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Background: Extracellular vesicles (EVs) harbor thousands of proteins that hold promise for biomarker develop-
ment. Usually difficult to purify, EVs in urine are relatively easily obtained and have demonstrated efficacy for
kidney disease prediction. Herein, we further characterize the proteome of urinary EVs to explore the potential
for biomarkers unrelated to kidney dysfunction, focusing on Parkinson's disease (PD).
Methods: Using a quantitative mass spectrometry approach, we measured urinary EV proteins from a discovery
cohort of 50 subjects. EVs in urinewere classified into subgroups and EV proteinswere ranked by abundance and
variability over time. Enriched pathways and ontologies in stable EV proteins were identified and proteins that
predict PD were further measured in a cohort of 108 subjects.
Findings: Hundreds of commonly expressed urinary EV proteins with stable expression over time were distin-
guished from proteins with high variability. Bioinformatic analyses reveal a striking enrichment of
endolysosomal proteins linked to Parkinson's, Alzheimer's, and Huntington's disease. Tissue and biofluid enrich-
ment analyses show broad representation of EVs from across the bodywithout bias towards kidney or urine pro-
teins. Among the proteins linked to neurological diseases, SNAP23 and calbindin were the most elevated in PD
cases with 86% prediction success for disease diagnosis in the discovery cohort and 76% prediction success in
the replication cohort.
Interpretation: Urinary EVs are an underutilized but highly accessible resource for biomarker discovery with par-
ticular promise for neurological diseases like PD.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Extracellular vesicles (EVs) are a subset of small vesicles (40-
200 nm) derived from the endolysosomal system and released into
biofluids by almost all cell types. EVs play a role in cell-cell communica-
tion and are involved in several diseases [1–3]. Recent studies demon-
strate EVs mediating some types of immunological responses [4–6],
cancer progression and metastasis [7–11], blood coagulation [12,13],
and neurodegenerative diseases [1,3,14,15]. Further, emerging studies
demonstrate that EVs, especially intraluminal vesicles from multi-
vesicular bodies (i.e., exosomes), can readily cross the blood brain bar-
rier and access tissues throughout the body [16–18]. The specific
sources and relative contributions of different types of cells through
the body to the EV pool in different biofluids remains almost completely
unknown.

Compared to proteins and nucleic acids not enveloped in lipid bilay-
ers in the extracellular space, EVs shelter biomolecules from external
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nucleases, proteases, and other degradative enzymes. EVs in biofluids
can be enriched with little bias using ultracentrifugation or size exclu-
sion approaches [19,20]. Thousands of proteins not usually secreted
through canonical pathways have been observed in proteomic studies
in purified EV fractions [21–24]. Because of the stability of EV proteins
in biofluids and diversity in proteomic composition, EVs are under eval-
uation for biomarker development for application in diagnostic and
prognostic approaches in numerous diseases [19,24,25].

While EVs are ubiquitous in biofluids, they are also in very low rela-
tive concentration compared to more abundant secreted proteins such
as immunoglobins, albumins, and lipoproteins. Higher volume collec-
tions of biofluids required for reliablemeasurement of EVproteins in ce-
rebral spinal fluid, saliva, and plasma present technical challenges in
routine clinical settings for biomarker discovery. In contrast, urine can
be routinely collected in the hundreds of milliliters in a non-invasive
manner without risk. Urinary EV proteins have shown strong promise
for kidney diseases including Gitelman syndrome, familial renal hypo-
magnesemia, urogenital cancers, and acute kidney injury [20,26–28].

Given the polydispersity and recently recognized ability of some EVs
to spread throughout the body, herein, we systematically evaluated the
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Urinary extracellular vesicles (EVs) have been studied primarily in
kidney disease, with the underlying assumption that the majority
of the EV pool is composed of extracellular vesicles secreted
from kidney cells. Recent experiments demonstrate that EVs
have broad access across the body in biofluids and that most, if
not all, cells secrete different kinds of EVs. Although thousands
of proteins have previously been detected by mass spectrometry
in urinary EVs, there have been few attempts to measure urinary
EV protein relative abundance, variability over time, and overall
potential to better understand disorders unrelated to kidney
dysfunction.

Added value of this study

Herein we characterize urinary EVs proteomes obtained from
specimens biobanked under the auspices of the Parkinson's Dis-
ease Biomarker Program in clinically well-characterized subjects
that lack kidney disease. Bioinformatic and statistical approaches
demonstrate that urinary EVs harbor a very stable set of proteins
commonly expressed among different subjects that are enriched
in proteins associated with neurological diseases. In demonstrat-
ing the potential of this source of proteins for biomarkers of possi-
ble utility in neurological diseases, we demonstrate that two
proteins in urinary EVs, calbindin and SNAP23, may be useful
for predicting PD.

Implications of all the available evidence

Our findingswarrant the collection and biobanking of urine in suit-
able quantities for EV recovery in clinical studies that involve neu-
rological disorders, especially neurodegenerative diseases, for
discovery and validation of biomarkers important in disease. Fur-
ther, calbindin and SNAP23 may be prioritized for measurements
in EVs isolated fromPD cases in longitudinal collections and differ-
ent biofluids to explore the potential of these two proteins in
predicting PD susceptibility and progression.
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proteomic composition in urinary EVs collected in several well-
characterized clinical cohorts to understand variability over time and
differences in disease states unrelated to kidney dysfunction. We iden-
tified urinary EV proteins that vary little between individuals over
time, as well as proteins that are greatly different in groups and change
dramatically over time. Unbiased bioinformatics analysis reveals enrich-
ment in neurological disease-linked proteins, but not kidney-disease as-
sociated proteins, consistent with the polydispersity and multi-organ
representation of urinary EV pools. As a case study,we identified several
proteins with biomarker potential in a neurological disease, Parkinson's
disease (PD), unrelated to kidney disease. Overall these results show
that urinary EVs may have broad biomarker potential in numerous dis-
eases and may be an underutilized resource in clinical research.

