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Abstract
Purpose To construct and validate an efficient artificial neural network (ANN) based on parameters with statistical correlation to
live birth, to be used as a comprehensive tool for the prediction of the clinical outcome for patients undergoing ART.
Methods Data from 257 infertile couples that underwent a total of 426 IVF/ICSI cycles from 2010 to 2017 was collected on an
ensemble of 118 parameters for each cycle. Statistical correlation of the parameters with the outcome of live birth was performed,
using either t test or χ2 test, and the parameters that demonstrated statistical significance were used to construct the ANN. Cross-
validation was performed by random separation of data and repeating the training-testing procedure by 10 times.
Results 12 statistically significant parameters out of the initial ensemble were used for the ANN construction, which exhibited a
cumulative sensitivity and specificity of 76.7% and 73.4%, respectively. During cross-validation, the system exhibited the
following: sensitivity 69.2% ± 2.36%, specificity 69.19% ± 2.8% (OR 5.21 ± 1.27), PPV 36.96 ± 3.44, NPV 89.61 ± 1.09, and
OA 69.19% ± 2.69%. A rather small standard deviation in the performance indices between the training and test sets throughout
the validation process indicated a stable performance of the constructed ANN.
Conclusions The constructed ANN is based on statistically significant variables with the outcome of live birth and represents a
stable and efficient systemwith increased performance indices. Validation of the system allowed an insight of its clinical value as
a supportive tool in medical decisions, and overall provides a reliable approach in the routine practice of IVF units in a user-
friendly environment.
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Introduction

An estimated 8 to 12% of couples in reproductive age face
challenges in achieving pregnancy within a year of regular,

timed, and unprotected intercourse [1–3], with global surveys
reporting as many as 186 million individuals suffering from
infertility [4]. For the past 40 years, assisted reproduction
technologies (ART) utilize scientific knowledge and sophisti-
cated technology for infertility management, even though
compared with the degree of intervention, the success rates
remain readily low, with only 30% of the embryos produced
in vitro, being ultimately transferred to the uterus and only 10–
30% of transferred embryos progressing to live birth [5–9].

This realization calls for a fresh view on infertility manage-
ment, along with the new perspectives onmodern lifestyle and
social structure that delays family planning. In this context, the
utilization of some rapidly evolving fields, such as computer-
based prediction models and artificial intelligence (AI) sys-
tems, conforms to the tendency towards automation of the
procedures performed in a modern in vitro fertilization (IVF)
Unit. Such systems are already implemented in other medical
fields with numerous examples, including cancer research [10,
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11], neurology [12, 13], cardiology [14, 15], drug design [16],
stem cell, cell transplantation, and immune therapies [17].

In the field of ART, prediction models have been engaged
in embryo selection as a complementary tool for decision-
making and for the intrinsic assessment of various factors in
relation to their contribution to the clinical outcome [18]. The
so far applied models have demonstrated usefulness in
performing correlations between the analyzed factor/s and
treatment outcome or causative source, in this case, infertility
factor. However, there are varying levels of accuracy and re-
strictions limiting their effectiveness that withhold routine im-
plementation in IVF procedures [18]. In this notion, more
sophisticated AI systems were introduced, such as artificial
neural networks (ANNs). These appear advantageous due to
their remarkable information-processing characteristics perti-
nent mainly to nonlinearity, high level of parallelism, noise
and fault tolerance, and learning, generalization, and self-
adapting capabilities [19]. The first ANN constructed with
application on assisted reproduction was proposed by
Kauffman et al. in 1997 [20] with onwards reporting of similar
systems developed with AI targeting on various aspects of
ART, in an attempt to predict clinical outcomes and especially
live birth, but with varying input variables and predictive pow-
er [21–32].

In 2011, our team underlined the need to employ AI in IVF
[33] and, in 2016, we proposed the construction and imple-
mentation of a supervised ANN with a flexible architecture
that can assist clinicians to offer subfertile couples a novel
approach in personalized treatment and act as an accessible
software platform for routine use in the IVF unit [34]. By
acquiring experience from previous attempts in ANN employ-
ment in ART, our aim was to construct and validate a func-
tional ANN by including parameters that exert a meaningful
effect on live birth following assisted reproduction.

