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Neurons in sensory areas of the neocortex are known to represent
information both about sensory stimuli and behavioral state, but
how these 2 disparate signals are integrated across cortical layers
is poorly understood. To study this issue, we measured the coding
of visual stimulus orientation and of behavioral state by neurons
within superficial and deep layers of area V4 in monkeys while
they covertly attended or prepared eye movements to visual
stimuli. We show that whereas single neurons and neuronal
populations in the superficial layers conveyed more information
about the orientation of visual stimuli than neurons in deep layers,
the opposite was true of information about the behavioral
relevance of those stimuli. In particular, deep layer neurons
encoded greater information about the direction of planned eye
movements than superficial neurons. These results suggest a
division of labor between cortical layers in the coding of visual
input and visually guided behavior.
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Extrastriate area V4 comprises an intermediate processing
stage in the primate visual hierarchy (1, 2). V4 neurons ex-

hibit selectivity to color (3, 4), orientation (5, 6), and contour
(7, 8), and appear to be segregated according to some of these
properties across the cortical surface (9). Distinct from their
purely sensory properties, V4 neurons are also known to encode
information about behavioral and cognitive factors, particularly
covert attention (10), but also reward value (11) and the di-
rection of planned saccadic eye movements (12–14). As with
other neocortical areas, V4 is organized by a characteristic
laminar structure, in which granular layer IV neurons receive
feedforward sensory input from hierarchically “lower” visual
cortical areas, namely area V1 and V2 (1, 15–17). Projections from
area V4 to hierarchically “higher” visual areas, such as temporal
occipital area and posterior inferotemporal cortex, originate largely
from layers II–III (18), whereas layer 5 neurons project back to V1
and V2 and subcortically to the superior colliculus (18–20).
Recent studies have found laminar differences in attention-

related modulation of neural activity. Buffalo et al. (21) observed
that changes in local field potential power due to the deployment
of covert attention differed between superficial and deep layers;
gamma-band increases were found in superficial layers and
alpha-band decreases were found in deep layers. Increases in
firing rate with attention were observed to be similar in both
laminar divisions. Nandy et al. (22) compared attention-driven
changes in spiking activity across 3 laminar compartments of V4
and observed significant firing rate modulation in superficial,
granular, and deep layers. In addition, they observed subtle, but
reliable, differences in other aspects of activity across layers (e.g.,
spike count correlations). However, no previous studies have
compared stimulus tuning properties, or looked for differences
in other types of behavioral modulation across layers.
To investigate the layer dependence of stimulus and behavioral

modulation in area V4, we measured the selectivity of V4 neurons
to both factors in monkeys performing an attention-demanding
task that dissociated covert attention from eye movement prep-
aration. We then compared the orientation tuning and behavioral

modulation of neurons and neuronal populations recorded in su-
perficial and deep layers.

Results
Two monkeys (G and B) were trained to perform an attention-
demanding task (23) that required them to detect orientation
changes in one of 4 peripheral oriented grating stimulus patches
while maintaining central fixation (Fig. 1A, Methods) (12). Upon
detection of a change, monkeys were rewarded for saccadic eye
movements to the patch opposite the orientation change. This
task allowed us to dissociate behavioral conditions in which the
monkey covertly attended, prepared a saccade to, or ignored a
receptive field (RF) target. Both monkeys performed well above
chance. We recorded the activity of 698 units (277 single units
and 421 multiunits) at 421 sites using 16-channel linear array
electrodes while monkeys performed the task. Electrodes were
delivered perpendicular, or nearly perpendicular, to the cortical
surface as guided by magnetic resonance imaging, and confirmed
by RF alignment (Fig. 1B). In each recording session, data from
the 16 electrode channels were assigned laminar depths, relative
to a common current source density (CSD) marker (Fig. 1C,
Methods). The sizes of RFs in superficial and deep layers were
statistically indistinguishable (unpaired t test, P > 0.05) from
each other (SI Appendix, Fig. S1).