2. Materials and methods

2.1. Clinical samples

Biobanked urine and bloodwas obtained from theMovement Disor-
der Clinic at the University of Alabama at Birmingham enrolled in the
Parkinson's Disease Biomarker Program [29]. All protocols were ap-
proved by an institutional review board. A discovery cohort for this
studywas collected in 2014 included 50participants (28 PD and 22neu-
rologically normal controls). An independent replication cohort was
collected in 2015 and 2016 and included 108 participants (57 PD and
51 healthy controls). All samples were coded with unique identifiers
and group identification was assigned after final data curation. Demo-
graphic information for both cohorts is listed in Supplemental Tables 1
and 2.

All participants were genotyped (NeuroX array) to screen for known
pathogenicmutations for neurological diseases. For all subjects included
in the study,medical recordswere evaluated for a lack of kidney disease,
glomerular filtration rates were measured from blood creatinine levels
and confirmed as normal. Clinical urinalysis was confirmed normal in
all subjects. Clinical data (Supplemental Tables 1 and 2) were collected
during the same visit as biospecimen deposition.

2.2. Extracellular vesicle (EV) isolation

~80 mL of urine samples previously biobanked in two 50 mL poly-
propylene centrifuge tubes (Corning orange-caps) were quick-thawed
from −80 °C storage with a shaking 42 °C water bath and placed on
ice immediately after thawing. Samples were centrifuged at 10,000 ×g
for 30min at 4 °C and supernatant was transferred and then centrifuged
at 100,000 ×g for 1 h at 4 °C. Resultant EV pellets were washed in 1 mL
PBS and centrifuge a final time at 100,000 ×g for 1 h at 4 °C. Represen-
tative EV isolations and analyses are given in Supplemental Fig. 1a.

2.3. Single-particle tracking and light scattering

Some urine EV pellets were re-suspended in 1 mL phosphate-
buffered saline (PBS) after washing and analyzed using Nanosight
NS300 single particle tracking. Representative vesicle size and concen-
trations given were recorded over five tracking runs, 60 s per run.

2.4. Mass spectrometry

Urinary EV pellets resultant from~40mLof urinewere reconstituted
in 400 μL ofM-PERMammalian Protein Extraction Buffer (Thermo) sup-
plemented with 1× Halt Protease Inhibitors (Thermo) and sonicated in
an ultrasonicwater bath for 15min. Lysateswere exchanged into ~40 μL
of 100 mM triethylammonium bicarbonate using Amicon Ultra-0.5, 3 k
columns (Millipore). Resultant lysates were quantified using EZQ
(Invitrogen) and ~10 μg of protein per sample were diluted in 35 μL of
LDS sample buffer (Invitrogen). Proteins were reduced with addition
of 5 mM dithiothreitol (DTT) and denatured at 70 °C for 10 min prior
to loading into NuPAGE 10% Bis-Tris gels (Invitrogen), with electropho-
resis of samples to maximum ~1 cm from the wells. Gels were stained
overnight with Colloidal Blue dye (Invitrogen) and following de-
staining each lane was excised and equilibrated into 100 mM ammo-
nium bicarbonate (AmBc) with digestion overnight with Trypsin Gold,
Mass Spectrometry Grade (Promega). Peptides were finally
reconstituted into 0.1% formic acid to a concentration of 0.1 μg μL−1.

For the discovery cohort (see Supplemental Table 1), peptides were
injected into a 1260 Infinity nHPLC (Agilent) with separation from a Ju-
piter C-18 column, 300 Å, 5 μm, Phenomenex) in line with a LTQ XL ion
trap mass spectrometer, or for the time-course study, peptides injected
into a ThermoOrbitrapVelos Pro (Thermo), both equippedwith a nano-
electrospray source (Thermo). All fragmentation data were collected in
CID mode. The nHPLC was configured with binary mobile phases that
included solvent A (0.1% formic acid), and solvent B (0.1% formic acid,
85% acetonitrile) as follows; 10 min at 5% B, 180 min (LTQ XL) or
90 min (Orbitrap) @ 5%–40%B (linear: 0.5 nL/ min, analyze), 5 min @
70%B (2 μL/ min, wash), 10 min @ 0%B (2 μL/min, equilibrate).

The LTQXL operated in data-dependent triple playmode, with a sur-
vey scan range of 300-1200 m/z, followed by a zoom scan for charge
state determination, and an MS2 scan, both carried out with 2.0 da iso-
lation widths on the three most intense ions. Data were collected in
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profile modes for all scan types. Charge state screening and dynamic ex-
clusion were enabledwith aminimum signal intensity of 2000, a repeat
count of two, and exclusion duration of 90 s for ions+/− 1.5m/z of the
parent ion. The automatic gain control and scan time settings were set
to default modes for both instruments. Activation times, activation Q,
and normalized collision energies were set at 30 ms, 0.25, and 35% re-
spectively for both instruments. Spray voltages were set at 1.9 kV,
with a capillary temperature of 170 °C. Injections in both the LTQ and
Velos Pro were performed in duplicate for all samples with average
values utilized for analysis.

