk (log OR+ 95% CI). There are four common haplotypes. Three appear protective, carrying
the minor allele at either A or D, but only two carry the minor allele at B. c Comparison of stepwise and stochastic search applied to simulated data. Causal
variants were simulated as follows: B: single causal variant B, OR= 0.8; A < D causal variants A+D, odds ratios A:0.84, D:0.77; A~D: causal variants A+
D, odds ratios A:0.81, D:0:8 (observed in MS data); A > D: causal variants A+D, odds ratios A:0.77, D:0:84. Potential models include A (red), B (green), D
(blue), A+D (purple) and null (black); any other models are grouped together as grey. The y-axis shows the proportion of simulations in which the
stepwise approach chose the indicated model (adding SNPs while p < 10-6) or the average posterior probabilities for each model for the stochastic search
approach. Sample size (x-axis) is the number of cases and controls. d Assuming A and D are causal, this plot shows the probability that B has the smallest
p-value as a function of the effect sizes (log odds ratios) at A and D. The estimated effects for A and D from MS data are shown by a point, and the
simulations from c by < and > for A < D and A > D conditions respectively. Source data for c are provided in Supplementary Tables 7, 8
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expression in A haplotype donors. However, it is not significant,
and we did not observe an increase in CD25+ naive T cells
associated with the MS-protective A allele in a previous study24.

Additionally, we identified four individuals, three of whom
carry rare IL2RA haplotypes (Fig. 7c): donor 1 carries a common
haplotype combination that is homozygous across A, B, D; donor
2 carries the minor allele at B in the absence of a minor allele at
either A or D, donor 3 carries a minor allele at D but not B, and
donor 4 also carries a minor allele at D but not at B on one
haplotype and minor alleles at A and B on the other haplotype
(Fig. 7a). Neither donor 1 or 2 demonstrated an ASE in either the
memory or naive T cells, an expected result for donor 1 who does
not carry a minor allele at A, D or B, and a result from donor
2 showing that the minor allele at B is not associated with either
phenotype. ASE results from donors 3 and 4 were consistent with
those of D-hets and A+D hets, respectively, shown in Fig. 7b,
even though the status of the B SNP was different. These rare
donors are consistent with our conclusions that differences seen
in IL2RA mRNA expression are controlled by the A and D SNPs,
in memory and naive CD4+ T cells, respectively, and argue that
the B SNP tags two functionally distinct groups of SNPs, A and D.

Discussion
Fine-mapping is a general problem in statistical genetics,
important in its own right and for informing integrative down-
stream analyses19,29. We have shown that there are candidate
causal SNP models for which stepwise regression does not con-
verge to the correct solution, even with increasing sample size,
and described the constraints on LD that give rise to this joint
tagging phenomenon. In principle, exhaustive search could
overcome the problem, but scalability is a substantial problem: in
a 1000-SNP region: there are a manageable 0.5 million 2-way
models but over 166 million 3-way models (and 41.5 billion
4-way models), which cannot be fit in reasonable time for a
logistic model that requires optimisation for each model. This
exponential growth of model numbers has motivated different
approaches to scalable search strategies using linear models and
exhaustive search6,30 or specialised search strategies7,8,31. We
show that a logistic model stochastic search9 is feasible and does
tend to the correct solution as sample sizes increase. However,
even stochastic search methods are limited by existing sample
sizes when there are multiple causal variants in proximity, and
may produce similar results to stepwise methods when sample
sizes are insufficient. MFM could be easily adapted as a wrapper
around any of the linear model methods above, provided that the
linear model is considered an acceptable approximation to a
logistic model and that controls are either shared completely or
not at all.

MFM borrows information across diseases and is thus related
to, but distinct from, methods that compare two19 or more32

traits, which integrate over the fine-mapping posteriors of indi-
vidual traits, upweighting models that share causal variants, to
determine whether there is evidence for sharing. Here, we exploit
a prior belief that traits studied are enriched for colocalisation to
determine the marginal fine-mapping posterior for each trait, and
remove the common colocalisation assumptions of independent
datasets and a single causal variant per trait in any region. We
also avoid enforcing identity of causal SNPs or their effect sizes
between different diseases, as in analysis of an overarching disease
phenotype (e.g. autoimmune disease20). It is clear from our
results that, causal variants may differ between diseases in the
same region and that, even when causal variants are shared,
magnitude and direction of effects may differ between diseases.
MFM could be applied to other collections of diseases where
causal variants may tend to be shared, such as psychiatric

diseases33 or metabolic-related traits34 if appropriate priors can
be elicited for each collection. This might be possible from prior
work as here, but if not we recommend that a range of plausible
values be considered, with robust results identified as those which
remain similar under different priors.