Orientation Selectivity. We first examined the proportion of units
exhibiting significant orientation tuning and compared that
proportion across layers (Methods). Overall, 69.05% (482/698;
P < 0.005) of units were significantly tuned for orientation (Fig.
2A). Of these, we found that a significantly higher proportion of
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We show evidence of a division of labor between neurons
recorded within the superficial and deep layers of visual cortex
in sensory coding and behavior. Neurons within the superficial
layers of extrastriate area V4 outperformed their deep layer
counterparts in coding the shape of visual stimuli, both in latency
and accuracy. In contrast, neurons within the deep layers out-
performed their superficial layer counterparts in the coding of
selective attention and the planning of eye movements, partic-
ularly the latter. The results suggest that a general pattern may
exist across sensory neocortex.
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superficial units (79.4%) were tuned compared with deep units
(62.7%), a difference that was significant (χ2, P < 10−5),
and evident in both monkeys (monkey G, 74.8% in superficial,
65.5% in deep; monkey B, 84.7% in superficial, 60.7% in deep).
Next, we fit Gaussian functions to the normalized mean firing
rates elicited by the 8 orientations for each of the 698 units (Fig.
2B, Methods). Across superficial and deep layers, 35.5% (n =
248) of units were well fit by a Gaussian (R2 > 0.7). Comparing
fit parameters, differences in width and baseline did not differ
between superficial and deep layers (width, superficial = 0.84,
deep = 0. 67, P > 0.05; baseline, superficial = 0.10, deep = 0.10,
P > 0.05). However, the mean amplitude of superficial layer
units exceeded that of deep layer units by 30% (Fig. 2B, super-
ficial = 0.17; deep = 0.13; P = 0.018).
Measurements of orientation tuning in individual units suggest

that superficial layer units in our dataset were better tuned to
stimulus orientation than their deep layer counterparts. How-
ever, we considered that these measurements likely fail to capture
all of the information conveyed by neurons about orientation.
We therefore took a population decoding approach (24) to mea-
sure the information available about orientation in the activity of
all units within superficial or deep layers (Methods). A random
forest decoder was utilized for its robustness to feature noise and
low trial count, its ability to draw nonlinear decision boundaries,
and its interpretability. We found that differences in decoder
performance resulted from statistically distinguishable distribu-
tions of feature importance between superficial and deep layer,
rather than from population outliers (SI Appendix, Fig. S2) (25,
26). To quantify the difference in decoding between layers, de-
coder performance was then computed as a function of neuronal
population size (Fig. 3A). We fit “neuron-dropping” curves (NDCs)
(27) to the performance values and compared the confidence
intervals of the fit parameters for slope (b) and asymptote (c) for
superficial and deep populations. Both superficial and deep units

performed significantly above chance for all population sizes
greater than zero. The NDC for superficial populations had a
significantly greater slope than the deep NDC (superficial b = 0.019,
95% CI: 0.019, 0.020; deep b = 0.014, 95% CI: 0.013, 0.014), and
asymptotic performance was significantly higher for superficial
compared with deep units (superficial, c = 0.918, 95% CI: 0.915,
0.921; deep, c = 0.778, 95% CI: 0.773, 0.783). To simplify these
differences, we compared the number of neurons needed to
achieve equal performance by the 2 populations. In this case,
whereas the deep layer population achieved an asymptotic per-
formance of 0.78 (78%) with 265 units, an equivalent perfor-
mance was achieved by a superficial population of only 81 units,
a population of less than a third the size. Last, we performed the
same comparison on the subset of well-isolated single units (n =
277). The results of this analysis revealed the same result as with
the overall population; asymptotic decoding performance was
significantly greater for superficial layer units than for deep layer
units (superficial, c = 0.843, 95% CI: 0.821, 0.865; deep, c = 0.554,
95% CI: 0.534, 0.574) (SI Appendix, Fig. S3).
The large differences in orientation decoding between super-