XCalibur RAW files were centroided and converted to MzXML and
the MGF files were created using both ReAdW and MzXML2Search re-
spectively (http://sourceforge.net/projects/sashimi/). Data were ana-
lyzed with SEQUEST (v.27 rev12, .dta files), set for two missed
cleavages, a precursor mass window of 0.45 da for LTQ-XL data, and
20 ppm for Orbitrap Velos Pro data, tryptic enzyme, variable modifica-
tion M @ 15.9949, and static modifications C at 57.0293. Searches
were performedwithUniRef100 databasewhich includes common con-
taminants like digestion enzymes and human keratins.

The longitudinal mass spectrometry peptide identifications were fil-
tered using Bio Inquire, the discovery cohortmass spectrometry peptide
identifications were filtered using Scaffold (Protein Sciences). For both
programs, the analysis was performed as described before [30]. In
short, peptides were filtered and quantified using ProteoIQ
(Premierbiosoft, Palo Alto, CA). Filter cut-offs were set with charge
state of ≥2+ and minimum peptide length of 6 amino acids with no
MH + 1 charge state, with peptide probabilities of N80% C.I., and with
the number of peptides per protein two or more. Protein probabilities
were set to a N 99.0% C.I. with FDR b 1.0 [31–33]. Relative quantification
across experiments were then performed via spectral counting as de-
scribed, which compares the number of MS/MS spectra assigned to
each protein [34,35], and when relevant, spectral count abundances
were then normalized between samples [36].

The longitudinal mass spectrometry proteomics data have been de-
posited to the ProteomeXchange Consortiumvia the PRIDE [37,38] part-
ner repository with the dataset identifier PXD013700. The discovery
cohort mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [37,38] partner repository
with the dataset identifier PXD013710 and https://doi.org/10.6019/
PXD013710

2.5. Cryo-EM

EVs were resuspended in water and applied to Quantifoil holey film
(Quantifoil MicroTools, Jena, Germany) and plunge frozen using an FEI
Vitrobot. The samples were observed in an FEI Tecnai F20 200 kV
field-emission gun microscope equipped with a high-sensitivity Gatan
Ultrascan 4000 CCD camera.

2.6. Quantitative immunoblots

EV pellets were lysed in 100 μL of 1× Lamelli buffer (2% SDS, 10%
glycerol, 120 mM Tris pH 6.8, 40 mM NaF) freshly supplemented with
50 mg mL−1 DTT. A pool sample was generated by combining 10% w/v
of each sample and included in each analytical run and replicate as an
internal normalization control. Samples were electrophoresed on
4–20% TGX gradient gels (BioRad) and transferred onto PVDF mem-
branes. Membranes were blocked using LI-COR blocking buffer (LI-
COR) for 1 h at room temperature and then cut in half at a ~37 kDa
mark. Signals were measured using the Li-COR system with all protein
abundance normalized to pool samples between runs. Primary mono-
clonal antibodies were Hsc70 (StressMarq Bioscience Inc., #SMC-
104A/B), SNAP23 (Santa Cruz, #sc-166,244), and Calbindin antibody
(Cell Signaling, #13176). All primary antibodieswere used at 1:1000 di-
lutions in LICOR blocking buffer. IRDye 800CW Donkey anti Mouse IgG
(H + L) secondary antibodies (LI-COR, #926–32,212) and IRDye
680LT Donkey anti Rabbit IgG (H + L) secondary antibodies (LI-COR,
#926–68,023) were both used at 1:20,000 dilutions in LICOR blocking
buffer. For stain-free whole protein detection, EV pellets were lysed
and electrophoresed on 4–20% Mini-PROTEAN TGX stain-free gradient
gels (Bio-Rad). Fluorescent signals were UV-induced for 5 min and de-
tected using Chemi-Doc imaging systems (Bio-Rad). Signalswere quan-
tified in ImageLab using default settings.

2.7. Statistical analysis

Student 2-tailed t-test or Mann-Whitney tests were used for two-
group comparisons. P values resultant from protein data were analyzed
using limma-moderated t-statistics and Bonferroni-corrected with sig-
nificant set at 0.05. Spearman's r (ρ) was used for correlation analysis.
Fisher's 2-tailed exact test andMann-Whitney tests were used to assess
clinical information in demographic table. PANTHER classification data-
base, DAVID Bioinformatics Resources 6.8, and Gene Set Enrichment
Analysis (GSEA) databases were used for enrichment analyses. All sta-
tistical analyseswere performedusing JMP Pro version 13.1.0, GraphPad
Prism 5.0, and R statistical environment (R Core Team 2016) version
3.5.0.

3. Results

3.1. Identification of distinct subclasses of urinary extracellular vesicles

Using a differential ultra-centrifugation approach to access the ex-
tracellular vesicle (EVs) pool in urine from biobanked human urine
samples (Fig. 1a), we first characterized the samples using single-
nanoparticle tracking. Two distinct and abundant EV populations
emerge in the 30–70 nm range aswell as larger vesicles that peak in rel-
ative abundance at ~125 nm (Fig. 1b). Using cryo-electron microscopy
to visualize the nativemorphology of the vesicles, the small vesicle pop-
ulation consists of well-defined dense-core vesicles consistent with the
canonical features of EVs derived frommultivesicular bodies, otherwise
known as exosomes (Fig. 1c). Medium-sized vesicles of ~125 nm, on the
other hand, have varied morphologies that include single dense-core
vesicles (Fig. 1 c2), vesicles that harbor smaller (~25–50 nm) empty ves-
icles (Fig. 1 c3), and finally coated vesicles reminiscent of clathrin coats
that are lightly filledwith cargo (Fig. 1 c4). Vesicles ~80–100 nmwith an
intraluminal small vesicle were empty in the EV fraction of urine (Fig. 1
c5). Larger vesicles N200 nmandmore rarely up to 280–300 nm size are
coated vesicles, lack intraluminal vesicles, and show striated densities of
cargo throughout the vesicle body, clearly different from the internal
cargo of other vesicles (Fig. 1 c6). These results highlight the rich poly-
dispersity of EVs in urine that cannot be attributed to one class of vesi-
cle, such as exosomes originating from multivesicular bodies [26,39].