One key result from our analysis is that sample sizes in the low
tens of thousands may still not be large enough to robustly fine-
map multiple causal variants. This motivates continued collection
of GWAS samples for diseases too infrequent to be found in large
numbers in the Biobank style datasets, and greater sharing of data
between researchers working on related diseases to better map the
most likely genetic causal variants. A particular note of caution is
raised by the genomic locations where we find discrepancies
between stochastic and stepwise results. These are almost entirely
those with the strongest biological prior for involvement in these
diseases, and also those with typically the strongest effects, and
thus greatest power. We question whether these regions are most
likely to give rise to discrepancies because they harbour the largest
numbers of potential effects or whether, if we had access to much
larger datasets, we would see similar discrepancies genome-wide.

Our analysis of six diseases reveals several cases where there
appear to be multiple functional haplotypes—i.e. more than one
IMD causal variant in a region—that affect different diseases
differently. Thus, these functional haplotypic maps are essential
for designing biological follow-up experiments, for which we need
to decide not just what variants to test, but also what variants to
hold constant to avoid confounding the effect of the variant of
immediate interest. Note that in our ASE work, testing of B
heterozygotes, which are in fact a 2:1 mix of D heterozygotes and
A heterozygotes, would have resulted in bimodal results in both
the memory and naive CD4+ T cells subsets. The ability of sto-
chastic search to suggest alternative models provides us the
knowledge to compare such models biologically, thereby allowing
homogeneous phenotypic groups to emerge that were differently
associated with the A and D SNP groups. Our approach can be
expanded in a haplotype-directed manner to other accessible
immune cell types to determine cell-specific and activation-
specific influences of each disease-associated SNP group (A, C, D,
E and F) on IL2RA mRNA expression, enabling a more complete
picture of how particular haplotypes mediate protection or sus-
ceptibility to disease. The association of the minor alleles of the A
haplotype with disease protection for T1D, MS and ATD, but
with disease susceptibility for eczema and IBD, could be caused
by A-mediated regulation of IL2RA expression in two different
cell types: one critical for T1D, MS and ATD disease pathogen-
esis, the other type pivotal for eczema and IBD. Alternatively, the
genetically-determined level of CD25 on memory CD4 T cells
could influence their likelihood of differentiating into particular
types of cytokine-producing effector cells, a phenotype beneficial
for some diseases but not others. We propose that, rather than
attempting to colocalise eQTL signals and disease associations
that are both determined by stepwise analysis35, disease
haplotype-directed searches for allele-specific expression exem-
plified in this study will lead to greater clarity when unraveling
cellular mechanisms in immune-based diseases.

Methods
Simulations—single trait. Simulations were carried out under a realistic scenario
that mimics the MAF and r2 in the IL2RA region. We simulated haplotypes for 345
SNPs in chromosome 10p-6030000-6220000 (GRCh37/hg19), based on the CEU
1000 Genomes Phase 3 data36 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/) using HapGen237. Code to perform the simulations can be found in
https://github.com/jennasimit/MFMextra. Causal variants were selected within
SNP groups for each disease model (see Supplementary Data 11) with various OR
relating the odds of disease in heterozygote carriers of the non-reference allele
compared to the homozygote reference allele. We assumed a multiplicative model
throughout.
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The SNPs belonging to the above-mentioned groups, as well as the lead SNPs
for autoimmune thyroid disease (ATD; rs706799), alopecia areata (AA; rs3118470),
rheumatoid arthritis (RA; rs10795791) and ulcerative colitis (UC; rs4147359) were
extracted from the generated data for analyses via stepwise regression and
stochastic search; the lead SNP for multiple sclerosis forms group B. This extraction
was done for computational efficiency, and is based on the previous analysis of MS
and T1D that identified these SNP groups as contributing the majority of the
posterior probability9. All other SNPs contribute negligible posterior probability
and we assume this in the simulations. The total number of SNPs in the region is
not disregarded and is used in the prior probability calculations for the SNPs that
are analysed.

For each replication a stepwise regression model was fit, adding SNPs to the
model using a p-value threshold of 1 × 10−6. To generate stochastic search results,
we used GUESSFM9, setting a prior of three causal variants for the region to
encourage good mixing of the chains in the initial Bayesian variable selection, and
setting the prior to a more conservative two causal variants per region to obtain
final model posterior probabilities (PP). Model fits were summarised by the
proportion of times each model was selected via stepwise regression or the mean of
the GUESSFM posterior probabilities for each model.

