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Students in statistics or data science usually learn early on that
when the sample size n is large relative to the number of variables
p, fitting a logistic model by the method of maximum likelihood
produces estimates that are consistent and that there are well-
known formulas that quantify the variability of these estimates
which are used for the purpose of statistical inference. We are
often told that these calculations are approximately valid if we
have 5 to 10 observations per unknown parameter. This paper
shows that this is far from the case, and consequently, inferences
produced by common software packages are often unreliable.
Consider a logistic model with independent features in which n
and p become increasingly large in a fixed ratio. We prove that (i)
the maximum-likelihood estimate (MLE) is biased, (ii) the variabil-
ity of the MLE is far greater than classically estimated, and (iii) the
likelihood-ratio test (LRT) is not distributed as a χ2. The bias of the
MLE yields wrong predictions for the probability of a case based
on observed values of the covariates. We present a theory, which
provides explicit expressions for the asymptotic bias and variance
of the MLE and the asymptotic distribution of the LRT. We empiri-
cally demonstrate that these results are accurate in finite samples.
Our results depend only on a single measure of signal strength,
which leads to concrete proposals for obtaining accurate inference
in finite samples through the estimate of this measure.

logistic regression | high-dimensional inference | maximum-likelihood
estimate | likelihood-ratio test

Logistic regression (1, 2) is one of the most frequently used
models to estimate the probability of a binary response from

the value of multiple features/predictor variables. It is widely
used in the social sciences, the finance industry, the medical
sciences, and so on. As an example, a typical application of
logistic regression may be to predict the risk of developing a
given coronary heart disease from a patient’s observed charac-
teristics. Consequently, graduate students in statistics and many
fields that involve data analysis learn about logistic regression,
perhaps before any other nonlinear multivariate model. In par-
ticular, most students know how to interpret the excerpt of the
computer output from Fig. 1, which displays regression coef-
ficient estimates, standard errors, and P values for testing the
significance of the regression coefficients. In textbooks we learn
the following: (i) Fitting a model via maximum likelihood pro-
duces estimates that are approximately unbiased. (ii) There are
formulas to estimate the accuracy or variability of the maximum-
likelihood estimate (MLE) (used in the computer output
from Fig. 1).

These approximations come from asymptotic results. Imagine
we have n independent observations (yi , X i)where yi ∈{0, 1} is
the response variable and X i ∈Rp the vector of predictor vari-
ables. The logistic model posits that the probability of a case
conditional on the covariates is given by

P(yi = 1 | X i) = ρ′(X ′iβ),

where ρ′(t) = et/(1 + et) is the standard sigmoidal function.
When p is fixed and n→∞, the MLE β̂ obeys

√
n
(
β̂−β

)
d→N (0, I−1

β ), [1]

where Iβ is the p× p Fisher information matrix evaluated at
the true β (3). A classical way of understanding Eq. 1 is in
the case where the pairs (X i , yi) are i.i.d. and the covariates X i

are drawn from a distribution obeying mild conditions so that
the MLE exists and is unique. Now the limiting result Eq. 1
justifies the first claim of near unbiasedness. Further, software
packages then return standard errors by evaluating the inverse
Fisher information matrix at the MLE β̂ [this is what R (4)
does in Fig. 1]. In turn, these standard errors are then used
for the purpose of statistical inference; for instance, they are
used to produce P values for testing the significance of regres-
sion coefficients, which researchers use in thousands of scientific
studies.

Another well-known result in logistic regression is Wilks’
theorem (5), which gives the asymptotic distribution of the
likelihood-ratio test (LRT): (iii) Consider the likelihood ratio
obtained by dropping k variables from the model under study.
Then under the null hypothesis that none of the dropped vari-
ables belongs to the model, twice the log-likelihood ratio (LLR)
converges to a χ2 distribution with k degrees of freedom in
the limit of large samples. Once more, this approximation is
often used in many statistical software packages to obtain P val-
ues for testing the significance of individual and/or groups of
coefficients.

1. Failures in Moderately Large Dimensions
New technologies now produce extremely large datasets, often
with huge numbers of features on each of a comparatively small
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Fig. 1. Excerpt from an object of class “glm” obtained by fitting a logistic
model in R. The coefficient estimates β̂j are obtained by maximum likeli-
hood, and for each variable, R provides an estimate of the SD of β̂j as well
as a P value for testing whether βj = 0 or not.

number of experimental units. However, software packages and
practitioners continue to perform calculations as if classical the-
ory applies and, therefore, the main issue is this: Do these
approximations hold in high-dimensional settings where p is not
vanishingly small compared with n?

To address this question, we begin by showing results from an
empirical study. Throughout this section, we set n = 4, 000 and
unless otherwise specified, p = 800 (so that the “dimensionality”
p/n is equal to 1/5). We work with a matrix of covariates, which
has i.i.d. N (0, 1/n) entries, and different types of regression
coefficients scaled in such a way that

γ2 := Var(X ′iβ) = 5.

This is a crucial point: We want to make sure that the size of the
log-odds ratio X ′iβ does not increase with n or p, so that ρ′(X ′iβ)
is not trivially equal to either 0 or 1. Instead, we want to be in
a regime where accurate estimates of β translate into a precise
evaluation of a nontrivial probability. With our scaling γ=

√
5≈

2.236, about 95% of the observations will be such that −4.472≤
X ′iβ≤ 4.472 so that 0.011≤ ρ′(X ′iβ)≤ 0.989.

