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Background: Ear andmastoid disease can easily be treated by early detection and appropriatemedical care. How-
ever, short of specialists and relatively lowdiagnostic accuracy calls for a newwayof diagnostic strategy, inwhich
deep learning may play a significant role. The current study presents a machine learning model to automatically
diagnose ear disease using a large database of otoendoscopic images acquired in the clinical environment.
Methods: Total 10,544 otoendoscopic images were used to train nine public convolution-based deep neural net-
works to classify eardrum and external auditory canal features into six categories of ear diseases, covering most
ear diseases (Normal, Attic retraction, Tympanic perforation, Otitis externa±myringitis, Tumor). After evaluating
several optimization schemes, two best-performingmodels were selected to compose an ensemble classifier, by
combining classification scores of each classifier.
Findings: According to accuracy and training time, transfer learning models based on Inception-V3 and
ResNet101 were chosen and the ensemble classifier using the two models yielded a significant improvement
over each model, the accuracy of which is in average 93·67% for the 5-folds cross-validation. Considering sub-
stantial data-size dependency of classifier performance in the transfer learning, evaluated in this study, the
high accuracy in the current model is attributable to the large database.
Interpretation: The current study is unprecedented in terms of both disease diversity and diagnostic accuracy,
which is compatible or even better than an average otolaryngologist. The classifierwas trainedwith data in a var-
ious acquisition condition,which is suitable for the practical environment. This study shows the usefulness of uti-
lizing a deep learning model in the early detection and treatment of ear disease in the clinical situation.
Fund: This research was supported by Brain Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science and ICT(NRF-2017M3C7A1049051).
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ear and mastoid disease (International Statistical Classification of
Diseases and Related Health Problems (ICD) code H.60-H.95) is a com-
mon disease that can easily be treated with early medical care. Never-
theless, if one does not receive timely detection and appropriate
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treatment, it may leave sequelae, such as hearing impairment. In the
evaluation of ear andmastoid disease in the clinic, physical examination
using conventional otoscopy or otoendoscopy as well as history taking
is the first step. However, diagnosis by non-otolaryngologists using
otoscopy or otoendoscopy is highly susceptible to misdiagnosis [1]. In
a study by Pichichero, Poole [2], the correct diagnosis rate of otitis
media diagnosed by 514 pediatricians using pneumatic otoscope was
an average rate of 50%. The study also shows a higher (compared to pe-
diatricians) but not a satisfactory accuracy of 73% when diagnosed by
188 otolaryngologists. This low diagnostic accuracy implies that diagno-
sis of ear disease without the help of additional resources such as imag-
ing or acoustic testing is difficult even for specialists. The short of
specialists in the local clinic and their relatively low diagnostic accuracy
calls for a new way of diagnostic strategy, in which machine learning
may play a significant role.
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Research in context

Evidence before this study

Ear and mastoid disease is a common disease, which demands
early and appropriate diagnosis with otoscopy or otoendoscopy,
but is not trivial in local clinics and the diagnosis rate even by oto-
laryngologists using ear images show an unsatisfactory accuracy,
as low as 73%. So far, the best known study for automatic diag-
nosis of ear disease using images has been done with tympanic
membrane using a shallow neural network of relatively small
data size (n ~ 390) with an accuracy of 86.84%, however, the
previous method is only capable of partially diagnosing middle
ear disease.

Added value of this study

This is the first study to utilize a deep learning scheme to classify
tympanic membrane otoendoscopic images into six diagnostic
categories, especially including attic retractions and tumors,
using a large database (n = 10,544), and the deep learning
model covers most of the ear diseases in the clinic, not only on
themiddle ear but also on the external ear. It also dealswith an un-
standardized clinical image set as-iswithout image quality control,
which makes the current system adaptable to the real-world clini-
cal setting. The ensemble classifier, which we propose, shows
better performance than using a single transferred deep learning
model with an accuracy of 93·67%.