3.2. Urinary EV proteins link to neurological disease

Early studies with urinary EVs presume themajor source of the ves-
icles to be the kidney, specifically collecting duct cells. Further, many
previous studies assume the major fraction of vesicles in urinary EV pu-
rifications to be exosomes, a subset of vesicles derivative of multi-
vesicular bodies in parental cells. The polydispersity of EVs we define
here in urine suggests the possible contribution of a variety of different
cells and tissues responding to a multitude of cell signaling events, po-
tentially those related to disease. Most studies exploring urinary EVs
for changes linked to disease have focused on kidney disease or meta-
static cancers. To explore the urinary EV proteome outside of these con-
ditions, we recruited a discovery cohort of fifty participants (see
Methods and references (29, 40)). Fig. 2 illustrates the study design.
To ensure the discovery cohort was free from kidney disease that
might confound analysis, we characterized glomerular filtration rates
and determined thesewere not different between those participants af-
fected with PD and those neurologically normal (see Supplemental
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Fig. 1. Characterization of urinary extracellular vesicles (EVs). (a). Graphical scheme of urine EV sample preparation. (b). Representative combined nanoparticle tracking analysis (NTA)
showing the relative distribution of vesicle size as a function of total concentration. Dashed lines at ~20 nm and ~500 nm represent quality cut-offs for accurate size measure and relative
quantification. Bars showS.E.M. from fivemeasurements, 60 s permeasure. (c). Representative images of different vesicle populations as observed in cryo-electronmicroscopy. Scale bar is
50 nm.

Fig. 2. Diagram of study design. Urinary extracellular vesicles (EV) isolated from bio-
banked discovery cohort (28 PD and 22 controls) are measured using high throughput
mass spectrometry. Targets are screened under three criteria mentioned and best
targets were validated with an independent cohort (52 PD and 56 controls) using an
orthogonal protein quantification method LICOR.
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Table 1). Participants with and without PD were matched for sex, age,
height, weight, and biobanked urine was collected between 8 AM and
10 AM. A shotgun proteomic evaluation of EV pellets from these fifty
samples identified the thousand most abundant proteins in EVs based
on a label-free normalized spectral count approach, with 695 of these
proteins (70%) measured in at least ten subjects in the cohort (20%),
with 448 proteins (45%) measured from N50% of the subjects in the co-
hort (Supplemental Table 3). Supplemental Fig. 1 demonstrates repre-
sentative repeat-reliability in EV isolation and protein quantification
with respect to abundance. Supplemental Fig. 2 demonstrates randomly
selected chromatograms versus ion currents from the study.

As expected, the most abundant proteins in the cohort were clearly
enriched in proteins involved in vesicle transport, localization, and ves-
icle biogenesis (Fig. 3a). However, network analysis of the complete list
of urinary EV proteins for tissue and biofluid enrichment shows that the
kidney does not over-represent the contribution of EV proteins com-
pared to other organs like the liver, colon, skin and brain (Fig. 3b and
Supplemental Table 4). Further, restriction of the analysis to biofluid
sources of proteins reveals near-equivalent percent overlap with pro-
teins that demarcate bile, milk, saliva, and plasma fluids, with no partic-
ular enrichment of urinary proteins. These results are consistent with
emerging biological data that demonstrate relatively unrestricted access
for EVs in circulation in the body. As opposed to the most abundant EV
proteins that are involved in vesicle biogenesis, proteins within the
lower quartile of expression steeply drop off in pathway significance
with nominal enrichments of proteins involved in biological processes,
quality, and stimuli. Taken together, these results show that urinary
EVs sample from across the body and delve deeply into the proteome
to assess a diversity of biological pathways.



