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In complex oxide materials, changes in electronic properties are
often associated with changes in crystal structure, raising the
question of the relative roles of the electronic and lattice effects
in driving the metal–insulator transition. This paper presents a
combined theoretical and experimental analysis of the depen-
dence of the metal–insulator transition of NdNiO3 on crystal
structure, specifically comparing properties of bulk materials to 1-
and 2-layer samples of NdNiO3 grown between multiple electroni-
cally inert NdAlO3 counterlayers in a superlattice. The comparison
amplifies and validates a theoretical approach developed in pre-
vious papers and disentangles the electronic and lattice contribu-
tions, through an independent variation of each. In bulk NdNiO3,
the correlations are not strong enough to drive a metal–insulator
transition by themselves: A lattice distortion is required. Ultrathin
films exhibit 2 additional electronic effects and 1 lattice-related
effect. The electronic effects are quantum confinement, lead-
ing to dimensional reduction of the electronic Hamiltonian and
an increase in electronic bandwidth due to counterlayer-induced
bond-angle changes. We find that the confinement effect is much
more important. The lattice effect is an increase in stiffness due to
the cost of propagation of the lattice disproportionation into the
confining material.

transition metal oxide | metal–insulator transition | heterostructure |
epitaxial constraint | layer confinement

Metal–insulator transitions (MITs) in correlated electron
materials typically involve changes in both the electronic

and atomic structures. The relative importance of the 2 effects
has been the subject of extensive discussion (1–8). In this paper,
using a recently developed theoretical approach (3, 8), we argue
that comparison of few-layer and bulk materials yields consid-
erable insight into the relative importance of electronic and
lattice contributions, essentially because these are affected by
heterostructuring in opposite ways. We disentangle these effects
by independently changing each. Motivated by recent experi-
mental (9–25) and theoretical (8, 13, 26–36) results, we focus
here on the rare-earth nickelate family of materials. The con-
cepts, formalism, and findings are applicable to wide classes of
materials.

The rare-earth nickelates have chemical formula RNiO3 (R is
a rare-earth metal of the lanthanide rare-earth series). In bulk,
at high T, they are metallic and form an orthorhombic Pbnm
structure (except for R = La, for which the structure is rhombo-
hedral) that is a distorted ABO3 cubic perovskite in which the
Ni ions are equivalent up to a rotation and translation. For all
R, except for La, the bulk materials undergo an MIT, as T is
decreased. The transition is first-order, and the low-T phase has a
P21/n structure with 2 fundamentally inequivalent Ni sites char-
acterized by an electronic charge disproportionation ∆N and a
lattice distortion Q, both defined more precisely below. The rela-
tive roles of the 2 have been the subject of debate. The issue has

typically been addressed by calculations (typically performed at
fixed crystal structure) and experiments on a specific material or
on members of a family of materials and has not been resolved.
Similar issues arise in many other transition metal oxide materials.

Recent experiments (9) report that in NdNiO3/NdAlO3

(NNO/NAO) superlattices in which 1 or 2 monolayers of NNO
are separated by many layers of the wide-gap insulator NAO,
the MIT occurs at a much higher temperature than in the bulk,
while the X-ray signatures of the lattice distortion are much less
pronounced in the superlattices than in bulk. These experiments
suggest that heterostructuring affects electronic and lattice prop-
erties differently and, thus, that a comparative examination of
the 2 material forms can help disentangle the relative impor-
tance of electronic and lattice contributions to the MIT. In this
paper, we theoretically investigate the differences between bulk
NNO and superlattice NNO/NAO materials using a theoreti-
cal approach previously applied to bulk nickelates (5, 8, 27, 29,
31–33, 37–39) and to ruthenates (3).

In Fig. 1, we represent the main phenomenology that we disen-
tangle in this paper, as exemplified on the bilayer NNO. Namely,
the structural distortions in the material become inhomogenous
due to the presence of the NAO counterlayer and the absence
of a driving force on the interfacial oxygen from the aluminum
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Fig. 1. Heterostructuring NdNiO3 (NNO) with NdAlO3 (NAO): Structural
distortions are represented as motion (not to scale) of oxygen ions (red
circles) away from the center of Ni–Ni and Ni–Al bonds; note that the distor-
tions do not propagate significantly into the Al layers, and are of reduced
amplitudes along the Ni–Al bonds. The different colors of the Ni atoms rep-
resent the electronic disproportionation. The kinetic energy of the Ni eg

electrons is reduced by confinement, as electrons are not allowed to hop
through the insulating NAO layers (|t0|� |t⊥|, |t‖|), while |t‖|< |t⊥| due
to propagation of bond angles from NAO.