Simulations—multiple traits. We adapted the HapGen2 simulation outlined
above to simulate datasets for two case and one control set; code is available in
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Fig. 7 Allele-specific expression analysis of IL2RA. This shows that there are two phenotypes that map to the A and D SNP groups and not the B group,
providing functional evidence that the stochastic search better explains the genetic association than stepwise. a Schematic of donor IL2RA genotypes used
in allele-specific expression studies. As the minor alleles for both A and D each usually co-occur with the minor B allele, in A-het and D-het individuals, the
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https://github.com/jennasimit/MFMextra. First we used HapGen2 to generate a
population of 100,000 individuals based on the CEU 1000 Genomes Phase 3 data.
Causal variants for each trait were randomly selected within particular SNP groups
for a certain disease model (see Supplementary Data 11); when the same SNP
group contained a causal variant for both diseases, one variant was selected from
the group and set as causal for both diseases. This reflects our belief that if causal
variants for two diseases are known to belong to the same small SNP group, it is
likely that the same SNP is causal for both diseases rather than different SNPs in
the same high-LD group.

Logistic regression models with the selected causal variants and odds ratios
(OR) were then used to assign each individual as either a member of the controls,
disease 1 cases, or disease 2 cases until the desired number of individuals in each
group was attained; let ORjk be the odds ratio for causal variant j and disease k. The
prevalence for both diseases was set to 0.1, as our purpose is to generate cases and
controls for method comparison. In particular, the following steps were used to
ascertain control/disease 1/disease 2 status, where xij is the number of non-
reference alleles of variant i for individual j (i.e. genotype score), gj is the vector of
genotype scores for individual j, β0= log(0.1), βik= log(ORik) is the effect of causal
variant i for disease k, and m1 is the number of causal variants.

1. Let nk be the number of individuals ascertained to group k (controls are group
0, groups 1 and 2 consist of members with disease 1 and 2, respectively) and
Gk be the matrix of genotype scores for individuals in group k. Initialise nk= 0
and Gk as a null vector.

2. Set j= 1 and repeat the following steps while n0 <N0 or n1 <N1 or n2 <N2.

a. For k= 1, 2 determine pjk ¼ logit�1ðβ0 þ
Pm1

i¼1
βikxijÞ and generate

uniform random variables u1, u2.
b. If u1 > p1 and u1 > p2, then n0= n0+ 1, append gj to G0, j= j+ 1, and go

to beginning of step 2.
c. Else, if u1 ≤ p1 and u1 > p2, then n1= n1+ 1, append gj to G1, j=j=+ 1,

and go to beginning of step 2.
d. Else, if u1 ≤ p2 and u1 > p1, then n2= n2+ 1, append gj to G2, j= j+ 1,

and go to beginning of step 2.
e. Else, if u2 < 0.5 and n1 <N1, then n1= n1+ 1and append gj to G1, j= j

+ 1. Otherwise, n2= n2+ 1and append gj to G2, j= j+ 1. Go to
beginning of step 2.

3. Keep the first Nk rows from Gk, k= 0, 1, 2.

We simulated either shared configurations where each disease was under the
influence of two causal variants, one shared between diseases (A) and one unique
to each disease (one from C, one from D); or independent configurations, where
the two diseases were under the influence of distinct causal variants (one from each
of A and D for one disease and one from C for the other disease) or one disease had
no associations in the region (one from each of A and D for one disease and none
for the other disease). All causal variants were assigned an odds ratio of 1.25 or 1.4.
For both diseases, equal-sized case-control samples consisting of N cases and N
controls were considered for N ranging from 1000 to 5000; each simulation setting
had 100 replications.

We compared the independent stochastic search analyses of each disease with
the multinomial approach with upweighted sharing based on a range of target odds
(i.e. prior odds of no sharing of causal variants between one disease and any other
disease). We focused on a target odds (TO) of 1, such that there is an equal
probability of sharing to non-sharing. Results for a range of TO from 9 (no sharing
more likely than sharing of causal variants) to 0.35 (sharing more likely than
distinct causal variants) are in Supplementary Data 5–8.