Unbiasedness? Fig. 2 plots the true and fitted coefficients in the
setting where one-quarter of the regression coefficients have a
magnitude equal to 10, and the rest are 0. Half of the nonzero
coefficients are positive and the other half are negative. A strik-
ing feature is that the black curve does not pass through the
center of the blue scatter. This disagrees with what we would
expect from classical theory. Clearly, the regression estimates
are not close to being unbiased. When the true effect size βj

Fig. 2. True signal values βj in black and corresponding ML estimates β̂j

(blue points). Observe that estimates of effect magnitudes are seriously
biased upward.

is positive, we see that the MLE tends to overestimate it. Sym-
metrically, when βj is negative, the MLE tends to underestimate
the effect sizes in the sense that the fitted values are in the same
direction but with magnitudes that are too large. In other words,
for most indexes |β̂j |> |βj | so that we are overestimating the
magnitudes of the effects.

The bias is not specific to this example as the theory we
develop in this paper will make clear. Consider a case where the
entries of β are drawn i.i.d. from N (3, 16) (the setup is other-
wise unchanged). Fig. 3A shows that the pairs (βj , β̂j ) are not
distributed around a straight line of slope 1; rather, they are dis-
tributed around a line with a larger slope. Our theory predicts
that the points should be scattered around a line with slope 1.499
shown in red, as if we could think that Eβ̂j ≈ 1.499βj .

This bias is highly problematic for estimating the probability
of our binary response. Suppose we are given a vector of covari-
ates X∗ and estimate the regression function f (X∗) =P(y =
1 | X∗) with

f̂ (X∗) = ρ′(X ′∗β̂).

Then because we tend to overestimate the magnitudes of the
effects, we will also tend to overestimate or underestimate the
probabilities depending on whether f (X∗) is greater or less than
a half. This is illustrated in Fig. 3B. Observe that when f (X∗)<
1/2, many predictions tend to be close to 0, even when f (X∗)
is nowhere near 0. A similar behavior is obtained by symme-
try; when f (X∗)> 1/2, we see a shrinkage toward the other end
point, namely, 1. Hence, we see a shrinkage toward the extremes
and the phenomenon is amplified as the true probability f (X∗)
approaches 0 or 1. Expressed differently, the MLE may pre-
dict that an outcome is almost certain (i.e., f̂ is close to 0 or 1)
when, in fact, the outcome is not at all certain. This behavior is
misleading.

Accuracy of Classical Standard Errors? Consider the same matrix
X as before and regression coefficients now sampled as follows:
Half of the βj s are i.i.d. draws from N (7, 1), and the other half
vanish. Fig. 4A shows standard errors computed via Monte Carlo
of maximum-likelihood (ML) estimates β̂j corresponding to null
coordinates. This is obtained by fixing the signal β and resam-
pling the response vector and covariate matrix 10, 000 times.
Note that for any null coordinate, the classical estimate of SE
based on the inverse Fisher information can be explicitly cal-
culated in this setting and turns out to be equal to 2.66 (SI
Appendix, section A). Since the SE values evidently concentrate

Fig. 3. (A) Scatterplot of the pairs (βj , β̂j) for i.i.d.N (3, 16) regression coef-
ficients. The black line has slope 1. Again, we see that the MLE seriously
overestimates effect magnitudes. The red line has slope α?≈ 1.499 pre-
dicted by the solution to Eq. 5. We can see that β̂j seems centered around
α?βj . (B) True conditional probability f(X*) = ρ′(X*

′ β) (black curve) and cor-

responding estimated probabilities f̂(X*) = ρ′(X*
′ β̂) (blue points). Observe

the dramatic shrinkage of the estimates toward the end points.
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Fig. 4. (A) Distribution of SE(β̂j) for each variable j, in which the SE is esti-
mated from 10, 000 samples. The classical SE value is shown in blue. Classical
theory underestimates the variability of the MLE. (B) SE estimates computed
from R for a single null (for which βj = 0) obtained across 10, 000 replicates
resampling the response vector and the covariate matrix.

around 4.75, we see that in higher dimensions, the variance of
the MLE is likely to be much larger than the classical asymptotic
variance. Naturally, using classical results would lead to incor-
rect P values and confidence statements, a major issue first noted
in ref. 6.

The variance estimates obtained from statistical software
packages are different from the value 2.66 above because they do
not take expectation over the covariates and use the MLE β̂ in
lieu of β (plugin estimate) (SI Appendix, section A). Since practi-
tioners often use these estimates, it is useful to describe how they
behave. To this end, for each of the 10, 000 samples (X, y) drawn
above, we obtain the R SE estimate for a single MLE coordi-
nate corresponding to a null variable. The histogram is shown
in Fig. 4B. The behavior for this specific coordinate is typical of
that observed for any other null coordinate, and the maximum
value for these standard errors remains below 4.5, significantly
below the typical values observed via Monte Carlo simulations in
Fig. 4A.

Distribution of the LRT? By now, the reader should be suspicious
that the χ2 approximation for the distribution of the likelihood-
ratio test holds in higher dimensions. Indeed, it does not and this
actually is not a new observation. In ref. 7, the authors estab-
lished that for a class of logistic regression models, the LRT
converges weakly to a multiple of a χ2 variable in an asymp-
totic regime in which both n and p tend to infinity in such a way
that p/n→κ∈ (0, 1/2). The multiplicative factor is an increas-
ing function of the limiting aspect ratio κ and exceeds 1 as soon as
κ is positive. This factor can be computed by solving a nonlinear
system of two equations in two unknowns given in Eq. 8 below.
Furthermore, ref. 7 links the distribution of the LRT with the

Fig. 5. P values calculated from the χ2
1 approximation to the LLR. Parame-

ters: n = 4, 000,κ= 0.2, with half the coordinates of β nonzero, generated
i.i.d. fromN (7, 1).

asymptotic variance of the marginals of the MLE, which turns
out to be provably higher than that given by the inverse Fisher
information. These findings are of course completely in line
with the conclusions from the previous paragraphs. The issue is
that the results from ref. 7 assume that β = 0; that is, they apply
under the global null where the response does not depend upon
the predictors, and it is a priori unclear how the theory would
extend beyond this case. Our goal in this paper is to study prop-
erties of the MLE and the LRT for high-dimensional logistic
regression models under general signal strengths—restricting to
the regime where the MLE exists.