Implications of all the available evidence

According to our evaluation on the relationship between database
size and the performance of the transfer deep learning models,
current study suggests the need for a sufficient size of the data-
base for a reliable classification performance in the medical
image domain.
Due to the high accuracy and the diagnostic coverage in the pro-
posed model, clinicians with less experience in otoendoscopy, or
other specialty physicians such as pediatricians, emergency, or
family medicine doctors could be benefitted from the model and
thus it may result in alleviating the burden of the growing number
of patients with hearing impairment.
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As far as we know, relatively few machine learning studies have
been conducted for automated diagnosis of ear disease using otoscopic
images. Myburgh and colleagues reported auto-diagnosis of otitis
media, with an accuracy of 81·58% by decision tree and 86·84% by neu-
ral network method [3], which conducted a classification of tympanic
membrane into five groups between normal eardrum, otitis media
with perforation, acute otitismedia, otitismediawith effusion and ceru-
men impaction. However, the classification categories lack important
and critical diagnosis such as attic retraction.

For clinical use, the current study is conducted to provide a reliable
diagnosis of otitis media, attic retraction, atelectasis, tumors, and otitis
externa, usingdeep learning for otoscopy photos of the eardrumand ex-
ternal auditory canal (EAC). These categories cover most of the domain
of ear diseases that could be diagnosed using otoendoscopy in the
clinics. For this, we proposed an ensemble classifier of two best-
performing deep neural networks evaluated for ear images.

Deep learning or deep neural network has been introduced to vari-
ous fields of medicine successfully. For example, in the field of ophthal-
mology, themachine learning result is comparable to a level of specialist
[4–6].Most of these studies utilize convolutional neural network (CNN),
a supervised deep learning method. However, building CNN from
scratch requires a large amount of dataset and computational power,
which is not practical in many application areas. Instead, public CNN
models pretrained for natural images could be reused and fine-tuned
to a specific application, which is called transfer learning. In transfer
learning,most network layers in a public networkmodel are transferred
to a new model, followed by a new fully-connected layer that classifies
those features into a new set of classes. Studies with transfer learning
for medical imaging showed high classification accuracy comparable
to, or even better to building CNN from scratch [7,8].

This study is composed of the following three main parts. First, we
evaluated the performance of nine public models to choose the best
models in terms of accuracy and training time for the current applica-
tion. Based on this evaluation, ensemble classifier to combine multiple
models' classification results was proposed, which is expected to in-
crease the overall classification performance than using a single classi-
fier. Second, although transfer learning is known to be efficient in a
relatively small dataset (as in labelledmedical images), the dependency
of the classification accuracy andmodel type on the size of the dataset is
not exampled yet. Thus, we tested the performance of the classifier de-
pending on the data size. We also conducted optimization of the model
configuration, by assigning a hidden layer in the fully connected net-
work layer, and changing colour channels in the image database. Finally,
we showed and discussed the characteristics of the proposed model for
diagnosing ear diseases in the clinical setting.

2. Materials and methods

2.1. Patient selection and data acquisition

Data from patients who visited the outpatient clinic in Severance
Hospital otorhinolaryngology department from the year 2013 to 2017
were used. As a routine, patients had their otoendoscopic photo taken
upon visit. Drum photos were taken with either 4 mm or 2.7 mm
OTOLUX 0-degree telescope (MGB Endoskopische Geräte GmbH Berlin,
Germany) tethered to Olympus OTV-SP1 video imaging system (Olym-
pus Corporation, Japan), by otolaryngology residents, faculty or experi-
enced nurses. The image resolution was 640 by 480 pixels. A total of
19,496 endoscope photos were reviewed for labelling. Since
otoendoscopic findings of post-surgery status are mostly subjective
and rely on the surgeon, 7602 photos were excluded. Additionally,
1350 photos were excluded since the photos were not appropriate for
examination, for example, sites not related to eardrum or EAC, dupli-
cates, the picture was significantly blurred due to handshakes or focus
problems, or the author could not agree despite attending physician's
medical records, acoustic and radiologic test results. Since photos
were taken by several clinicians, and the external auditory canal is sub-
ject to individual variation, the composition of photography was not
standardized; colour arrangements, white balance, eardrum size, loca-
tion, rotation, angle, and light reflection in images were variable, but
the photo was analyzed as-is to reflect real-life clinical setting. In addi-
tion, partially visible eardrums due to the image's field of view not con-
taining the whole eardrumwere included in the analysis. Finally, a total
of 10,544 otoendoscopic images of eardrumand EAC frompatientswere
analyzed. This retrospective study was approved by the Severance Hos-
pital Institutional Review Boards.