Fig. 3. Proteomic analysis of pathways and tissues enriched in urinary EVs. (a). Pathway analysis of proteins unambiguously identified in the EV proteome (PANTHER version 13.1).
Proteins were divided into four quartiles based on their abundance, with the ~250 most abundant proteins representing quartile one. Output from (b). tissue enrichment analysis
(DAVID bioinformatics resources 6.8.), (c). pathway analysis (PANTHER version 13.1), and (d). disease association analysis (GAD, DAVID) of all proteins identified in urine EVs. (e).
Scaled ranking of relativemean-protein intensity (red dots, proteins that are significantly (p,0.05, limmamoderated t-test) different between PD and controls groups in discovery cohort;
blue dots, proteins that are associated with Parkinson's disease pathway; green dot, proteins that are associated with Parkinson's disease and are also significantly different between PD
and control groups in discovery cohort).
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To determine whether there may be human disease linked proteins
specifically enriched in urinary EVs (e.g., from genes linked to disease
through genome-wide association studies), PANTHER classification
analysis unexpectedly reveals two of the top five disease pathways
with proteins linked to disease are related to neurodegenerative disor-
ders (Fig. 3c and Supplemental Table 5). Parkinson's disease achieves
the highest enrichment (+5.1 fold, Fisher's Exact FDR 4.5 × 10−7)
followed by Huntington's disease (+4.0 fold-enrichment, Fisher's
Exact FDR 2.3 × 10−6). Notably proteins identified in the enrichment
of proteins linked to neurological disease includes DJ-1, ApoE,
Syntaxin-7, Tyrosine-protein kinases- Yes, Lyn, FRK and HCK, protea-
some subunits alpha type-7, all seven 14–3-3 protein isoforms, casein
kinase I, and numerous (25 different) Rab proteins (Fig. 2D and E). Inde-
pendent pathway analysis with DAVID also highlights top links to neu-
rological disease that includes Parkinson's disease (2.6 fold-enrichment,
p = .013 Fisher's Exact FDR corrected) and Alzheimer's disease (2.2
fold-enrichment, p = .009, Fisher's Exact FDR corrected, Fig. 3d).
Broad Gene set analysis (GSEA) further reveals a prominent link to
Alzheimer's disease with 10.4% of the genes known to be down-
regulated in the brains frompatientswith Alzheimer's disease identified
in urinary EVs (Fisher's Exact FDR corrected p = 2.2 × 10−23, Supple-
mental Table 6).

Enrichments in neurological disease-linked proteins in the EV sam-
ples may have been caused by the inclusion of neurodegenerative dis-
ease (Parkinson's disease) in half the discovery cohort, given the
broad representation of EVs from sources likely across the body. In
evaluation of the mean abundance of proteins in the PD group versus
the healthy control group, SNAP23, Rab7a, calbindin, and FRK trended
towards elevation in the PD group versus controls (all uncorrected p b

.05, limma moderated t-tests), but were not significant after
proteome-wide correction for multiple testing (one-thousand pro-
teins). PD-linked genes range from some of themost abundant proteins
(e.g., Rab10 and DJ-1) to the proteins in the lowest quartile of expres-
sion (γ-synuclein, Fig. 3e). In narrowing the analysis from one-
thousand proteins to proteins identified by PANTHER analysis as linked
to neurodegenerative disease, only SNAP23 survives a conservative
multiple testing correction (Bonferroni, 1.8-fold elevation in PD cases,
corrected p = .005, Supplemental Table 7). Overall, these results show
that urinary EVs successfully capture many proteins linked to neurolog-
ical disease andmay be a convenient non-invasive source for proteomic
biomarker discovery.

3.3. Longitudinal assessment of urinary EV proteins in biobanked samples

To date, there have been few studies to understand the variability
and reliability of individual protein markers in urinary EVs since initial
studies typically focus on single cross-sections of subjects that lack
follow-up or repeated measures. To understand repeat variability of
the urinary EV proteome defined here, two healthy control volunteers
contributed weekly urine samples over the course of two months.
Relative-standard deviations were calculated for the most abundant
973 proteins (identified from the 1000 proteins in the discovery
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cohort). Approximately half of the proteins (41% in subject 1 and 56% in
subject 2) changed in relative abundance N50% across the two months
and were classified as highly variable. Several examples of both high
and low abundance EV proteins demonstrate RSDs N200% (Fig. 4a).
Overall, proteins in the lower quartile of expression tend to bemore var-
iable in abundance from week to week (ρ = −0.71, p b .0001,
Spearman's ρ). As expected, the proteomic overlap is high between sub-
jects with only 19 (1%) of proteins detected in one subject and not the
other, with a strong correlation for individual protein variability be-
tween the two participants (ρ =0.58, p b .0001, Spearman's ρ,
Fig. 4b). AnalysiswithDAVID andPANTHER enrichmentswith consider-
ation of variability demonstrates thatmost of theproteins linked to neu-
rological diseases are also among the proteins with the highest stability
in levels from week to week (i.e., RSD b 50%, Supplemental Fig. 3 and
Supplemental Table 8). These results demonstrate that a major fraction
of proteins within urinary EVs from routine morning urine collections
(non-fasting) can be very stable in relative abundance within an indi-
vidual fromweek to week, andmany of these are linked to neurological
disease.

To better understand inter-individual variability of the urinary EV
proteome, RSDs from the 695 EV proteins detected in most samples
from the 50 subjects of the discovery cohort (Supplemental Table 1)
demonstrate that only 85 proteins (~12%) varied more than two-fold
in relative abundance between individuals. For the 50 EV proteins that
vary the greatest between individuals in the cohort, most are highly
Fig. 4. Inter- and intra-individual variation of the urinary EV proteome. (a). Correlation of relat
healthy volunteers over eightweeks. (b). RSD comparison between the two volunteers. (c). Corr
in discovery cohort. Correlation values are Spearman's ρ.
abundant secreted proteins in blood and are not commonly associated
with EV pathways (Fig. 4c). Alpha-2-macroglobulin (RSD= 210%), fer-
ritin light and heavy chain (RSD = 270% and 200%, respectively), com-
plement C3 and 4A (RSD = 180% and 160%), and different hemoglobin
subunits (alpha, beta and delta hemoglobin, RSD = 140%, 160% and
160%), are all well-known blood products that are extremely variable
in urinary EV fractions between individuals and within the same indi-
vidual over time. Importantly, all samples showed normal urinalysis
that was negative for the presence of red-blood cells. Past whole-urine
proteome studies have suggested that high abundant proteins in
blood can be filtered in the kidney and secreted through a poorly under-
stood pathway by tubular cells under certain conditions [41].