ficial and deep layers suggested that the pattern of orientation
coding might differ in other ways as well. Thus, we also examined
temporal pattern of orientation decoding between the 2 laminar
compartments using the same decoder. To do this, we measured
decoding performance in sequential 150-ms bins of population
activity, separately decoded from 100 ms before stimulus onset to
600-ms poststimulus. This analysis produced striking differences
in the time course of superficial and deep orientation decoding
(Fig. 3B). Both superficial and deep populations reached a peak in
performance at 200 ms, with the superficial population achieving a
performance of 90%, and the deep population achieving 74%. This
performance difference between the 2 populations persisted
throughout the precue, stimulus period (>0.30 s). Moreover, the
analysis revealed that the decoding of orientation was achieved
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Fig. 1. Behavioral task and perpendicular recordings in area V4. (A) Panels depict phases of the attention task, and lower left dashed circle denotes the RF
positions of recorded neurons. Task began with fixation at a central fixation point. Following fixation, randomly oriented Gabor gratings appeared at
4 positions. After an additional period, a cue (white diagonal line) appeared near the fixation point and indicated which grating was the target. A blank
period followed in which the gratings disappeared, and then the stimuli reappeared on the screen with the target presented either at the same orientation or
at a new orientation. Monkeys were rewarded for making saccadic eye movements to the stimulus opposite the changed target (arrow) or for maintaining
fixation when the orientation did not change. (B) Colored contours and corresponding dots show the RF borders and RF centers, respectively, mapped at
electrode channels across difference cortical depths for an example V4 recording. (C) Example CSD with alignment feature for the 2 monkey subjects. The
delineation between superficial and deep layers is indicated by the dotted line. d.v.a., degrees of visual angle.
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faster with the superficial population. For example, the superfi-
cial population reached the peak performance of the deep
population (74%) in only 125 ms, which is 75 ms faster than deep
layer neurons. Thus, as suggested by the single-unit analysis, we
found that stimulus orientation was not only more accurately
encoded by populations of superficial layer neurons than deep
layer neurons, but encoding proceeded faster for superficial
neurons as well.

Coding of Eye Movement Preparation and Covert Attention.We next
examined activity across superficial and deep layers when mon-
keys covertly attended the visual stimulus, prepared a saccade to
that stimulus, or ignored it. We first compared the average
modulation for individual neuronal recordings made at varying
laminar depths aligned to the superficial/deep boundary (Fig. 4).
Modulation was calculated as the deviation in mean RF activity
during a behavior of interest, relative to the control condition
(Methods). Overall, modulation across depth was significantly
greater during eye movement preparation than during covert
attention (P = 0.0024), a result we reported previously (12).
However, we observed no significant main effect of depth (P >
0.05), or an interaction of attention type and depth (P > 0.05).
Nonetheless, movement-related modulation appeared to peak
within the deep layers, suggesting that the difference in attention
type was due to greater eye movement modulation in those
layers. Thus, we directly compared the magnitude of modulation
in the 2 attention types collapsed within superficial or deep layers.
This revealed that while there was no significant difference in
modulation in superficial layers (P > 0.05), modulation within deep

layers was significantly greater during saccade preparation than
during covert attention (P = 0.0041).
Next, as with stimulus orientation, we decoded the behavioral