Population and methods

Patient population

Data was retrospectively collected on a previously diagnosed
infertile population of 257 infertile couples who underwent
426 IVF/ICSI cycles, at the Assisted Reproduction Unit of
the Third Department of Obstetrics and Gynecology,
“Attikon” University Hospital in Greece, from July 2010 to
February 2017. For the included population, conclusive data
was available on demographics, medical/reproductive history
for both partners, and previous IVF cycle parameters and out-
comes. Consent to use anonymous data for research purposes
and for the construction of ANN was obtained from all par-
ticipants and the research protocol was approved by the
Scientific Council and the Bioethics Committee of the
Hospital, prior to study initiation (EVD 1172/26-11-15). The

population of the cohort had been previously diagnosed with
infertility (tubal factor, male factor, combined tubal/male, and
unexplained infertility) and met the criteria for undergoing
ovarian stimulation protocols with GnRH agonists/
antagonists followed by IVF/ICSI and fresh embryo transfer
(ET) or frozen-thawed embryo transfer. No other interventions
were applied during cycles, apart from the routine protocols
described in the regular practice of the IVF unit, that conform
to International trends and European standards for appropriate
medical management. Overall, success rates and laboratory
performance demonstrate stability in the clinical setting of
the current study throughout the years.

Criteria for exclusion were the advanced age of the female
partner (> 43 years), increased follicle-stimulating hormone
(FSH) serum levels on the third day of the menstrual cycle
(> 15 IU/L), other factors of infertility than the reported, pre-
vious poor ovarian response according to the 2011 Bologna
criteria [35] or over-response (polycystic ovaries or ovarian
syndrome (PCO/PCOS), ovarian hyperstimulation syndrome
(OHSS)) [36], known genetic factors contributing to infertili-
ty, ovarian cystectomy or oophorectomy, endometriosis, or
pathology affecting the endometrial cavity. For all cycles per-
formed, the clinical outcome was available, whereas it was
possible to monitor each successful cycle for live birth, or
adverse outcomes.

Statistical methods and construction-validation
of the ANN

For the total of 426 IVF cycles, a dynamic database was gen-
erated with Microsoft Excel and used for data storage and pre-
processing. In total, 118 parameters were available, as cate-
gorically reported here: cycle characteristics of previous ART
cycles and their outcome; infertility duration and factor, med-
ical and reproductive history, selective lifestyle information
and demographics linked to fertility dynamics, and pathology
linked to infertility factors for both partners; age at cycle,
parity, and hormonal profile along with selected information
on menstrual cycle characteristics for the female partner; and
sperm analysis for the male partner.

The core of the AI system was an ANN with a classical
multilayer feedforward architecture with one hidden layer and
training through back propagation of the error algorithm
(Levenberg-Marquardt variant), according to the workflow
in Fig. 1. As described previously [33, 34], data collection
and processing was performed and the outcome of the system
was live birth, as defined in the latest published International
Glossary [37].

Initially, the performance of ANN was assessed by the
input of the parameter ensemble and statistical correlation
was thereafter performed for each one of the 118 available
parameters separately, in order to signify those with a direct
effect on live birth. Analysis was performed with the SAS 9.4
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platform (SAS Institute Inc., NC, USA) [38], by employing
either Student’s t test for numeric parameters or the χ2 test for
categorical parameters. The latter group of categorical values
was subsequently mapped to represent numerical values,
which were scaled in the range between + 0.1 and + 0.9, in
order to correspond with the range of the produced outputs of
the neurons of the ANN. Data cohorts attributing to study
participants were then separated into two sets; the training
set, used for the training of the ANN, and the test set, used
for the evaluation of the ANN performance on “unknown
data” [39, 40]. The separation was performed through strati-
fied random sampling: 70% of cycles’ data were assigned to
the training set and 30% to the test set.

A threshold was required to be determined since the ANN
output was numeric, in order to identify the output for which
the inserted data would expect a positive clinical outcome, in
this case, live birth. By using the ANN outputs obtained for
the training set at various thresholds from zero to one using a
step of 0.001, the sensitivity and specificity for each individual
threshold value was calculated and the optimal threshold was
determined at the minimum difference between sensitivity and
specificity. This threshold was applied throughout the

processes and during the validation of the system. The algo-
rithms for the threshold calculation were implemented in a
MATLAB programming environment (MathWorks Inc.).