To investigate what happens when we are not under the global
null, consider the same setting as in Fig. 4. Fig. 5 shows the dis-
tribution of P values for testing a null coefficient based on the
χ2 approximation. Not only are the P values far from uniform,
but also the enormous mass near 0 is problematic for multiple-
testing applications, where one examines P values at very high
levels of significance, e.g., near Bonferroni levels. In such appli-
cations, one would be bound to make a large number of false
discoveries from using P values produced by software packages.
To further demonstrate the large inflation near the small P val-
ues, we display in Table 1 estimates of the P-value probabilities in
bins near 0. The estimates are much higher than what is expected
from a uniform distribution. Clearly, the distribution of the LRT
is far from a χ2

1.

Summary. We have hopefully made the case that classical results,
which software packages continue to rely upon, can be inac-
curate in higher dimensions. (i) Estimates seem systematically
biased in the sense that effect magnitudes are overestimated. (ii)
Estimates are far more variable than classical results. And (iii)
inference measures, e.g., P values, are unreliable especially at
small values. Given the widespread use of logistic regression in
high dimensions, a theory explaining how to adjust inference to
make it valid is needed.

2. Our Contribution
We develop a theory for high-dimensional logistic regression
models with independent variables that is capable of accurately
describing all of the phenomena we have discussed. Taking them
one by one, the theory from this paper explicitly characterizes
(i) the bias of the MLE, (ii) the variability of the MLE, and
(iii) the distribution of the LRT, in an asymptotic regime where
the sample size and the number of features grow to infinity in
a fixed ratio. Moreover, we shall see that our asymptotic results
are extremely accurate in finite-sample settings in which p is a
fraction of n; e.g., p = 0.2n .

A useful feature of this theory is that in our model, all of our
results depend on the true coefficients β only through the sig-
nal strength γ, where γ2 := Var(X ′iβ). This immediately suggests
that estimating some high-dimensional parameter is not required
to adjust inference. We propose in Section 5 a method for esti-
mating γ and empirically study the quality of inference based on
this estimate.

Table 1. P-value probabilities with SEs in parentheses

Threshold, % Classical, %

P{P value≤ 5} 10.77(0.062)
P{P value≤ 1} 3.34(0.036)
P{P value≤ 0.5} 1.98(0.028)
P{P value≤ 0.1} 0.627(0.016)
P{P value≤ 0.05} 0.365(0.012)
P{P value≤ 0.01} 0.136(0.007)

Here, n = 4, 000, p = 800, X has i.i.d. Gaussian entries, and half of the
entries of β are drawn fromN (7, 1).
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Fig. 6. (A) Regions in which the MLE asymptotically exists and is unique
and in which it does not. The boundary curve is explicit and given by Eq. 4.
(B) In the setting of Fig. 3, scatterplot of the centered MLE β̂j −α?βj vs. the
true signal βj .

At the mathematical level, our arguments are very involved.
Our strategy is to introduce an approximate message-passing
algorithm that tracks the MLE in the limit of a large num-
ber of features and samples. In truth, a careful mathematical
analysis is delicate and we defer the mathematical details to
SI Appendix.

3. Prior Work
Asymptotic properties of M estimators in the context of linear
regression have been extensively studied in diverging dimensions
starting from ref. 8, followed by refs. 9 and 10, in the regime
p = o(nα), for some α< 1. Later on, the regime where p is com-
parable to n became the subject of a series of remarkable works
(11–14); these papers concern the distribution of M estimators
in linear models. The rigorous results from this literature all
assume strongly convex loss functions, a property critically miss-
ing in logistic regression. The techniques developed in the work
of El Karoui (14) and in ref. 13 play a crucial role in our analy-
sis; the connections are detailed in SI Appendix. While this paper
was under review, we also learned about extensions to penalized
versions of such strongly convex losses (15). Again, this litera-
ture is concerned with linear models only and it is natural to
wonder what extensions to generalized linear models might look
like; see the comments at the end of the talk (16). More general
exponential families were studied in refs. 17 and 18; these works
were also in setups subsumed under p = o(n). Very recently, ref.
19 investigated classical asymptotic normality of the MLE under
the global null and regimes in which it may break down as the
dimensionality increases.

In parallel, there exists an extensive body of literature on
penalized maximum-likelihood estimates/procedures for gener-
alized linear models; see refs. 20 and 21, for example, and the
references cited therein. This body of literature often allows p
to be larger than n but relies upon strong sparsity assumptions

on the underlying signal. The setting in these works is, therefore,
different from ours.

In the low-dimensional setting where the MLE is consistent,
finite-sample corrections to the MLE and the LRT have been
suggested in a series of works—see, for instance, refs. 22–35.
Although these finite-sample approaches aim at correcting the
problems described in the preceding sections, that is, the bias
of the MLE and nonuniformity of the P values, the correc-
tions are not sufficiently accurate in high dimensions and the
methods are often not scalable to high-dimensional data; see
SI Appendix, section A for some simulations in this direction.
A line of simulation-based results exists to guide practitioners
about the sample size required to avoid finite-sample problems
(36, 37). The rule of thumb is usually 10 events per variable
(EPV) or more but we shall later clearly see that such a rule
is not valid when the number of features is large. Ref. 38 con-
tested the previously established 10 EPV rule. To the best of our
knowledge, logistic regression in the regime where p is compa-
rable to n has been quite sparsely studied. This paper follows up
on the earlier contribution (7) of the authors, which character-
ized the LLR distribution in the case where there is no signal
(global null). This earlier reference derived the asymptotic dis-
tribution of the LLR as a function of the limiting ratio p/n . This
former result may be seen as a special case of Theorem 4, which
deals with general signal strengths. As is expected, the arguments
are now much more complicated than when working under the
global null.