atom. In our effective model, this leads to an increased effective
stiffness of the bond disproportionation mode, as the same force
from the nickel atoms leads to a lower average oxygen displace-
ment. On the electronic structure, the layer confinement of the
material leads to suppressed hopping along the z direction, while
the propagation of bond angles from NAO to NNO leads to a
small increase of the Ni–Ni hopping in-plane compared with the
out-of-plane Ni–Ni hopping in the bilayer.

Energy
Central to our discussion is an expression for the energy dif-
ference ∆E between the insulating and metallic phases as a
function of lattice distortion Q and charge disproportionation
∆N (3, 8):

∆E(Q , ∆N ) =
kQ2

2
− 1

2
gQ∆N +Eel(∆N ). [1]

The first term is the elastic energy cost of establishing the lattice
distortion, the middle term is the leading symmetry allowed cou-
pling between the structural- and electronic-order parameters,
and the final term is the energy associated with the electronic
transition. The 3 control parameters are thus k, g, and the combi-
nation of interaction parameters and bandwidths that determines
Eel(∆N ). This energy formalism is general and can be applied in
the context of density functional theory (DFT), DFT+U (where
U stands for Hubbard U), DFT+ dynamical mean field theory
(DMFT), and other formalisms. As the first term is meant to
include all but the contribution of the correlated electrons, the
value of k is independent of formalism and can be obtained by
interpolation from multiple structures with varying Q from DFT
alone. The lattice distortion Q leads to an on-site (Peierls) poten-
tial difference between the 2 inequivalent sites ∆S = gQ (33),
which is defined as the difference between the average of the
on-site energies of the extended eg orbitals. This defines the sec-
ond term in the energy formalism, characterized by a coupling
between the electronic and lattice degrees of freedom. Finally,
Eel(∆N ) is the energy of the correlated electrons alone and
depends explicitly on the approach we use to solve the correlated
problem.

To quantify the lattice distortion Q, we define the average
bond disproportionation between 2 octahedra:

Q =

√√√√∑i

(
l
(i)
LB − l

(i)
SB

)2
6

, [2]

where l(i) are the lengths of the Ni–O bonds, and LB and
SB correspond to the long-bond and short-bond octahedra,
respectively. Within our DFT+DMFT formalism, we define the
electronic disproportionation ∆N as:

∆N =NHF −NLF , [3]

with HF = higher filling and LF = lower filling. These densi-
ties are the occupancies of the eg antibonding orbitals in our
low-energy model and are simply obtained as the trace of the
local density matrix on each site. When there is structural dispro-
portionation, HF corresponds to LB, and LF corresponds to SB.
The occupancy of the 2 sites is defined within a model describ-
ing the Wannier low-energy antibonding eg bands as defined in
SI Appendix.

A more detailed description of the process by which we fix and
determine the control parameters is given in SI Appendix; here,
we summarize the findings and give physical interpretations.

In a previous work on bulk perovskites, the structural stiff-
ness parameter k was found to vary only slightly as the rare-
earth ion was changed (8). We find that heterostructuring has
a stronger effect, with k increasing from k = 15.86 eV/Å2

for bulk NNO, to 17.71 eV/Å2 for the bilayer structure and
20.18 eV/Å2 for the monolayer. The fundamental difference
between bulk and layered systems appears at the interface
between the 2 components of the heterostructure. A schematic
of the bond-disproportionation mode in the bilayer as obtained
from DFT+U structural relaxations is shown in Fig. 2. The
essential point is that the lattice distortion propagates a short dis-
tance into the counterlayer, and the stiffness to this intertwined
layer–counterlayer distortion is larger than for the nickelate
material alone.