Cross-validation of the system was performed by random
data allocation into training and test sets and by repeating the
training-testing procedure by 10 times. The performance indi-
ces for the construction and validation of the ANN were sen-
sitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), false positive rate (FPR), false nega-
tive rate (FNR), overall accuracy (OA), and odds ratios (ORs).
These indices were also calculated for the sum of the 10
trained systems during the validation process and separately
for the training and test sets. In addition, mean values and
standard deviations of the replicated ANN structures and the
differences between the performance in the training and test
sets were calculated.

Results

An ensemble of 118 parameters and variables was available
for 426 IVF cycles, sourcing from a total of 257 infertile
couples, with overall successful clinical outcome with live
birth in 21.6% of the cycles included. Statistical analysis at-
tributed a correlation with the clinical outcome of live birth to
only a fraction of the available parameters, as expected: age of
the female partner, age group (≤ 35 years, 36–40 years, >
40 years), age at menarche, age at menarche at a threshold
of 12 years of age, history of dyspareunia, total dose of go-
nadotrophins administered during ovarian stimulation, endo-
metrial thickness prior to oocyte retrieval, number of top-
quality embryos (TQE) on day three, ratio of the number of
TQE D3 to the number of fertilized oocytes (2PN), number of
embryos transferred to the uterus to the total number of 2PN,
embryo transfer in fresh cycle (ET) or following embryo cryo-
preservation (FET), and difficulty during ET (Table 1). The
statistically significant parameters constituted the final input
nodes for the ANN construction and throughout the validation
of the system.

The constructed ANN was restricted to < 1000 iterations
and the memory factor (μ) initiated from 0.001, while μ in-
crease and decrease factors were 10 and 0.1, respectively.
Notably, the ANN converged in just seven iterations. Two
hidden neurons and one single output neuron were used, as
the selection of a higher number of neurons would not con-
tribute to the robustness of the system, while a single output
was decided to depict a positive or negative outcome accord-
ing to the threshold. The performance indices of the construct-
ed ANN are presented in Fig. 2 for both the training and the
test set at variable thresholds, during the step-up procedure to
determine the optimal threshold. Minimum difference be-
tween sensitivity and specificity was determined at a threshold
of 0.48, where the performance of the ANN in the training and

Fig. 1 Work flow with basic steps on the ANN system construction
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test demonstrated a cumulative sensitivity and specificity of
76.7% and 73.4%, respectively (Table 2).

Possible study biases were avoided by testing the sta-
bility of the system, a procedure that was repeated 10
times with random data allocation to training and test sets
(Table 3). ANN architecture was maintained (10-2-1 neu-
rons) and the number of iterations required for conver-
gence was in the range of seven to nine(7.6 ± 0.8). There
were no significant differences in the performance indices
between training and test sets: mean sensitivity (2.03%
(69.20% vs. 67.17%)), mean specificity (2.22% (69.19%
vs. 66.97%)), and overall accuracy (2.19% (69.19% vs.
67.01%)) (p values > 0.05). These results indicate that

the performance of the ANNs, during the validation pro-
cedure, was stable with no statistical difference between
the training and test sets.

In addition, multiple ANNs were initially constructed by
employing the total of 118 available parameters, during the
initial phase: these ANNs exhibited different numbers of neu-
rons in the hidden layer (varying from 1 to 50), while their
performance was inferior to the presented and validated ANN
based on the 12 statistically significant parameters. In more
detail, specificity and sensitivity indices in the training set
ranged from 60.9 to 70.3 and from 55.5 to 67.3, respectively,
while in the test set the respective ranges were 46.7–60.0 and
48.2–59.5. These differences between the training and test sets

Table 1 Quantitative and
categorical parameters that were
statistically different for the cycles
resulting in live birth and for the
cycles with negative outcome (t
test was performed for the
quantitative parameters and χ2

test for the categorical
parameters)