4. Main Results
Setting. We describe the asymptotic properties of the MLE
and the LRT in a high-dimensional regime, where n and p
both go to infinity in such a way that p/n→κ> 0. We work
with independent observations {X i , yi} from a logistic model
such that P(yi = 1 | X i) = ρ′(X ′iβ). We assume here that X i ∼
N (0,n−1Ip), where Ip is the p-dimensional identity matrix. The
exact scaling of X i is not important. As noted before, the impor-
tant scaling is the signal strength X ′iβ and we assume that the p
regression coefficients (recall that p increases with n) are scaled
in such a way that

lim
n→∞

Var(X ′iβ) = γ2, [2]

where γ is fixed. It is useful to think of the parameter γ as
the signal strength. Another way to express Eq. 2 is to say that
limn→∞ ‖β‖2/n = γ2.
4.a. When Does the MLE Exist? The MLE β̂ is the minimizer
of the negative log-likelihood ` defined via (observe that the
sigmoid is the first derivative of ρ)

`(b) =

n∑
i=1

{ρ(X ′ib)− yi (X ′ib)}, ρ(t) = log(1 + et). [3]

Fig. 7. (A) Bias α? as a function of κ, for different values of the signal strength γ. Note the logarithmic scale for the y axis. The curves asymptote at the
value of κ for which the MLE ceases to exist. (B) Ratio of the theoretical SD σ? and the average SD of the coordinates, as obtained from classical theory; i.e.,
computed using the inverse of the Fisher information. (C) Functional dependence of the rescaling constant κσ2

?/λ? on the parameters κ and γ.
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Table 2. Empirical estimates of the centering and SD of the MLE

Parameter p = 200 p = 400 p = 800

α? = 1.1678 1.1703(0.0002) 1.1687(0.0002) 1.1681(0.0001)
σ? = 3.3466 3.3567(0.0011) 3.3519(0.0008) 3.3489(0.0006)

SEs of these estimates are within parentheses. In this setting, κ= 0.1 and
γ2 = 5. Half of the βjs are equal to 10 and the others to 0.

A first important remark is that in high dimensions, the MLE
does not asymptotically exist if the signal strength γ exceeds
a certain functional gMLE(κ) of the dimensionality: i.e., γ >
gMLE(κ). This happens because in such cases, there is a perfect
separating hyperplane—separating the cases from the controls if
you will—sending the MLE to infinity. It turns out that a com-
panion paper (39) precisely characterizes the region in which the
MLE exists.

Theorem 1 (39). Let Z be a standard normal variable with density
ϕ(t) and V be an independent continuous random variable with
density 2ρ′(γt)ϕ(t). With x+ = max(x , 0), set

g−1
MLE(γ) = min

t∈R

{
E(Z − tV )2+

}
, [4]

which is a decreasing function of γ. Then in the setting described
above,

γ > gMLE(κ) =⇒ limn,p→∞ P{MLE exists}= 0,
γ < gMLE(κ) =⇒ limn,p→∞ P{MLE exists}= 1.

Hence, the curve γ= gMLE(κ), or, equivalently, κ= g−1
MLE(γ)

shown in Fig. 6 separates the κ− γ plane into two regions: One
in which the MLE asymptotically exists and one in which it does
not. Clearly, we are interested in this paper in the former region
(the purple region in Fig. 6A).
4.b. A System of Nonlinear Equations. As we shall soon see,
the asymptotic behavior of both the MLE and the LRT is
characterized by a system of equations in three variables
(α,σ,λ),

Fig. 8. The setting is that from Table 2 with n = 4, 000. (A) Empirical cdf of
Φ(β̂j/σ?) for a null variable (βj = 0). (B) P values given by the LLR approxi-
mation Eq. 11 for this same null variable. (C) Empirical distribution of the
P values from B. (D) Same as C but showing accuracy in the lower tail
(check the range of the horizontal axis). All these plots are based on 500,000
replicates.

Table 3. P-value probabilities estimated over 500, 000 replicates
with standard errors in parentheses

Threshold, % p = 400, % p = 800, %

P{P value≤ 5} 5.03(0.031) 5.01(0.03)
P{P value≤ 1} 1.002(0.014) 1.005(0.014)
P{P value≤ 0.5} 0.503(0.01) 0.49(0.0099)
P{P value≤ 0.1} 0.109(0.004) 0.096(0.0044)
P{P value≤ 0.05} 0.052(0.003) 0.047(0.0031)
P{P value≤ 0.01} 0.008(0.0013) 0.008(0.0013)

Here, κ= 0.1 and the setting is otherwise the same as in Table 2.


σ2 =

1

κ2
E
[
2ρ′(Q1)

(
λρ′(proxλρ(Q2))

)2]
0 =E

[
ρ′(Q1)Q1λρ

′(proxλρ(Q2))
]

1−κ=E
[

2ρ′(Q1)

1 +λρ′′(proxλρ(Q2))

] , [5]

where (Q1,Q2) is a bivariate normal variable with mean 0 and
covariance

Σ(α,σ) =

[
γ2 −αγ2

−αγ2 α2γ2 +κσ2

]
. [6]

With ρ as in Eq. 3, the proximal mapping operator is defined via

proxλρ(z ) = arg min
t∈R

{
λρ(t) +

1

2
(t − z )2

}
. [7]

The system of equations in Eq. 5 is parameterized by the pair
(κ, γ) of dimensionality and signal strength parameters. It turns
out that the system admits a unique solution if and only if (κ, γ)
is in the region where the MLE asymptotically exists!