We represent the bond-disproportionation mode and its prop-
agation in Fig. 2 for a particular Q for the bilayer. This structure
is obtained through a DFT+U relaxation of a (NNO)2/(NAO)2

heterostructure, using a U = 4 eV and a c(2 × 2) unit cell
in the xy plane, imposing ferromagnetic order on the system.
This results in 2 pairs of inequivalent NiO6 octahedra. The aver-
age bond disproportionation Q for this relaxed structure is Q =
0.078 Å. This is slightly smaller than the bond disproportiona-
tion obtained from a relaxation within DFT+U with U = 4 eV
for a bulk 20-atom unit cell, for which we obtain Q = 0.081 Å,
and smaller than the disproportionation Q = 0.087 Å similarly
obtained for the monolayer. Further details on the calculations
and structures and the estimates of the displacements along the
Ni–Ni and Ni–Al directions, as pictured in Fig. 2, can be found
in SI Appendix.

Fig. 2. Schematic of the bond-disproportionation modes in the NNO bilayer
(NNO2/NAO2) and its propagation into nearby NAO layers, projected on the
Ni–Ni and Ni–Al direction, as discussed in the main text for a bilayer structure
with the average Q = 0.078 Å—similar to the Q of the experimental bulk low
T structure.
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The structural disproportionation of the bilayer octahedra is
inhomogeneous: The in-plane NiO6 bonds show disproportion-
ation of about the same amplitude we would expect in the bulk.
The interfacial bonds are less disproportionated; as the driving
force on the apical oxygen atom comes only from the Ni, the
disproportionation is lower. We can then estimate the relative
stiffness of the Al–O bond relative to the Ni–O bonds from the
relative displacements in a simple elastic spring model, to ∼86%
of the stiffness of the Ni–O bonds. However, the additional
energy cost per octahedron due to propagation in the NAO (or,
equivalently, that NAO favors a state with no bond dispropor-
tionation) leads to a higher effective stiffness per octahedron.
Finally, the out-of-plane bonds between nickelate layers in the
bilayer structure disproportionate even more than the in-plane
bonds, likely to compensate for the decreased interfacial dispro-
portionation. The analysis is almost identical for the monolayer,
with the exception of the nickelate interlayer out-of-plane bonds
which do not exist.

The structural disproportionation Q leads to an on-site poten-
tial difference between the inequivalent Ni sites. As the oxygen
atoms are closer to one Ni atom than the other, this leads to a
difference in electrostatic potential. Within the context of our
extended eg Wannier orbitals, this can be read from the result-
ing Wannier Hamiltonian as the difference between the average
on-site energy between the 2 inequivalent Ni sites:

∆S = ε̄LF − ε̄HF , [4]

where ε̄LF is the average on-site energy of the eg orbitals on
the Ni with a lower-filling and ε̄HF the average for the higher-
filling octahedron. By analyzing multiple structures with varying
amounts of structural disproportionation Q, we find that the dif-
ference in on-site potential ∆S is linear in Q and takes the form
∆S = gQ , with g a parameter we can determine, in agreement
with previous work (8). From interpolating ∆S vs. Q within DFT
from multiple structures with varying Q, we can obtain a bare
coupling gDFT . As the on-site electrostatic potential difference
∆S has to be adjusted for double counting when perform-
ing a DMFT calculation (8, 32) (part of the on-site potential
comes from Hartree interactions that appear both in DFT and
DMFT), the coupling has to be adjusted within DFT+DMFT
as well: g = gDFT(1 + (U − 5

3
J )χ0). The value of gDFT is rela-

tively constant between the bulk and heterostructured materials
and has been shown to be constant throughout the RNiO3 fam-
ily, with χ0 = ∂∆N

∂∆S
the electronic susceptibility as extracted from

DFT. However, as χ0 is related to the inverse of the bandwidth
(the occupancy changes more for the same on-site shift if the
bands are narrower), the g across the materials changes slightly
depending on the choice of U, J.

Electronic Structure
The dominant effect of the layering in the case of the het-
erostructures is electronic confinement: Electron hopping is con-
fined to be in-plane only for the NNO monolayer and confined
between the 2 layers for the bilayer. While the bulk orbitals have
a bandwidth of 2.6 eV, the 3z2 − r2 orbital for the monolayer has
a bandwidth of 1.85 eV and for the bilayer 2.15 eV. Two other,
more minor effects appear as well. Similar to previous work (40),
the bond angles from the NAO propagate into the NNO, leading
to straighter in-plane bond angles and slightly higher in-plane
bandwidths in the heterostructures than for bulk NNO. This
leads to a x2 − y2 bandwidth of 2.72 eV for the monolayer and
2.68 eV for the bilayer. Previous work has shown that one can
use the bond angles of the counterlayers as a control parame-
ter to tune the MIT temperature in nickelate heterostructures
(40–42).