Live birth No live birth

Quantitative variables Mean SD Mean SD p value Difference
characteriza-
tion

Age (female) 34.64 3.9989 36.01 4.0968 0.0044 Somewhat

Age at menarche 13.2 1.9834 12.28 1.7064 < 0.0001 Highly

Difficulty during ET 1.78 0.4147 1.93 0.6125 0.0062 Weak

Endometrium thickness
prior to OR

10.26 1.8045 9.63 1.9172 0.0101 Weak

ET/2PN 0.48 0.2614 0.6 0.3104 0.0035 Somewhat

TQE D3 1.51 1.4577 0.85 1.2947 0.0002 Somewhat

TQE D3/2PN 0.29 0.2608 0.18 0.2571 0.0016 Somewhat

Total gonadotropins 2620.7 996.5 2906.3 1138.1 0.0472 Weak

Categorical variables Chi-square Odds
ratio

95%
lower
CI

95%
upper
CI

p value Difference
characteriza-
tion

Age group 8.8028 NA NA NA 0.012 Weak

Dyspareunia 9.9988 3.9512 1.5914 9.8101 0.002 Somewhat

Fresh or frozen cycle 7.5309 0.4201 0.2230 0.7914 0.006 Weak

Menarche > 12 years 19.7164 0.2292 0.1145 0.4588 < 0.0001 Highly

ET, embryo transfer;OR, oocyte retrieval;ET/2PN, ratio of number of embryos transferred to the uterus to oocytes
fertilized (2PN) following OR; TQED3, top-quality embryos at day 3 of development; TQED3/2PN, ratio of top-
quality embryos at day 3 of development to oocytes fertilized (2PN); total gonadotropins, total dose of gonad-
otropins administered (IU) during the stimulation protocol in a single cycle

1444 J Assist Reprod Genet (2019) 36:1441–1448
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indicated an unstable behavior of the initial system, contrary
to the increased stability obtained by the validated ANN pre-
sented here.

Discussion

The initial aim of this study was to construct and validate an
ANN, as an attempt to utilize AI in routine medical practice
and to offer the “opinion” of an objective intelligent system
trained to overview data from multiple cycles. By including

426 ART cycles with an initial recording of 118 parameters
and signifying the statistically relevant parameters to live
birth, a concise system with high relevance to its application
was constructed that furthermore exhibited significant and
balanced sensitivity and specificity of almost 70% in both
training and test sets, as furthermore favorable characteristics
during its validation. A rather “shallow” ANN architecture
was selected with 12 input neurons, two neurons in the hidden
layer and one output neuron, as this design was efficient,
straightforward, and suitable for the creation of a stable sys-
tem. The mean number of the training cycles required during
the construction of the ANN was 7.6 ± 0.8, indicating that the
ANN self-converged quickly and consequently overtraining
was avoided.

The present constructed and validated system differs from
previously published approaches on ANNs and prediction
models, in terms of methodological design, outcomes, com-
pleteness, efficiency, and stability of the system. The first re-
ported ANN in ART [20] demonstrated an overall accuracy of
59% in predicting clinical pregnancy with PPV of 39% and
NPV of 82%. An increased predictive accuracy of 82% was
obtained byWald et al. [21] that focused entirely in predicting
the outcome of ART cycles with male factor infertility, where
sperm was surgically retrieved for fertilization through IVF/
ICSI. Based on embryo selection and implantation as an

Table 3 Performance indicators for the training and test sets of the 10 ANNs trained by ten different random allocations of the dataset