It is instructive to note that in the case where the signal
strength vanishes, γ= 0, the system of equations in Eq. 5 reduces
to the 2-dimensional system

σ2 =
1

κ2
E
[(
λρ′(proxλρ(τZ ))

)2]
1−κ=E

[
1

1 +λρ′′(proxλρ(τZ ))

] , [8]

where τ2 :=κσ2 and Z ∼N (0, 1). This holds because Q1 = 0. It
is not surprising that this system is that from ref. 7 since that work
considers β = 0 and, therefore, γ= 0.

We remark that similar equations have been obtained for
M estimators in linear models; see, for instance, ref. 11; SI
Appendix, Eqs. S1 and S2; and refs. 13–15.
4.c. The Average Behavior of the MLE. Our first main result
characterizes the “average” behavior of the MLE.

Theorem 2. Assume the dimensionality and signal strength parame-
ters κ and γ are such that γ < gMLE(κ) (the region where the MLE
exists asymptotically and is shown in Fig. 6). Assume the logistic
model described above where the empirical distribution of {βj}
converges weakly to a distribution Π with finite second moment.
Suppose further that the second moment converges in the sense
that as n→∞, Avej (β

2
j ) → Eβ2, β∼Π. Then for any pseudo-

Lipschitz function ψ of order 2,† the marginal distributions of the
MLE coordinates obey

†A function ψ :Rm→R is said to be pseudo-Lipschitz of order k if there
exists a constant L> 0 such that for all t0, t1 ∈Rm, ‖ψ(t0)−ψ(t1)‖≤
L
(

1 + ‖t0‖k−1 + ‖t1‖k−1
)
‖t0 − t1‖.
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Fig. 9. Simulation for a non-Gaussian design. The jth feature takes values
in {0, 1, 2} with probabilities p2

j , 2pj(1− pj), (1− pj)
2; here, pj ∈ [0.25, 0.75]

and pj 6= pk for j 6= k. Features are then centered and rescaled to have unit
variance. The setting is otherwise the same as for Fig. 3. (A) Analogue of
Fig. 3A. Red line has slope α?≈ 1.499. (B) Analogue of Fig. 6B. Observe
the same behavior as earlier: The theory predicts correctly the bias and the
decorrelation between the bias-adjusted residuals and the true effect sizes.

1

p

p∑
j=1

ψ(β̂j −α?βj ,βj )
a.s.−→ E[ψ(σ?Z ,β)], Z ∼N (0, 1), [9]

where β∼Π, independent of Z .
Among the many consequences of this result, we give three:

• This result quantifies the exact bias of the MLE in some sta-
tistical sense. This can be seen by taking ψ(t , u) = t in Eq. 9,
which leads to

1

p

p∑
j=1

(β̂j −α?βj )
a.s.−→ 0

and says that β̂j is centered about α? βj . This can be seen from
the empirical results from the previous sections as well. When
κ= 0.2 and γ=

√
5, the solution to Eq. 5 obeys α? = 1.499 and

Fig. 3A shows that this is the correct centering.

• Second, our result also provides the asymptotic variance of the
MLE marginals after they are properly centered. This can be
seen by taking ψ(t , u) = t2, which leads to

1

p

p∑
j=1

(β̂j −α?βj )2
a.s.−→ σ2

?.

As before, this can also be seen from the empirical results from
the previous section. When κ= 0.2 and γ=

√
5, the solution to

Eq. 5 obeys σ? = 4.744 and this is what we see in Fig. 4.

• Third, our result establishes that upon centering the MLE
around α?β, it becomes decorrelated from the signal β. This
can be seen by taking ψ(t , u) = tu , which leads to

1

p

p∑
j=1

(β̂j −α?βj )βj
a.s.−→ 0.

This can be seen from our earlier empirical results in Fig. 6B. The
scatter directly shows the decorrelated structure and the x axis
passes right through the center, corroborating our theoretical
finding.

It is of course interesting to study how the bias α? and the
SD σ? depend on the dimensionality κ and the signal strength γ.
We numerically observe that the larger the dimensionality and/or
the larger the signal strength, the larger the bias α? will be.
This dependence is illustrated in Fig. 7A. Further, note that as κ
approaches 0, the bias α?→ 1, indicating that the MLE is asymp-
totically unbiased if p = o(n). The same behavior applies to σ?;

that is, σ? increases in either κ or γ as shown in Fig. 7B. This
plot shows the theoretical prediction σ? divided by the average
classical SD obtained from I−1

β , the inverse of the Fisher infor-
mation. As κ approaches 0, the ratio goes to 1, indicating that
the classical SD value is valid for p = o(n); this is true across all
values of γ. As κ increases, the ratio deviates increasingly from 1
and we observe higher and higher variance inflation. In summary,
the MLE increasingly deviates from what is classically expected
as the dimensionality, the signal strength, or both increase.

Theorem 2 is an asymptotic result, and we study how fast
the asymptotic kicks in as we increase the sample size n . To
this end, we set κ= 0.1 and let half of the coordinates of β
have constant value 10 and the other half be 0. Note that in
this example, γ2 = 5 as before. Our goal is to empirically deter-
mine the parameters α? and σ? from 68, 000 runs, for each n
taking values in {2, 000, 4, 000, 8, 000}. Note that there are sev-
eral ways of determining α? empirically. For instance, the limit
Eq. 9 directly suggests taking the ratio

∑
j β̂j/

∑
j βj . An alter-

native is to consider taking the ratio when restricting the sum-
mation to nonzero indexes. Empirically, we find there is not
much difference between these two choices and choose the lat-
ter option, denoting it as α̂. With κ= 0.1, γ=

√
5, the solution to

Eq. 5 is equal to α? = 1.1678,σ? = 3.3466,λ? = 0.9605. Table 2
shows that α̂ is very slightly larger than α? in finite samples. How-
ever, observe that as the sample size increases, α̂ approaches α?,
confirming the result from Eq. 9.
4.d. The Distribution of the Null MLE Coordinates. Whereas The-
orem 2 describes the average or bulk behavior of the MLE across
all of its entries, our next result provides the explicit distribu-
tion of β̂j whenever βj = 0, i.e., whenever the j th variable is
independent from the response y .