Besides the extremely variable EV proteins that tend to be blood
products, we identified proteins with the lowest variability across par-
ticipants that may be classified as housekeeping proteins. These include
numerous heat shockproteins (RSD=14–19%), actin (RSD=21%), and
annexin A4 (RSD=22%) (Fig. 4c). These proteinsmay be useful for nor-
malization across different groups and in longitudinal studies since they
vary little from week to week in the same individual as well as across
different groups of individuals.

3.4. Identification of proteins in EVs driven by THP contamination

In the purification of heterogenous EVs from biofluids such as
plasmaor serum, co-contaminating proteinswith affinity towards lipids
ive standard deviation (RSD, %) and mean intensity between each protein measured from
elation between RSD andmean intensity of each protein detected among all 50 individuals
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and vesicles such as lipoproteins and immunoglobulins can deleteri-
ously affect unbiased capture of the EV population through loss of the
EVs during purification.While urine does not contain abundant lipopro-
teins or albumins, the most abundant protein contaminating the EV
preparationswas identified as uromodulin (THP, or Tamm-Horsfall pro-
tein, Fig. 4c). THP is secreted by the loop of Henle in the kidney andmay
have anti-bacterial and anti-calcium crystallization properties, present
at 21.3 ± 1.2mg per day in males and 15.2 ± 1.6mg per day in females
[42]. THP is a non-EV associated secreted glycoprotein that is exclusively
produced by renal tubular cells [43,44]. During the urine EV isolation
process, THP readily fibrilizes into aggregates that can entrap some
EVs at low speed centrifugation, with a small portion of THP fibrils of
higher molecular weight co-eluting in EV enriched fractions at high
speed centrifugation in different forms (Supplemental Fig. 4) [45].
Some recent data suggest that THP fibril contamination may interact
with EVs to skew EV recovery and confound analysis [22,44]. Side-by-
side comparison of the proteome of samples from the discovery cohort
with lower THP contamination versus those with the highest THP con-
tamination via Coomassie analysis of samples did not show an obvious
reduction in the banding of other abundant EV proteins (Fig. 5a). THP
levels determined by mass spectrometry are similar between PD and
control groups (Fig. 5b, p = .24, 2-sided t-test) and overall the abun-
dance of most proteins in the fifty participants (N92% of the thousand
evaluated) is not correlated with the abundance of THP (Fig. 5c). Pro-
teins with the strongest negative correlation with THP in abundant EV
proteins include annexinVI, RalB, and Rab5 (p b .05, FDR corrected, Sup-
plemental Table 9). Cross-evaluation of PANTHER pathways assigned to
the proteins correlated with THP levels reveal most are extracellular or-
ganelle associated and may not be enough to represent any specific EV
population (data not shown). These results suggest that variable THP
Fig. 5. THP complex in protein detection using mass spectrometry. (a). Urinary EV pellets purifi
signals are shown from trihalo stained gels for unbiased protein detection, with immunoblots fo
and control groups of the discovery cohort. Bars showing the mean value with error bars sho
individuals in the discovery cohort. (d). Correlation between intensity of THP proteins and
controls and 28 PD). (e). Graphs showing total number of proteins detected in PD and contr
S.E.M. p-values were calculated using 2-sided student t-test, equal variance assumptions. Corre
contamination is likely to drive the relative abundance of only a small
portion of measured proteins in urinary EVs that may be avoided for
biomarker consideration.

While not generally affected the EV proteome composition, THP
negatively correlated with the number of proteins that could be
measured in each sample (ρ = −0.68, Control: ρ = −0.80, PD:
ρ = − 0.61, p b .001, Spearman's ρ, Fig. 5d). Fewer proteins overall
are measured from subjects with high THP protein, although the levels
of THP contamination (Fig. 5b, p = .24, 2-sided t-test) as well as total
numbers of proteins detected between cases and controls in the discov-
ery cohort were not different (Fig. 5e, p = .9, 2-sided t-test). These re-
sults suggest that THP contamination reduces the depth of detection
via mass-spectrometry of very-low abundant proteins but does not af-
fect the overall quantification of proteins successfully measured.

3.5. Candidate urinary EV biomarkers for Parkinson's disease

From the discovery cohort of samples evaluated by bottom-up shot-
gun proteomics (Fig. 2), 15 urinary EV proteins were identified that
were relatively stable over time within individuals (RSD b 100% from
week to week, Fig. 4c) that could be measured in at least 50% of the
cases and controls and were different in mean abundance in PD versus
healthy controls (limmamoderated t statistics for this subset of proteins
were calculated for each candidate, Fig. 3, Supplemental Table 7). Re-
ceiver operator characteristics (ROC) and areas under the curve (AUC)
range from 0.66 to 0.8 for each of these candidates (Supplemental
Table 7). The best performing protein in separating PD from control,
SNAP23 (p = .0009, AUC = 0.80, ROC), demonstrates 70% sensitive
and 80% specificity in ROC analysis on its own, whereas the next best
protein calbindin (p = .004, AUC = 0.75, ROC) has 76% sensitive and
ed together with relatively low and high THP contamination. Representative total protein
r THP protein, CD63 and TSG101 underneath the gel. (b). Plot showing THP intensity in PD
wing S.E.M. (c). Correlation between THP and each protein that are detected in N20% of
the total number of proteins detected from each individual in the discovery cohort (22
ol groups in the discovery cohort. Bars represent mean values with error bars showing
lations were calculated using Spearman's ρ.
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71% specificity (Fig. 6a,b). Logistic regression suggests the linear combi-
nation of SNAP23 and calbindin may improve the characteristics to an
AUC of 0.86 with 77% sensitive and 85% specificity (Fig. 6c).