Mathematical predictions of minimum univariate p-value. We used sunbeam
plots to characterise how changing the odds ratio of two causal SNPs in a model
can change the probability that a third variant will have the minimum p-value (and
hence be selected first in any stepwise fine-mapping algorithm). We utilised
components of the simGWAS package (http://github.com/chr1swallace/
simGWAS) to calculate expected GWAS Z scores for any given set of causal
variants and their effect sizes, across those causal variants and their neighbouring
SNPs38. We considered the behaviour of Z scores at each of two nominated causal
variants (following Fig. 1, let us refer to these variants as A and C) with a third
SNP, not itself causal, but potentially correlated with both A and C (in Fig. 1, this
is SNP J). For each of a range of possible odds ratios, we computed which of the
three SNPs had the smallest expected p-value, and coloured that square of the grid
correspondingly. When the log odds ratios of both A and C were close to 0, then
no SNP had a low p-value and it was not possible to find significant evidence of
disease association in the region. This section of the grid was coloured white.
Superimposed upon the grid is a point corresponding to the odds ratio we
computed for A and C from the real dataset. Code to produce these plots is at
https://github.com/chr1swallace/MFM-paper/tree/master/sunbeams.

Fine-mapping analyses of ImmunoChip-genotyped diseases. We collated
individual genotype data generated using the ImmunoChip for a total of 61,641
individuals, formed of controls and six disease cohorts: MS (UK subset)12, T1D11,
juvenile idopathic arthritis (JIA, UK subset)15, celiac disease14, rheumatoid arthritis

(RA)16 and autoimmune thyroid disease (ATD)13 (Supplementary Table 1). All
genome coordinates are from build GRCh37.

To ensure controls could be combined across datasets, we restricted analysis for
the multinomial model to UK samples, and used principal component analysis
including 1000 Genomes data to exclude two individuals who fell outside
individual country clusters. Genotypes were compared between datasets to ensure
exclusion of duplicate samples. Data were split into subsets according to the
densely genotyped regions targeted by the ImmunoChip (Supplementary Data 1)
and imputed to 1000 Genomes phase 336 using SHAPEIT39 and IMPUTE240.
Phased reference data were downloaded from https://mathgen.stats.ox.ac.uk/
impute/1000GP_Phase3.html. Country and the first four principal components
were included as covariates in all regressions to account for population structure.
SNPs were excluded if they had info scores < 0.3, certainty < 0.98, |Z| for HWE > 4
in UK controls, MAF < 0.5% in UK controls, call rate < 0.99 in any case or control
group, or an absolute difference in certain genotype call rates between controls and
any case group of >5%.

Forward stepwise regression was performed using univariate logistic regressions
across all SNPs in the region. The SNP with the strongest association (smallest
p-value) was selected, then all two-SNP models containing the selected SNP and
any other SNP were considered, and the process repeated until no SNP could be
added with a marginal p < 10−6, a less stringent threshold (than the conventional
5 × 10−8), chosen so that less than genome-wide significant associations can be
considered when other diseases are also associated, in which case borrowing power
may be informative.

Stochastic search fine-mapping of single diseases was performed using
GUESSFM (http://github.com/chr1swallace/GUESSFM). Initial searches were
performed after tagging at r2 < 0.99 with an optimistic binomial prior for the
number of causal variants per region with expectation set at 3 to allow good mixing
of the chains. Reanalysis of the expanded tag sets for SNPs in models included in
the model set with total posterior probability 0.99 was performed using
approximate Bayes factors and the more conservative prior expectation of two
causal variants per region using GUESSFM. GUESSFM results were combined
using the methods proposed in this paper (details in Supplementary Notes 3), as
implemented in the R package MFM (http://github.com/jennasimit/MFM). We set
the prior odds that two diseases shared any causal variants to 1 (i.e. a 50%
probability that they share none). For a number of diseases, d > 2, we set the prior

that the diseases share no causal variants to 0:5
ffiffiffiffiffiffi
d�1

p
, where the exponent is the

geometric mean of the exponents in the (nonsensical) extremes 0.5d-1, which
assumes all diseases are independent and 0.5 which assumes all diseases are
completely dependent.

Code to perform these steps is available at https://github.com/chr1swallace/
MFM-analysis.

SNP grouping. SNPs with marginal posterior probability of inclusion >0.001
were grouped according to criteria of substitutability—that is, any single SNP in
a group can be used in place of any other to give similar model fits (assessed by
Bayes factors) and no more than 1 SNP in the same group is needed to define
any models with even modest posterior support. We reasoned that this meant
SNPs would need to be in LD—high r2—and rarely selected together in models—
i.e. model selection correlation (rmodel) should be negative; both rmodel and r2 are
used so that our SNP grouping is informed by both model posteriors and LD.
We hierarchically cluster SNPs within each disease according to r2 × sign(rmodel)
using complete linkage, and group SNPs by cutting the tree such that all SNPs
within a group must have pairwise r2 > 0.5, pairwise rmodel < 0, and marginal
posterior probability that both are included in a model was <0.01. We then
identify overlapping groups defined in different diseases, and merge or split
groups when they meet this criteria. The specific algorithm is defined in the
group.multi function in https://github.com/chr1swallace/GUESSFM/blob/
master/R/groups.R.