Theorem 3. Let j be any variable such that βj = 0. Then in the
setting of Theorem 2, the MLE obeys

β̂j
d−→ N (0,σ2

?). [10]

Further, for any finite subset of null variables {i1, . . . , ik}, the
components of (β̂i1 , . . . , β̂ik ) are asymptotically independent.

Fig. 10. The features are multinomial as in Fig. 9 and the setting is other-
wise the same as in Fig. 8. (A) Empirical cdf of Φ(β̂j/σ?) for a null variable
(βj = 0). (B) P values given by the LLR approximation Eq. 11 for this same
null variable. (C) Empirical distribution of the P values from B. (D) Same as C
but displaying accuracy in the extreme. These results are based on 500, 000
replicates.
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Fig. 11. Null P values obtained using the (κσ̂2/λ̂)χ2
1 approximation plotted

against those obtained using (κσ2
?/λ?)χ2

1. Observe the perfect agreement
with the red diagonal.

In words, the null MLE coordinates are asymptotically normal
with mean 0 and variance given by the solution to the system Eq.
5. An important remark is this: We have observed that σ? is an
increasing function of γ. Hence, the distribution of a null MLE
coordinate depends on the magnitude of the remaining coordi-
nates of the signal: The variance increases as the other coefficient
magnitudes increase.

We return to the finite-sample precision of the asymptotic vari-
ance σ2

?. As an empirical estimate, we use β̂2
j averaged over the

null coordinates {j :βj = 0} since it is approximately unbiased
for σ2

?. We work in the setting of Table 2 in which σ? = 3.3466,
averaging our 68, 000 estimates. The results are given in Table 2;
we observe that σ̂ is very slightly larger than σ?. However, it
progressively gets closer to σ? as the sample size n increases.

Next, we study the accuracy of the asymptotic convergence
results in Eq. 4. In the setting of Table 2, we fit 500, 000 indepen-
dent logistic regression models and plot the empirical cumulative
distribution function of Φ(β̂j/σ?) in Fig. 8A for some fixed null
coordinate. Observe the perfect agreement with a straight line of
slope 1.
4.e. The Distribution of the LRT. We finally consider the distribu-
tion of the likelihood-ratio statistic for testing βj = 0.

Theorem 4. Consider the LLR Λj = minb : bj=0 `(b)−minb `(b) for
testing βj = 0. In the setting of Theorem 2, twice the LLR is
asymptotically distributed as a multiple of a χ2 under the null,

2Λj
d−→ κσ2

?

λ?
χ2
1. [11]

Also, the LLR for testing βi1 =βi2 = . . .=βik = 0 for any finite k

converges to the rescaled χ2 (κσ2
?/λ?

)
χ2
k under the null.

Theorem 4 explicitly states that the LLR does not follow a
χ2
1 distribution as soon as κ> 0 since the multiplicative factor

is then larger than 1, as demonstrated in Fig. 7C. In other words,
the LLR is stochastically much larger than a χ2

1, explaining the
large spike near 0 in Fig. 5. Also, Fig. 7C suggests that as κ→ 0,
the classical result is recovered.‡ We refer the readers to SI
Appendix, section G for an empirical comparison of the P val-
ues based on Eq. 11 and classical P values in settings with small
κ and moderate n, p.

Theorem 4 extends to arbitrary signal strengths the earlier
result from ref. 7, which described the distribution of the LLR
under the global null (βj = 0 for all j ). One can quickly verify

‡For the analytically motivated reader, we remark that unlike classical theory, here the
asymptotic distribution of the LRT, i.e., Theorem 4, does not follow directly from the
asymptotic normality result in Theorem 3. It requires additional probabilistic analysis.

that when γ= 0, the multiplicative factor in Eq. 11 is that given
in ref. 7, which easily follows from the fact that in this case, Eq. 5
reduces to Eq. 8. Furthermore, if the signal is sparse in the sense
that o(n) coefficients have nonzero values, then γ2 = 0, which
immediately implies that the asymptotic distribution for the LLR
from ref. 7 still holds in such cases.

To investigate the quality of the accuracy of Eq. 11 in finite
samples, we work on the P-value scale. We select a null coeffi-
cient and compute P values based on Eq. 11. The histogram for
the P values across 500, 000 runs is shown in Fig. 8B and the
empirical cumulative distribution function (cdf) in Fig. 8C. In
stark contrast to Fig. 4, we observe that the P values are uniform
over the bulk of the distribution.

From a multiple-testing perspective, it is essential to under-
stand the accuracy of the rescaled χ2 approximation in the tails
of the distribution. We plot the empirical cdf of the P values,
zooming in on the tail, in Fig. 8D. We find that the rescaled χ2

approximation works well even in the tails of the distribution. To
obtain a more refined idea of the quality of approximation, we
zoom in on the smaller bins close to 0 and provide estimates of
the P-value probabilities in Table 3 for n = 4, 000 and n = 8, 000.
The tail approximation is accurate, modulo a slight deviation in
the bin for P{P -value}≤ 0.1 for the smaller sample size. For
n = 8, 000, however, this deviation vanishes and we find perfect
coverage of the true values. It seems that our approximation is
extremely precise even in the tails.
4.f. Other Scalings. Throughout this section, we worked under
the assumption that limn→∞Var(X ′iβ) = γ2, which does not
depend on n , and we explained that this is the only scaling that
makes sense to avoid a trivial problem. We set the variables
to have variance 1/n but this is of course somewhat arbitrary.
For example, we could choose them to have variance v as in
X i ∼N (0, vIp). This means that X i =