To evaluate the SNAP23 and calbindin pair using an orthogonal pro-
tein quantificationmethod in an independent cohort of biobankedurine
samples, we developed a traditional immunoblot assay using validated
monoclonal antibodies to SNAP23 and calbindin, with heat-shock pro-
tein 70 (HSC70/HSPA8) identified as an appropriate housekeeping con-
trol that is highly stable and is not different in PD versus control (Fig. 4b,
Supplemental Figs. 5 and 6). Other commonly known EV markers
(TSG101, CD9, CD81, Annexin A5) are equivalent between PD and con-
trol groups, whereas CD63, Flotillin-1 and Flotillin-2, although not iden-
tified as significant using limma moderated t-tests in the proteomic
data, are higher in PD compare to controls (Supplemental Fig. 7). Initial
evaluation of the same protein lysates used for mass spectrometry with
the immunoblot analysis demonstrates good but not perfect correlation
in results between the two assays (ρ = 0.80 and ρ = 0.72 for SNAP23
and calbindin, respectively, Spearman's ρ, Supplemental Fig. 5). Applica-
tion of the immunoblot assay to a replication cohort of participants that
include 51 idiopathic PD patients (28 male and 23 female) and 57 age
matched controls (28 male and 29 female) likewise shows elevated
calbindin in PD (p ≤.0001, AUC=0.75, ROC, Fig. 7a and b). Four samples
were excluded where calbindin was not detected. SNAP23 was more
difficult to detect in the replication cohort with undetectable levels in
32 out of 108 individuals. Of the 31 samples with very low SNAP23
levels, 20 of them (75%) come from the control group, whereas 8 with
PD are below detection levels. Combination of calbindin and SNAP23
in the same logistic model demonstrates similar efficacy in prediction
of the diagnosis of PD (AUC=0.76, ROC, Fig. 7c) as the initialmass spec-
trometry analysis, with 71% sensitive and 69% overall specificity. Spear-
man correlation values calculated for each demographic or clinical
measure collected did not reveal any potential co-variables that might
be affecting protein levels, including sex, dopaminemedications, or du-
ration of disease (all ρ N 0.5, Spearman's ρ). These results suggest uri-
nary SNAP23 and calbindin may contribute to a useful biomarker
panel for PD. More broadly, this study has identified the subset of pro-
teins that are the most stable and reliably detected in clinical popula-
tions that may serve as ideal biomarkers for neurological diseases, as
well as contaminating proteins and highly variable proteins inherent
to the preparations that are unlikely to serve as useful biomarkers.

4. Discussion

As a source for novel biomarkers, EVs contain proteins not usually
accessible for measure without tissue biopsies. However, EVs are in
low abundance in biofluids thereby presenting detection challenges.
Fig. 6. Calbindin and SNAP23 levels in the discovery cohort. (a-b). Plots showing calbindin inte
(red: male, black: female). AUCs calculated from Receiver operating characteristics (ROC)
prediction success of the logistic model of calbindin and SNAP23 for PD diagnosis. Prediction
p-values were calculated using 2-sided student t-tests. A.U. is arbitrary unit from spectral coun
Further, the half-life, variability of turn-over, and heterogeneity of vesi-
cle sources in the body are all factors that are poorly understood, espe-
cially in clinical populations. In contrast to blood, serum, cerebrospinal
fluid (CSF), and saliva, urine can be obtained non-invasively and in
higher abundance than other biofluids, enabling proteomic analyses
with a range of existing technology. To date, studies in urine biomarkers
have focused on kidney and metastatic cancers due to the presumptive
source of urinary EVs, the kidney. Here, we demonstrate that urine EVs
are more heterogeneous than previously supposed by using advanced
imaging approaches in specimens from a broad clinical population. En-
richment analyses show that the EV proteome harbors proteins that de-
marcate organs across the body without enrichment of kidney proteins.
Our data suggest that most urinary EV proteins are stable within indi-
viduals over time, a sought-after property for biomarker discovery and
utility. Among the stable proteins detected in most specimens from a
biobanked clinical cohort, proteins linked to neurodegenerative dis-
eases are enriched in the urinary EV proteome. Shotgun proteomics
from the initial discovery cohort identified SNAP23 and calbindin as el-
evated in PD, with a replication cohort and orthogonal immunoblot de-
tection assay validating the increased levels of SNAP23 and calbindin
that occur in most PD patients. Overall, given the stable characteristics
and positive case study with PD patients in initial biomarker candidate
selection, these results provide evidence that urinary EVs may be an
underutilized resource, with pathway analysis implicating particular
utility in neurological diseases.

Extracellular vesicles (EVs) are secreted by most if not all cell types
into biofluids. Differential ultracentrifugation is commonly used to cap-
ture the whole population of vesicles at the size range 40 nm–200 nm,
including exosomes derived from endosomal pathway and other
membrane-derived vesicles at similar size [2,19,20,46]. Here, we char-
acterize urine EVs using single particle tracking and cryo-EM. Although
the medium size EVs (100-150 nm) are more common compare to
small size vesicles generally classified as small EVs (30-70 nm), we
also identified large EVs (N200nm)with variablemorphology. Although
single-vesicle particle analysis has not yet been achieved, future enrich-
ment approaches may begin to unravel the striking heterogeneity.