Haplotype analyses. Haplotype analyses were performed by first phasing the
genotypes across selected SNPs using an E–M algorithm and selecting 10 multiply
imputed samples from the posterior (snphap, https://github.com/chr1swallace/
snphap). These samples were analysed in parallel and results combined using
standard multiple imputation functions in the R package MICE41. Code to
implement these steps is available at https://github.com/chr1swallace/snpHaps. All
analyses included the first four PCs, and country as an additional covariate for
iCEL and iRA to account for population structure.

Allele-specific expression. Samples were obtained from the Cambridge BioR-
esource (www.cambridgebioresource.org.uk) as part of the ‘Genes and Mechanisms
of Type 1 Diabetes’ study and were of self-reported white ethnicity. Informed
consent was obtained from all volunteers for the collection and use of the per-
ipheral blood samples. The NHS Cambridgeshire Research Ethics committee
approved this work involving human participants for allele-specific expression
assays. Data and samples were treated anonymously and confidentially.

Allele-specific expression analysis was performed as described in Burren et al.,
201729 but modified to start with sorted CD4+ naive and central memory T cells.
CD4+ naive T cells were sorted as CD3+ CD4+ CD8− CD127med/high CD25low-med
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CD45RA+ and CD27+, whereas CD4+ central memory T cells were sorted as CD3+

CD4+ CD8− CD127med/high CD25low-med CD45RA− and CD27+.
To phase the direction of effect from the four donors carrying rare IL2RA

haplotypes (Fig. 7a, c), their haplotypes were compared to those found in the 1000
Genome Project CEU data to assess the allele frequency of the ASE readout SNP
(rs12244380, A or G), to predict which allele is most likely to be carried. For donor 1,
the E haplotype carries the G allele with frequency 73% whereas the susceptible
haplotype carries the A allele 60% of the time. For donor 2, it is most likely the B and
E alleles are on the same haplotype (20 examples where they are together vs four
examples where they are on different chromosomes), and here the B+ E haplotype
carries the A allele of rs12244380 (100%). For donor 3, all examples of the D
haplotype lacking the B allele carry the A allele of rs12244380 (14/14), whereas the E
haplotype carries the G allele of rs12244380 73% of the time. Lastly, for donor 4, the A
haplotype carries the G allele of rs12244380 88% of the time, and for all examples of
the D haplotype lacking B carries the A allele of rs12244380 (7/7). Where multiple
assays were performed on the same donor, we retained those with the smallest
standard deviation of allelic ratios, but show both results in Supplementary Data 12.

URLs
For Global Biobank Engine, Stanford, CA, see http://gbe.stanford.
edu/ [accessed January 2018].

For Extended information in searchable format, see https://
chr1swallace.github.io/MFM-output.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
Complete results from our analyses are available at https://chr1swallace.github.io/MFM-
output/index.html and have been deposited at figshare under https://doi.org/10.6084/m9.
figshare.8289677. Data were obtained from the study authors for each of the six
autoimmune diseases that we analysed. Original genotype data may be requested from the
original study authors: ATD ImmunoChip, Cooper et al. (https://www.ncbi.nlm.nih.gov/
pubmed/22922229); RA ImmunoChip, Eyre et al. (https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3882906/); JIA ImmunoChip, Hinks et al. (https://www.ncbi.nlm.nih.gov/
pubmed/23603761). MS ImmunoChip data were accessed through application to the
International Multiple Sclerosis Genetic Consortium (IMSGC; http://www.imsgenetics.org/).
Primary analysis of the MS data is presented by IMSGC (https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3832895/). The primary analysis of the Celiac ImmunoChip is by Trynka
et al. (https://www.nature.com/articles/ng.998) and the genotype data are hosted by the
European Bioinformatics Institute, under accession number EGAS00000000053. T1D
ImmunoChip data are available from dbGaP (Study Accession: phs000180.v3.p2) and 2000
T1D samples were genotyped as part of the WTCCC (and controls) - data access is
described at https://www.wtccc.org.uk/info/access_to_data_samples.html.

Code availability
All code used is freely available as R libraries and R scripts. Multinomial Fine-mapping
(MFM) software is available at https://jennasimit.github.io/MFM. Custom code for our
analyses is available at https://github.com/chr1swallace/MFM-analysis and https://github.
com/chr1swallace/MFM-paper. Software for simulations to evaluate MFM is available at
https://jennasimit.github.io/MFMextra/.
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