√
vnZi , where Zi is as

before. This gives X ′iβ = Z′ib, where β = b/
√
nv . The conclusions

from Theorems 2 and 3 then hold for the model with predic-
tors Zi and regression coefficient sequence b. Consequently,
by simple rescaling, we can pass the properties of the MLE
in this model to those of the MLE in the model with predic-
tors X i and coefficients β. For instance, the SE of β̂ is equal
to σ?/

√
nv , where σ? is just as in Theorems 2 and 3. On the

Fig. 12. (A–D) ProbeFrontier estimates of signal strength γ̂ (A), bias α̂ (B),
SD σ̂ (C), and LRT factor κσ̂2/λ̂ (D) in Eq. 11, plotted against the theoretical
values.
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Table 4. Parameter estimates in the setting of Table 2: Averages
over 6,000 replicates with SEs within parentheses

Parameters True Estimates

γ 2.2361 2.2771(0.0012)
α 1.1678 1.1698(0.0001)
σ 3.3466 3.3751(0.0008)
κσ2/λ 1.166 1.1680(0.0001)

other hand, the result for the LRT, namely Theorem 4, is scale
invariant.

4.g. Non-Gaussian Covariates. Our model assumes that the fea-
tures are Gaussian. However, we expect that the same results
hold under other distributions with the proviso that they have
sufficiently light tails. In this section, we empirically study the
applicability of our results for certain non-Gaussian features.

In genetic studies, we often wish to understand how a
binary response/phenotype depends on single-nucleotide poly-
morphisms (SNPs), which typically take on values in {0, 1, 2}.
When the j th SNP is in Hardy–Weinberg equilibrium, the
chance of observing 0, 1, and 2 is respectively p2

j , 2pj (1− pj ),
and (1− pj )

2, where pj is between 0 and 1. Below we gener-
ate independent features with marginal distributions as above
for parameters pj varying in [0.25, 0.75]. We then center and
normalize each column of the feature matrix X to have 0
mean and unit variance. Keeping everything else as in the set-
ting of Fig. 3, we study the bias of the MLE in Fig. 9A. As
for Gaussian designs, the MLE seriously overestimates effect
magnitudes and our theoretical prediction α? accurately cor-
rects for the bias. We also see that the bias-adjusted residuals
β̂−α?β are uncorrelated with the effect sizes β, as shown
in Fig. 9B.

The bulk distribution of a null coordinate suggested by The-
orem 3 and the LRT distribution from Theorem 4 are displayed
in Fig. 10. Other than the design, the setting is the same as in
Fig. 8. The theoretical predictions are once again accurate. Fur-
thermore, upon examining the tails of the P-value distribution,
we once more observe a close agreement with our theoretical
predictions. All in all, these findings indicate that our theory is
expected to apply to a far broader class of features. We conduct
additional experiments based on real-data design matrices in SI
Appendix, section F.

That said, we caution readers against overinterpreting our
results. For linear models, for example, it is known that the dis-
tribution of M estimators in high dimensions can be significantly
different if the covariates follow a general elliptical distribution,
rather than a normal distribution (11, 14).

5. Adjusting Inference by Estimating the Signal Strength
All of our asymptotic results, namely, the average behavior
of the MLE, the asymptotic distribution of a null coordinate,
and the LLR, depend on the unknown signal strength γ. In
this section, we describe a simple procedure for estimating
this single parameter from an idea proposed by Boaz Nadler
and Rina Barber after E.J.C. presented the results from this
paper at the Mathematisches Forshunginstitut Oberwolfach on
March 12, 2018.

5.a. ProbeFrontier: Estimating γ by Probing the MLE Frontier. We
estimate the signal strength by actually using the predictions
from our theory, namely, the fact that we have asymptoti-
cally characterized in Section 4.a the region where the MLE
exists. We know from Theorem 1 that for each γ, there
is a maximum dimensionality g−1

MLE(γ) at which the MLE
ceases to exist. We propose an estimate κ̂ of g−1

MLE(γ) and

set γ̂= gMLE(κ̂). Below, we refer to this as the ProbeFrontier
method.

Given a data sample (yi , X i), we begin by choosing a fine grid
of values κ≤κ1≤κ2≤ . . .≤κK ≤ 1/2. For each κj , we execute
the following procedure:
Subsample. Sample nj = p/κj observations from the data with-
out replacement, rounding to the nearest integer. Ignoring the
rounding, the dimensionality of this subsample is p/nj =κj .
Check whether MLE exists. For the subsample, check whether the
MLE exists or not. This is done by solving a linear programing
feasibility problem; if there exists a vector b∈Rp such that X ′ib
is positive when yi = 1 and negative otherwise, then perfect sep-
aration between cases and controls occurs and the MLE does
not exist. Conversely, if the linear program is infeasible, then the
MLE exists.
Repeat. Repeat the two previous steps B times and compute the
proportion of times π̂(κj ) the MLE does not exist.

We next find (κj−1,κj ), such that κj is the smallest value in K
for which π̂(κj )≥ 0.5. By linear interpolation between κj−1 and
κj , we obtain κ̂ for which the proportion of times the MLE does
not exist would be 0.5. We set γ̂= gMLE(κ̂). (Since the “phase-
transition” boundary for the existence of the MLE is a smooth
function of κ, as is clear from Fig. 6, choosing a sufficiently fine
grid {κj} would make the linear interpolation step sufficiently
precise.)