For a lower number of layers as in this work, however, the
electronic confinement dominates and leads to an increased ten-

dency to disproportionate. A third effect of heterostructuring
on the electronic structure is that of the crystal-field splitting
induced by the inequivalence of the bonds and the relative ion-
icity of the material. Finally, within the eg Wannier picture,
the monolayer also shows a crystal-field splitting of ε̄x2−y2 −
ε̄3z2−r2 = 0.14eV in DFT. We’ve performed calculations for the
monolayer with the crystal-field splitting set to 0 for U = 2.1 eV
and found that the critical J for the spontaneous (Q = 0) MIT
transition line is the same as with the crystal-field splitting set to
the DFT relaxed value, within an accuracy of J = 0.01 eV, thus
showing a negligible effect (SI Appendix).

The simplest way to quantify the effect of the change in band-
width is by comparing the static electronic response to an on-site
field in our eg tight-binding model, χ0 as defined previously.
By reading off ∆N vs. ∆S from multiple structures with vary-
ing amounts of structural disproportionation, we obtain: χbulk

0 =

1.16/eV , χbilayer
0 = 1.25/eV , and χmonolayer

0 = 1.39/eV .
The result of electronic confinement can be clearly seen in

Fig. 4 in the curves showing ∆N as a function of Q. As a
response to the same structural disproportionation Q, for the
same U, J parameters, the monolayer is always more elec-
tronically disproportionated than the bilayer, which is always
more electronically disproportionated than the bulk material
(∆Nmonolayer > ∆Nbilayer > ∆Nbulk). Further, there is a range
of U, J parameters (Fig. 4, Middle) for which the heterostruc-
tures can be insulating, even in the absence of any structural
disproportionation (Q = 0).

We have then found 3 main effects of heterostructuring on
the electronic structure. The effect of layer confinement strongly
lowers the kinetic energy of the electrons and favors an insulat-
ing state, with its effect primarily on the 3z2 − r2 orbital. The
bond-angle propagation leads to a small effect in the opposite
direction, primarily on the x2 − y2 band. Finally, the crystal-field
splitting is only significant in the monolayer; however, it does not
affect the electronic transition.

Equilibrium Bond and Electronic Disproportionation from
Total Energy Model
We now turn to determining equilibrium points in the energy
functional from Eq. 1. Stationarity of ∆E with respect to
variations in ∆N and Q implies the 2 equilibrium conditions:

0 = kQ − 1

2
g∆N , [5]

and:

0 =−1

2
gQ +

∂Eel(∆N )

∂∆N
. [6]

Eq. 5 gives Q as a function of ∆N However, its meaning is very
simple: For a particular value of the electronic disproportiona-
tion ∆N , one can obtain the equilibrium structural displacement
Q of the oxygen atoms as a result of the resulting electrostatic
forces. Eq. 6 gives ∆N as a function of Q, as obtained via the
DFT+DMFT method.

Combining the 2, we have an equation of state (8):

2k

g
Q = ∆N [Q ]. [7]

In practical terms, we can use this equation in a very simple
manner: Using the stiffness k and coupling g obtained from the
interpolation from DFT calculations and adjusting g for dou-
ble counting, we can obtain the equilibrium Q for a particular
∆N as Q = g∆N /2k. Separately, we obtain the equilibrium ∆N
as a function of Q from explicitly DFT+DMFT calculations
rather than from Eq. 7. The effect of Q is simulated by apply-
ing on-site terms to the Q = 0 Hamiltonian, namely, ∆S/2 to
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Fig. 3. Projected density of states of low-energy eg Wannier bands for gen-
eralized gradient approximation-relaxed structures for bulk (Top), bilayer
(Middle), and monolayer (Bottom) structures. Dotted horizontal lines show
the approximate cutoff for determining bandwidths mentioned in the main
text. Confinement greatly reduces the bandwidth of the 3z2− r2 orbital;
however, the bond-angle propagation leads to a slightly wider bandwidth
of the x2− y2 orbital.

simulate the short-bond octahedron and −∆S/2 the long-bond
octahedron, where ∆S is obtained from Q simply by multiplying
∆S = gQ . Single-shot DMFT calculations are then performed
on the resulting Hamiltonian to obtain ∆N . The intersection
of the functions ∆N[Q] and Q[∆N] then determine equilibrium
solutions for the material.