Dataset name Sensitivity Specificity PPV NPV FPR NPR OA OR

Training set ANNDataSet0 66.67 64.76 32.73 88.31 35.24 33.33 65.15 3.68

ANNDataSet1 71.43 71.22 40.40 90.12 28.78 28.57 71.26 6.19

ANNDataSet2 66.67 67.86 33.33 89.41 32.14 33.33 67.63 4.22

ANNDataSet3 72.00 73.53 40.00 91.46 26.47 28.00 73.23 7.14

ANNDataSet4 69.09 68.64 33.93 90.50 31.36 30.91 68.73 4.89

ANNDataSet5 70.91 71.01 39.39 90.18 28.99 29.09 70.99 5.97

ANNDataSet6 72.58 72.52 42.45 90.45 27.48 27.42 72.54 6.99

ANNDataSet7 66.67 66.51 34.55 88.27 33.49 33.33 66.54 3.97

ANNDataSet8 67.27 67.15 35.24 88.54 32.85 32.73 67.18 4.20

ANNDataSet9 68.75 68.67 37.61 88.89 31.33 31.25 68.69 4.82

Mean value ± SD 69.20 ± 2.36 69.19 ± 2.80 36.96 ± 3.44 89.61 ± 1.09 30.81 ± 2.80 30.80 ± 2.36 69.19 ± 2.69 5.21 ± 1.27

Test set ANNDataSet0 69.23 68.56 38.46 88.70 31.44 30.77 68.71 4.91

ANNDataSet1 63.89 63.57 32.86 86.32 36.43 36.11 63.64 3.09

ANNDataSet2 63.16 65.46 38.71 83.72 34.55 36.84 64.87 3.25

ANNDataSet3 64.18 63.79 33.86 86.05 36.21 35.82 63.88 3.16

ANNDataSet4 70.27 70.41 47.27 86.25 29.59 29.73 70.37 5.62

ANNDataSet5 67.57 66.14 36.77 87.50 33.86 32.43 66.46 4.07

ANNDataSet6 63.33 62.50 31.15 86.42 37.50 36.67 62.68 2.88

ANNDataSet7 65.71 65.55 35.94 86.67 34.45 34.29 65.58 3.65

ANNDataSet8 72.97 72.44 43.55 90.20 27.56 27.03 72.56 7.10

ANNDataSet9 71.43 71.29 40.82 90.00 28.71 28.57 71.32 6.21

Mean value ± SD 67.17 ± 3.63 66.97 ± 3.49 37.94 ± 4.96 87.18 ± 1.98 33.03 ± 3.49 32.83 ± 3.63 67.01 ± 3.50 4.39 ± 1.49

Table 2 Performance indicators of the ANN trained by the statistically
significant parameters on reproductive outcome

Performance indicator Training set Test set All data

Sensitivity 77.7 71.1 76.7

Specificity 74.6 70.1 73.4

Positive predictive value 75.3 45.7 69.3

Negative predictive value 77.0 87.6 80.1

False positive rate 25.4 29.1 26.6

False negative rate 22.3 28.9 23.3

Overall accuracy 76.1 70.9 74.8

Odds ratio 10.2 6.0 9.1
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outcome, Uyar et al. [22] offered another methodological view
by utilizing a mixed original IVF dataset for classification of
embryos to obtain a PPV of 65.6% and NPV of 67.5%.
Banerjee et al. [23] utilized the characteristics of previous
failed ARTcycles to predict live birth for a boosted-tree model
that demonstrated improved characteristics compared with
age-based prediction and reported an area under the curve
(AUC) for receiver-operator characteristics curve of 0.8.
Uyar et al. [24] applied the Naïve Bayes classifier to an orig-
inal IVF dataset in order to discriminate embryos according to
the implantation potentials and determined an optimum
threshold decision of 0.3 with a true positive rate of 64.4%
and a false positive rate of 30.6%, while in a later approach
[31], they proposed a model for implantation outcome of in-
dividual embryos in an IVF cycle that resulted in an overall
accuracy of 75.7% compared with expert judgment alone,
without population characteristics and age groups or other
factors that could affect the outcome. Ballester et al. [25] de-
veloped a nomogram in a small population sample of patients
with endometriosis, concentrating solely on the ARToutcome
following this pathology and determined a sensitivity and
specificity of 72%. A model named PreIVF-D built by Choi
et al. [26] involved data obtained from different IVF units,
employing a boosted regression tree approach with over 20
characteristics involved in the system development with a
personalized success rate of > 45% with PPV of 59.4% and
NPV 94.9% as summarized in the review by Simopoulou et al.
[18]. Durairaj et al. [27] developed an ANN with an accuracy
of 73%, with basic variables in a smaller mixed population
sample with potential pathological infertility factors. Manna
et al. [28] used AI systems for embryo or oocyte scoring/
selection in ART programs that demonstrated interesting clas-
sification performance, although these results are reported as
preliminary by the same authors. Milewski et al. [29] com-
pared ANN with logistic regression models only to establish
that ANNs were superior with reported sensitivity of 69.0%
and 60.3% specificity and a chance of about 70% in correctly
predicting the establishment of early biochemical pregnancy.
Durairaj and Nandhakumar [30] suggested an integrated
methodology of ANN with data mining techniques and the
experimental model exhibited an overall accuracy of 90%,
thus proposed the applied techniques for finding the minimum
set of influential parameters in order to predict a success rate
of IVF. In another approach on AI utilization, Milewski et al.
[32] revisited ANNs by combining embryo morphokinetic
data to determine embryo implantation potential and the mod-
el presented was able to correctly predict approximately 70%
of pregnancies, although no other variables were utilized.