condition using population activity from superficial (n = 247) or
deep (n = 378) layers (Fig. 5), and classified activity as occurring
during covert attention, saccade preparation, or control trials.
We observed differences that resulted from statistically distin-
guishable distributions of feature importance between superficial
and deep layers, rather than from population outliers (SI Ap-
pendix, Fig. S4). As with orientation decoding, we computed
decoder performance as a function of neuronal population size
and fit the resultant NDCs (Fig. 5A). Both superficial and deep
populations yielded performances that exceeded chance (33.3%)
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Fig. 2. Orientation tuning in superficial and deep layers of area V4. (A, Left)
Distribution of tuned units (red) among total units recorded (black) across
cortical depth, relative to the superficial/deep CSD border. (A, Right) The
same data plotted as a proportion. (B) Average Gaussian tuning fits, and
definitions of fit parameters, for superficial (green) and deep (blue) neurons.
Line thicknesses denote ±SEM.
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Fig. 3. Orientation coding in superficial and deep layers of area V4. (A)
Performance of a random forest classifier at decoding stimulus orientation
across different population sizes of superficial (green) and deep (blue)
neurons, along with shuffled controls for both (red and purple). Points in-
dicate mean values for the 100 decoder cycles at each size. Solid lines in-
dicate the fit saturating function. The horizontal line indicates the
asymptotic performance of the deep layer population, and the number of
superficial layer units (n) needed to reach an equivalent performance. (B)
Time course of population mean performance at decoding stimulus orien-
tation. Data are aligned to stimulus onset and performance is computed
throughout the precue period; 150-ms bins were used, and 25-ms steps were
taken. Performance is given for the leading edge of the bin. Population sizes
for both laminar compartments were set to 269 units. Stimulus onset is in-
dicated by the first dotted vertical line. The second vertical dotted line in-
dicates the time at which superficial layer populations achieve the peak
performance level of the deep neuron populations (125 ms). The third ver-
tical dotted line indicates the peak time for both superficial and deep unit
populations (200 ms).
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beginning with the smallest population size of 5 units. However,
they differed in how well activity could be used to decode the
postcue behavioral condition. Although the slopes of the NDCs
did not differ significantly (superficial b = 0.013, 95% CI: 0.012,
0.014; deep b = 0.013, 95% CI: 0.012, 0.014), the fitted as-
ymptotic performance for deep units significantly exceeded
that of superficial units (superficial, c = 0.536, 95% CI: 0.531,
0.541; deep, c = 0.561, 95% CI: 0.556, 0.566). As with the
comparison of orientation tuning, we compared the number of
neurons needed to achieve equal performance by the 2 pop-
ulations. In this case, whereas a full population of 210 superficial
units only achieved a fitted asymptotic performance of 54%,
deep layer populations achieved the same performance with only
165 units. Results were similar in analyses run separately in the 2
monkeys (SI Appendix, Fig. S5).
Perhaps more dramatic than overall performance differences

of the 2 laminar compartments was the difference in the time
course of population decoding. As with orientation, we used
sequential 150-ms bins of firing rates to quantify changes in
decoder performance over time (Fig. 5B). We found that
throughout the postcue period, decoding performance from the
superficial and deep populations peaked at roughly the same
level of performance (∼49%), well above chance level. However,
decoding of behavioral condition proceeded much faster for the
deep layer population. Whereas the superficial layer population
reached its peak performance of 49% at 400 ms, the deep layer
population reached the same peak within 300 ms. Thus, decod-
ing of the behavioral condition following the cue was achieved
∼100 ms earlier in deep layers than in superficial layers. Note
also that this result indicates that the relatively small difference
in overall performance observed in the NDC curves is much
larger within the initial postcue period. Thus, in contrast to
orientation, where superficial layers outperformed deep layers,
decoding of behavioral condition from the same dataset was
more accurate and proceeded faster in deep layers.
To investigate the conditions driving performance, we next

conducted pairwise decoding of each of the attentional conditions
(covert and saccade) versus the control (Fig. 5C). As before,