The ∆N (Q) relation is shown in Fig. 4 as large symbols
connected by lines for U = 2.1eV and 3 J values. For the
smallest J value, neither the bulk nor the superlattice materi-
als show a spontaneous disproportionation at Q = 0; for small
Q , there is a regime in which the disproportionation is linear
in Q , and the solution remains metallic. Above a particular
Q , there is a very rapid cross-over to an insulating solution
with a ∆N which is large and only weakly dependent on Q .
In the insulating regime, the monolayer has a larger dispro-
portionation than the bulk, with the bilayer in between. For an
intermediate J , the monolayer and bilayer exhibit a spontaneous
disproportionation at Q = 0, but the bulk material exhibits a

Q-driven first-order transition. At the larger J , all 3 systems
spontaneously distort at Q = 0.

Also shown in Fig. 4 are straight lines corresponding to the
Q(∆N ) relation from Eq. 5. The intersection of these lines
with the DMFT ∆N (Q) curves defines the actual values of
∆N and Q. We see from the relative positions of the intersec-
tions that Qmonolayer <Qbilayer <Qbulk and ∆Nmonolayer >∆Nbilayer >
∆Nbulk. From an electronic point of view, the monolayer and
bilayer are more disproportionated (∆N is larger), as ∆N does
not depend strongly on Q; however, the higher stiffness of the
heterostructures leads to a lower Q. Further, as shown in Fig. 4,
Middle, there is a range of U, J for which the heterostructures will
stay insulating, even at a very small Q, while the bulk becomes
metallic.

The relative roles of the lattice and electronic structure are
easily disentangled from the above. First, the electronic dispro-
portionation has a first-order transition, followed by a very slowly
varying ∆N in the insulating phase. Assuming that ∆N is nearly
constant in the insulating phase ∆N ≈Ninsulating, Q is then set by

Fig. 4. ∆N vs. bond disproportionation Q within DFT+DMFT for bulk,
bilayer, and monolayer structures, as well as Q vs. ∆N lines from the total
energy model calculation in different areas of the phase space, as deter-
mined by Eqs. 5 and 6 via DFT+DMFT, as described in the main text. The
thick circles mark the intersections that respect the equation of state 7. The
panels marked with A, B, and C correspond to the points marked with stars
in the phase diagram in SI Appendix, Fig. S1.
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optimizing the structure Q[∆N ] in Eq. 4 as approximately Q ≈
g∆Ninsulating

2k
. This allows the seemingly paradoxical solutions with

the amplitude of Q and ∆N showing opposite trends between the
bulk and heterostructure. If we assume that the experimentally
obtained MIT temperature is more strongly correlated to ∆N
than Q, while the X-ray absorption spectroscopy (XAS) spectra
splitting is more strongly correlated with Q, we can thus explain
the seemingly paradoxical results in previous work (9).

One of the signatures associated with the bond-dispro-
portionated phase of the RNO nickelates is an increased peak–
prepeak splitting of the XAS Ni L3 edge, which in the monolayer
and bilayer were found to be in between the values of the bulk
disproportionated and undisproportionated structures through-
out the insulating temperature range scanned. Consistent with
this result, we find that the predicted value of the structural
disproportionation of the monolayer is lower than the bulk,
with the bilayer in between the 2. Further, XAS integration
of the monolayer in-plane and out-of-plane Ni L3 edge has
found an orbital polarization of 8%, favoring the 3z2 − r2 orbital.
Within our insulating solutions, we find that orbital polarization
is strongly suppressed (<2%); however, we consistently find that
the long-bond site has an orbital polarization of 5–8% in a direc-
tion consistent with experiment, while the LB site is orbitally
polarized of about the same magnitude, but in the opposite direc-
tion. This suggests that the XAS spectra may sample primarily
the LB; however, further theoretical and experimental work is
needed.

Conclusion and Outlook
Using a combination of DFT+DMFT and many-body theory,
we have elucidated the relative importance of lattice and elec-
tronic effects in heterostructured materials. We have found that
the higher lattice energy cost in the heterostructured materi-
als decreases the structural signatures of the symmetry-broken
phase within the correlated material going through an MIT
but that the distortion associated with it can propagate into
the epitaxial layer. We have found that, as the effect of inter-
actions is increased in a layer-confined structure, electronic
disproportionation can be higher despite lower structural distor-
tions in a heterostructure. Through comparison with experiment
(9), our study suggests that the electronic disproportionation is
more likely to be correlated to the MIT temperature than the
structural disproportionation, which is suppressed by the higher
structural stiffness of the material. At the same time, our work
suggests that the structural disproportionation is more strongly
connected to the XAS splitting observed experimentally, likely
via the induced on-site electrostatic potential difference.