In a previous theoretical evaluation of the usefulness of AI
systems for personalized management in ART, we proposed
an ANN with the respective parameters to be included in the
analysis and later construction of the system [34]. From the
previously proposed qualitative and quantitative inputs, in the

present cohort of data, we defined that 12 variables were sig-
nificantly associated with live birth. Some of these parameters
have been previously recognized as significant prognostic fac-
tors of the success in ARToutcome, such as endometrial thick-
ness [41, 42], dyspareunia when linked to endometriosis [43],
maternal age [44, 45], total gonadotrophins administered, fa-
voring lowered doses [46, 47], embryo quality [48], embryo
transfer technique [49], fresh ET or FET [50], and age at
menarche [51].

In the present study, a threshold was used to obtain a bal-
anced sensitivity and specificity; however, it is possible to
employ different thresholds according to clinical requirements
and applications of the system. For example, in case higher
accuracy is required for the prediction of live birth, thus in-
creased sensitivity, the threshold may be adjusted accordingly,
although this is accompanied by a reduction in specificity.
Furthermore, the clinically relevant variables that were ulti-
mately employed in the present ANN do differ from the ap-
proaches employed by other workgroups, as does the clinical
outcome. This difference possibly reflects inter-laboratory
variations, represents differences of the local population char-
acteristics, and highlights the impact of patient recruitment,
data recording, and processing methods and overall the vari-
ability in the approach of IVF unit in the management of
individual patients.

Apart from the noted discrepancies, the reporting of the
associations from different research groups could enable a
multicenter collaboration, based mainly on ethnic group as-
sortment, as an attempt to maintain at least a single set of
variables stable after acknowledging the usefulness of
ANNs. Looking at the limitations of this study, we could sug-
gest certain improvements: incorporation of a higher number
of cycles irrespectively of outcome and infertility factor, as
well as cycles that failed to reach the stage of embryo transfer.
In addition, although a general proportion of the infertile pop-
ulation was covered, more work on a targeted ANN needs to
be adjusted, specifically for poor or high responders and pa-
tients with a history of endometriosis, with an adequate sam-
ple size and additional recorded parameters, since these cases
are complex by nature. External validation and multicenter
collaboration is encouraged and sought, to reaffirm the use-
fulness of this ANN and contribute to its advancement by
learning from new cases. Another limitation could be the se-
lection of training parameters in a univariate manner (χ2 and t
test): this approach could mask multivariate effects, i.e., ex-
clude parameters that might have impact when used combina-
torial. However, in our study, the initial ANN trained with the
sum of 118 parameters did not exhibit better performance;
thus, we anticipate that parameters were not masked in this
study; of note, in larger settings, these parameters may be
influential. Finally, another approach to reduce dimensionality
could be the application of principal components analysis
(PCA); nevertheless, this approach does not highlight the
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statistical importance of each of the parameters that were in-
cluded in the study.

As a closing remark, the ANN utilized here represents a
stable system that has employed clinically meaningful vari-
ables, associated with live birth. It can be easily replicated and
validated by the incorporation of data from other IVF units, in
a user-friendly interface [34, 52]. Further expansion of the
system by incorporating data from research collaborations to
include cycles with an adverse outcome or other more com-
plex pathological states of infertility could prove beneficial for
the research community or at routine IVF implementation.
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