feature importance histograms indicated normally distributed
values, with the mean value of deep populations greater than
superficial for all attentional condition pairs (SI Appendix, Fig.
S4 B and C). When decoding covert attention versus control, we
found that the NDC slopes were not significantly different
(superficial b = 0.013, 95% CI: 0.012, 0.014; deep b = 0.013, 95%
CI: 0.012, 0.014), and the asymptotic performance differences
were significant, but small (superficial, c = 0.766, 95% CI: 0.761,
0.771; deep, 0.785, 95% CI: 0.779, 0.790). However, the results
were more dramatic for the decoding of saccade preparation
versus control. As with the previous NDCs, the slopes were not
significantly different, (superficial b = 0.010, 95% CI: 0.008,
0.011; deep b = 0.011, 95% CI: 0.010, 0.012). However, the as-
ymptotic performance was significantly greater for deep units
(superficial, c = 0.627, 95% CI: 0.621, 0.633; deep, c = 0.668,
95% CI: 0.663, 0.673), and the greater asymptotic performance
rendered decoding more efficient for the superior population.
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Whereas a full population of 245 superficial units only achieved a
performance of 62.7%, deep layer populations achieved the
same performance with less than one-half the population size
(n = 118). Thus, the decoding of behavioral conditions was
greatest for units in the deep layers, where saccade preparation
was most robustly encoded.

Discussion
We observed significantly greater orientation selectivity among
units within the superficial layers of V4 using both tuning mea-
sures in single neurons and decoding of population activity. In
contrast, using both unit and population activity, we observed
that deeper layers conveyed more information about the behav-
ioral relevance of visual stimuli. In particular, we found that neurons
within deep layers conveyed more information than superficial
neurons about the planning of saccadic eye movements. These
results suggest a division of labor between superficial and deep
layer neurons in the feedforward processing of stimulus features
and the application of sensory information to behavior. Below,
we discuss both the potential limitations of our observations and the
extent to which they may generalize beyond extrastriate area V4.
The robust differences in orientation selectivity we observed

between the superficial and deep layer units raise important
questions, such as whether those differences result simply from
the known compartmentalization of orientation versus color
tuning across V4 (9), and any potential bias in the sampling of
the cortical surface in our recordings. However, even if our re-
cordings had oversampled one compartment or the other (e.g.,
more color compartments), doing so would not be expected to
introduce an overall bias between upper and lower layers. It is
also worth noting that since the primary evidence of feature-
specific compartments in V4 comes from optical imaging, where
much of the signal derives from superficial layers (28), those
compartments may be less well defined within infragranular
layers. Indeed, anatomical evidence indicates that intrinsic horizontal
connections in V4, which appear to reciprocally connect columns
across millimeters of cortex, exist predominantly in superficial
layers, similar to earlier (e.g., V1, V2) and later stages of visual
cortex (29).
Second, our results raise the important question of how much

they generalize within the orientation domain and to other fea-
tures, e.g., color or contour. Although we observed clear differ-
ences in the coding of orientation between the superficial and
deep layers, we did not exhaustively test the influence of other
related parameters known to interact with orientation tuning
(e.g., contrast, size, spatial frequency, chromatic vs. achromatic,
bars vs. gratings). These other parameters could conceivably
have diminished, or perhaps even reversed, the laminar differ-
ences we observed. Thus, it is important to emphasize that our
results demonstrate greater coding in superficial layers within
only a limited regime of stimulus feature space. Furthermore,
substantial previous evidence suggests that neurons in V4 are
unique in the computation of stimulus contour, not orientation,
the former deriving from the orientation-specific input they receive
from V1 and V2 (7, 8, 30, 31). In such a case, our observations
within orientation selectivity also might not generalize to all
other types of selectivity. Instead, the results might only gener-
alize to some features computed at earlier stages. Nonetheless,
our results reveal the importance of assessing the laminar de-
pendence of stimulus selectivity across visual cortex.
Our observation of more robust attention and eye movement

signals in deep layers may be the most important of our obser-
vations. Although it is clear that visually driven activity is af-
fected by impending eye movements at many stages of the
primate visual system (32–35), few studies have examined the
influence of motor preparation on the responses of neurons in
visual cortex. Moreover, we have shown both previously (12) and
in the present study that the movement-related modulation of