These general results can be used both to understand other
similar heterostructures (for example, LaNiO3/LaAlO3) as
well as to design new materials. Our analysis of the bond-
disproportionation mode on the interfacial structure in this class
of materials as well as in related classes of materials (vanadates,
manganites, etc.) can be studied both theoretically and exper-
imentally. The combination of bond angles, confinement, and
relative structural stiffness can be used to fine-tune MIT temper-
atures. Based on the methodology in this work and previous work
(3, 8), future work involving DFT+DMFT, DFT+U studies, and
model calculations can address the relative roles of lattice and
electronic disproportionation.

Methods
For our calculations, we use structures obtained from fully relaxed DFT+U
calculations (43) and impose 0% strain relative to the theoretical DFT bulk
NNO lattice constant on the heterostructures. We use Quantum Espresso,
ultrasoft pseudopotentials, either from the GBRV or generated by using the
Vanderbilt ultrasoft pseudopotential generator as described (43–47) and
benchmark our results against experimental bulk structures. The dispro-
portionated structures have 2 inequivalent Ni sites, 1 with relatively long
Ni–O bonds (LB) and 1 with relatively short Ni–O bonds (SB). We define the
structural order Q as:

Q =

√√√√∑i

(
l(i)LB− l(i)SB

)2

6
, [8]

where l(i) are the lengths of the Ni–O bonds.
For each structure, we then perform a self-consistent DFT calculation and

fit the bands arising from the frontier eg orbitals using maximally localized
Wannier functions as implemented in Wannier90 (48, 49). Bands for repre-
sentative structures near the Fermi level and their Wannier fits are shown
in Fig. 3. The parameter g in Eq. 5 is defined in terms of the on-site energy
difference ∆S = gQ entering our DMFT calculations. In our 1 shot DMFT,
g is corrected from the DFT value by a double-counting term (8, 32), so
g = gDFT (1 + (U− 5

3 J)χ0).
The Wannier fits define a low-energy tight-binding model to which we

add standard Slater–Kanamori interactions and solve using DMFT [using the
TRIQS library (50), ct-hyb solver (51), and dfttools (52) interface] with the 2
inequivalent Ni treated as different embedded atoms.

The parameter k is the stiffness to lattice distortions at fixed ∆N. We
argue, following refs. 3 and 8, that since the stiffness comes from the
full electronic structure at fixed ∆N, the frontier orbitals play a relatively
minor role and, for the purpose of calculating k, may be treated at the DFT
level. We therefore obtain k from the dependence of the DFT energy on
Q ∂EDFT

∂Q = cQ. However, in the DFT calculations, ∆N is relaxed at each Q.
Referring to Eq. 5, we have on the DFT level (and noting the stationarity
with respect to ∆N):

cQ =
∂EDFT

∂Q
= kQ−

1

2
gDFT

∆NDFT (Q). [9]

In the linear response regime, which accurately describes the DFT results for
all structures we considered, we find:

cQ2

2
= EDFT (Q) =

(
k

2
−

1

4

(
gDFT

)
2
χ0

)
Q2
. [10]

We can then extract c from the energy of continuously varying struc-
tures with different Q. Combining this with knowledge of gDFT and χ0 as
described below, we can then obtain the stiffness k. The parameter gDFT

is defined in terms of the average on-site energy ∆DFT
S obtained from our

Wannier fits to DFT band structures, as gDFT =
∆DFT

S
Q and ∆N(Q) is obtained

from the occupancy difference of the Wannier orbitals and is found to be
linear in Q, ∆N =χ0gDFT Q. This relation defines the on-site susceptibility
χ0. gDFT can be read off from the on-site energy difference and is nearly
identical for all 3 materials, namely, 2.89 eV/Å for bulk, 2.972 eV/Å for the
bilayer, and 2.962 eV/Å for the monolayer. This means that a similar move-
ment of the ions leads to a similar change of electrostatic potential, which
is something we would expect as the local environment is similar.
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