While several studies have evaluated the proteome of urinary EVs,
there are no previous datasets we are aware of that examine the stabil-
ity over time and variability of expression of individual EV proteins in
clinical populations [25,47,48]. Our study identified hundreds of pro-
teins that appear quite stable, at least over several weeks in healthy in-
dividuals, as well as those proteins that are highly variable both
between individuals and within individuals fromweek toweek. Within
the stable pool of proteins that vary little over time and can bemeasured
inmost individuals, we identified robust enrichments of proteins linked
to neurological diseases. While future studies are required to identify
nsity and SNAP23 intensity in PD and control groups as measured by mass spectrometry
are shown. Bars represent mean values with error as S.E.M. (c). ROC curve showing
success is 86% with a sensitivity of 77% and specificity of 85% at the optimum threshold.
ts.



Fig. 7. Calbindin and SNAP23 levels in the replication cohort. (a-b). Plots showing Calbindin intensity and SNAP23 intensity in PD and control groups measured using a LICOR assay (red:
male, black: female). See Supplemental Fig. 5. Samples that have signal less than two-fold above background signal (noise) are plotted as “0”, and were included in the statistical analysis.
AUC calculated from Receiver operating characteristic (ROC) curves are shown. Bars showing median values. (c). ROC curve showing prediction ability of the logistic model of Calbindin
and SNAP23 in distinguishing PD from control. Prediction success is 76% with a sensitivity of 71% and specificity of 69% at the optimum threshold. P-values were calculated using Mann–
Whitney U tests.
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the source of different EVs that contribute these disease-linked proteins
to the overall EV pool, based on tissue enrichment analysis, it is conceiv-
able that urinary EVs derive from organs across the body, including the
brain. Tracking experiments in model organisms would provide valu-
able information in this regard.

Althoughwe did not identify any urinary EV proteins that were only
in the PD group and not control group, or vice versa, we reasoned that
valuable biomarkers for PD may nevertheless exist in the EV pool
based on the clear disease-enrichments observed in several bioinfor-
matics analyses. Biomarkers identified from whole proteomic or
transcriptomic data using multiple comparisons from single cross-
sectional cohorts with one analytical technique are typically con-
founded by data overfitting (e.g., linear models) and high false-
positive rates. Here, we identified a biobanked replication cohort ap-
proximately twice the size of the discovery cohort to test a limited num-
ber of the best performing biomarkers, SNAP23 and calbindin, using an
independent measurement assay [49]. Our orthogonal immunoblotting
assaywas clearly less sensitive at detecting SNAP23 and calbindin in the
samples, with successful detection dropping from 86% in the discovery
cohort to 73% in the replication cohort for SNAP23. Nevertheless, the
two proteins performed similarly in separating PD from control in the
replication cohort, warranting further exploration of these markers.

We failed to identify any correlated variables for SNAP23 and
calbindin from all clinical and demographic data collected including
age, sex, mediation use, or clinical severity of disease. Synaptosomal-
associated protein 23 (SNAP23) is a component of the SNARE complex
with 58% identify to SNAP25 with function in exocytosis in neurons
[50,51]. Whereas SNAP25 is mainly expressed in the brain, SNAP23 is
ubiquitously expressed. A recent study found increased SNAP25 in CSF
from PD patients, and depletion of SNAP25 in PD post-mortem brain
[52]. Genetic polymorphisms in SNAP25 have also been linked to PD se-
verity [53]. There are nuanced differences between SNAP23 which can
compete with SNAP25 in supporting neurotransmitter release and ves-
icle fusion but not in vesicle pool priming [54]. In contrast, calbindin
(CALB1) is a type of calcium binding protein important for calcium buff-
ering and is vitamin D responsive in many tissues. It is highly expressed
in kidney and brain, and may be depleted in Alzheimer's, Huntington's
and Parkinson's disease patients [55–57]. Calbindin knockout aggra-
vated Alzheimer's phenotypes in mouse models [55]. Recent studies
further found that Lewy bodies are observed mostly in calbindin nega-
tive neurons in patients with dementia with Lewy bodies (DLB) [58].
While both proteins can be connected to neurodegenerative disease,
the discovery of their stable presence in urinary EVs presents an oppor-
tunity to better understand their role in both health and disease. Impor-
tant for future studies will be determining whether their differential
abundance in PD represents traits that increase susceptibility to disease
or states that are responsive to disease progression. The lack of correla-
tion of their levels to drug dose or disease duration in PD cases provides
evidence for susceptibility factors stable in time versus disease states
that are variable over time.

While this study evaluated hundreds of EV proteins in over 100 sub-
jects, our measures likely represent the tip of the iceberg in information
that can be extracted from urinary EVs. Our peptide analysis did not in-
clude measurements of important post-translational modifications like
phosphorylation or ubiquitination. For example, our recent studies
found dramatic differences in pS1292-LRRK2 autophosphorylation
levels using phospho-specific antibodies in urinary EVs from LRRK2-
mutation carriers in PD [59–61]. Our studies here should facilitate
more directed future studies with our identification of the most stable
proteins that vary little over time and between individuals as house-
keeping proteins, aswell as the total levels of hundreds of other proteins
in a cross-section of subjects. In sum, our results suggest that urinary
EVs may be an underutilized resource that could be considered for bio-
marker discovery to address a variety of unmet needs in precisionmed-
icine approaches.
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