5.b. Empirical Performance of Adjusted Inference. We demonstrate
the accuracy of ProbeFrontier via some empirical results. We
begin by generating 4,000 i.i.d. observations (yi , X i) using the
same setup as in Fig. 8 (κ= 0.1 and half of the regression
coefficients are null). We work with a sequence {κj} of points
spaced apart by 10−3 and obtain γ̂ via the procedure described
above, drawing 50 subsamples. Solving the system Eq. 5 using
κ= 0.1 and γ̂ yields estimates for the theoretical predictions
(α?,σ?,λ?) equal to (α̂, σ̂, λ̂) = (1.1681, 3.3513, 0.9629). In
turn, this yields an estimate for the multiplicative factor κσ2

?/λ?
in Eq. 11 equal to 1.1663. Recall from Section 4 that the the-
oretical values are (α?,σ?,λ?) = (1.1678, 3.3466, 0.9605) and
κσ2

?/λ? = 1.1660. Next, we compute the LLR statistic for each
null and P values from the approximation Eq. 11 in two ways:
First, by using the theoretically predicted values, and second, by
using our estimates. A scatterplot of these two sets of P values is
shown in Fig. 11 (blue). We observe impeccable agreement.

Next, we study the accuracy of γ̂ across different choices for γ,
ranging from 0.3 to 5. We begin by selecting a fine grid of γ values
and for each, we generate observations (yi , X i) with n = 4, 000,
p = 400 (so that κ= 0.1), and half the coefficients have a nonvan-
ishing magnitude scaled in such a way that the signal strength is γ.
Fig. 12A displays γ̂ vs. γ in blue, and we note that ProbeFrontier
works very well. We observe that the blue points fluctuate very

Fig. 13. (A) Empirical distribution of the P values based on the LLR approx-
imation Eq. 11, obtained using the estimated factor κσ̂2/λ̂. (B) Same as A,
but showing the tail of the empirical cdf. The calculations are based on
500,000 replicates.
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Fig. 14. (A) Scatterplot of the pairs (βj , β̂j) for the dataset from Fig. 3. Here,
α? = 1.499 (red line) and our ProbeFrontier estimate is α̂= 1.511 (green
line). The estimate is so close that the green line masks the red. (B) True
conditional probabilities ρ′(X′i β) (black curve) and corresponding estimated
probabilities ρ′(X iβ̂/α̂) computed from the debiased MLE (blue points).
Observe that the black curve now passes through the center of the blue
point cloud. Our predictions are fairly unbiased.

mildly above the diagonal for larger values of the signal strength
but remain extremely close to the diagonal throughout. This con-
firms that ProbeFrontier estimates the signal strength γ with
reasonably high precision. Having obtained an accurate estimate
for γ, plugging it into Eq. 5 immediately yields an estimate for
the bias α?, SDσ?, and the rescaling factor in Eq. 11. We study
the accuracy of these estimates in Fig. 12 B–D. We observe a
similar behavior in all these cases, with the procedure yielding
extremely precise estimates for smaller values and reasonably
accurate estimates for higher values.

Finally, we focus on the estimation accuracy for a particular
(κ, γ) pair across several replicates. In the setting of Fig. 8, we
generate 6,000 samples and obtain estimates of bias (α̂), SD (σ̂),
and rescaling factor for the LRT (κσ̂2/λ̂). The averages of these
estimates are reported in Table 4. Our estimates always recover
the true values up to the first digit. It is instructive to study the
precision of the procedure on the P-value scale. To this end, we
compute P values from Eq. 11, using the estimated multiplica-
tive factor κσ̂2/λ̂. The empirical cdf of the P values both in the
bulk and in the extreme tails is shown in Fig. 13. We observe
perfect agreement with the uniform distribution, establishing the
practical applicability of our theory and methods.

5.c. Debiasing the MLE and Its Predictions. We have seen that
maximum likelihood produces biased coefficient estimates and
predictions. The question is, how precisely can our proposed the-
ory and methods correct this? Recall the example from Fig. 3,
where the theoretical prediction for the bias is α? = 1.499. For
this dataset, ProbeFrontier yields α̂= 1.511, shown as the green

line in Fig. 14A. Clearly, the estimate of bias is extremely precise
and coefficient estimates β̂j/α̂ appear nearly unbiased.

Further, we can also use our estimate of bias to refine the
predictions since we can estimate the regression function by
ρ′(X ′β̂/α̂). Fig. 14B shows our predictions on the same dataset.
In stark contrast to Fig. 3B, the predictions are now centered
around the regression function and the massive shrinkage toward
the extremes has disappeared. The predictions constructed from
the debiased MLE are more accurate and no longer falsely
predict almost certain outcomes. Rather, we obtain fairly non-
trivial chances of being classified in either of the two response
categories—as it should be.

6. Broader Implications and Future Directions
This paper shows that in high dimensions, classical ML theory
has limitations; e.g., classical theory predicts that the MLE is
approximately unbiased when in reality it overestimates effect
magnitudes. Since the purpose of logistic modeling is to estimate
the risk of a specific disease given a patient’s observed charac-
teristics, for example, the bias of the MLE is problematic. A
consequence of the bias is that the MLE pushes the predicted
chance of being sick toward 0 or 1. This, along with the fact that
P values computed from classical approximations are misleading
in high dimensions, clearly make the case that routinely used sta-
tistical tools fail to provide meaningful inferences from both an
estimation and a testing perspective.

We have developed a theory which gives the asymptotic distri-
bution of the MLE and the LRT in a model with independent
covariates. As seen in Section 4.g, our results likely hold for a
broader range of feature distributions (i.e., other than Gaussian)
and it would be important to establish this rigorously. Further,
we have also shown how to adjust inference by plugging in an
estimate of signal strength in our theoretical predictions.

We conclude with a few directions for future work: It would
be of interest to develop corresponding results in the case where
the predictors are correlated and to extend the results from this
paper to other generalized linear models. Further, it is crucial
to understand the robustness of our proposed P values to model
misspecifications. We provide some preliminary simulations in SI
Appendix, section E. Finally, covariates following general ellipti-
cal distributions can be challenging, as shown in refs. 11 and 14
in the context of linear models. Hence, caution is in order as to
the broader applicability of our theory.
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