V4 activity is not only dissociable from modulation by covert
attention, but it is more reliable. Those findings are consistent
with the hypothesis that visual cortical areas contribute directly
to visually guided saccades, particularly the refinement of sac-
cadic plans according to features coded by particular visual areas
(e.g., shape in area V4) (36–38). Our observation of stronger eye
movement-related modulation in deep layers is also consistent
with the fact that projections to the superior colliculus emanate
principally from layer V pyramidal neurons throughout extras-
triate visual cortex (39). Moreover, deep layer neurons are a
major source of feedback projections (1), and thus the relative
robustness of behavioral signals within deep layers may reflect
the projection of those signals to earlier stages of visual pro-
cessing. Consistent with this notion, a previous study of atten-
tional effects in areas V1, V2, and V4 found evidence of a
“backward” progression of modulation in these areas that begins
in V4 and proceeds to V1 (21). Thus, the unique contributions of
deep layer neurons to oculomotor output and in top–down in-
fluences may account for their superior coding of behavioral
variables.

Methods
Subjects, Behavioral Task, Visual Stimuli, and Neuronal Recordings. Details of
the subjects, the task, the stimuli, and recording techniques are described in
Steinmetz and Moore (12). All experimental procedures were in accor-
dance with the National Institutes of Health, Guide for the Care and Use
of Laboratory Animals (40), the Society for Neuroscience Guidelines and
Policies, and Stanford University Animal Care and Use Committee. In brief, 2
male rhesus macaques were surgically implanted with recording chambers.
Monkeys were trained on an attention task that dissociated covert attention
from saccade preparation. Trials were initiated when the monkey fixated a
central point. After 100 ms of central fixation, a 300-to-500-ms “stimulus
epoch” occurred, where 4 oriented Gabor patches appeared at 4 locations
equidistant from the fixation point. This was followed by the “cue epoch,”
lasting 600 to 2,200 ms. During this epoch, a line appeared near the central
fixation point, directed toward one of the Gabor patches, indicating that it
would potentially change orientations. After a variable interval, the array of
stimuli disappeared briefly (270 ms) and then reappeared. Monkeys were
trained to detect changes in orientation (45° to 90°) of any of the 4 stimuli
upon reappearance. To dissociate the direction of covert attention from that
of saccade preparation, monkeys were given a reward for responding to an
orientation change with a saccade to the stimulus opposite the changed
stimulus (i.e., antisaccade). If no change occurred at the cued location (50%
of trials), the monkey was rewarded for maintaining fixation. Monkey G
correctly responded on 69% of trials (77%, change trials; 62%, catch trials)
and monkey B correctly responded on 67% of trials, (62%, change trials;
70%, catch trials).

Electrophysiological recordings were made from area V4 on the surface of
the prelunate gyrus with 16-channel, linear array U-Probes (Plexon). Elec-
trodes were cylindrical in shape (180 mm diameter) with a row of 16 circular
platinum/iridium electrical contacts (15 μm diameter) at 150-μm center-to-
center spacing (total length of array = 2.25 mm). Recordings in both mon-
keys were recorded between 5° and 8° eccentricities. Recorded neuronal
waveforms were classified as either “single neurons” (n = 277) or multi-
neuron clusters (n = 421). We use “units” to refer to activity of both types.
Single-unit sorting was initially performed manually using Offline Sorter
(Plexon) by identifying clusters of waveforms with similar shapes. The initial
sorting was refined by computing the Fisher Linear Discriminant between
the clustered waveforms and all other waveforms on the same channel (41),
projecting the waveforms along this dimension, and reclassifying waveforms
according to their value on this axis. We also computed an estimation of the
false-positive rate for waveforms of each cluster (41). This calculation con-
siders the rate of spikes, the duration of the experiment, and the number of
waveforms too close together in time to plausibly arise from a single neuron
to arrive at a figure estimating what percentage of the total spike count
arose from neuron(s) besides the one in question. Details of the columnar
recordings and data analyses are provided in the SI Appendix.
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