2.2. Labelling of images

Photos of eardrums and its surrounding EAC were taken with
otoendoscope and were labelled into six categories. The classification
was done according to Colour Atlas of Endo-Otoscopy [9]. A normal ear-
drum and EAC included: 1) completely normal eardrum, 2) normal
but showing healed perforation, 3) normal with some
tympanosclerosis. Abnormal findings included: 1) tumorous condition
which includes middle ear tumors, EAC tumors, and cerumen
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Fig. 1. Decision tree for labelling of otoendoscopy image and six diagnostic classes. Classes that were used for training are marked with an asterisk. EAC: external auditory canal.
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impaction, 2) otitis media with effusion, 3) eardrum erosions, otitis
externa, 4) perforation of the eardrum, 5) attic retraction/atelectasis
(Fig. 1). Some classes have relatively small numbers of samples for
training. In order to balance the sample size for each class, we merged
(a) Tympanic perforation (n=3,370) (b) Attic retraction 
or atelectasis (n=1,12

(d) Otitis media with effusion (n=787) (e) Middle ear or EAC
cerumen impaction (n

A

B

Fig. 2. A) Examples of six classifications of ear disease, sorted by labelling prio
several sub-classes into a class according to their similarity in diagnosis
and treatment. Three normal diagnoses are trained as one big “Normal”
class. “Tumor” class include cerumen impaction, EAC tumors, and mid-
dle ear tumors since they share a common property that the eardrum
2)
(c) Myringitis or 
Acute otitis media/externa (n=430)

 tumor or 
=493)

(f) Normal eardrum (n=4,342)

rity (total n = 10,544). B) Example of image diversity labelled “Normal”.
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is not well-visible, and since they often require surgical procedures.
Attic retraction (or destruction) and eardrum atelectasis has been
merged into “Aradom” class, since it shares common pathogenesis and
physicalfindings, and often requires surgical intervention. Otitis externa
and myringitis have been merged into “Myriaom-otex” class since
otorrhea is the main symptom, the physical finding is similar, and
first-line treatment is antibiotics.

The number of images used and samples representing each classifi-
cation is shown in Fig. 2A. If there are more than one features of the ear
disease, for example, tympanic perforation with attic retraction, it was
labelled as tympanic perforation, according to our labelling priority.
The priority is based on the certainty of the diagnosis and clinical impor-
tance, for example, requiring surgical intervention. Of note, image ac-
quisition was not standardized in any fashion and was labelled and
trained as-is. Examples of diversity in image acquisition include differ-
ences in white balance, image composition, presence of cerumen, posi-
tion of the eardrum in the image. The exemplary images for diversity in
the normal class are presented in Fig. 2B.

An in-house graphic user interface software implemented on
MATLAB2019a® (MathWorks, Inc., Natick, Massachusetts, United
States) was used for manual labelling. As mentioned above, study by
Pichichero, Poole [2], confirms the limited accuracy by a single physician
is below 75% at best, numerous methods were used for labelling the
ground truth of otoendoscopic image. The images of eardrum and EAC
were labelled by the first author, and all the images were double
checked by reviewing electronic medical record written by attending
physician at the time, who had at least 10 years of experience in a ter-
tiary referral center. Since this study is retrospective, additional clinical
demographic and symptomatic data was used. In addition, acoustic test
results (pure tone audiometry, impedance audiometry) were often
available along with computed tomography, magnetic resonance imag-
ing results were used for more accurate labelling. For example, if pure
tone audiometry and/or impedance audiometry data was available, it
was used for labelling otitis media with effusion or tympanic perfora-
tion. Temporal bone computed tomography or magnetic resonance im-
aging results were also used if available. If the classification of
otoendoscopic image could not come to an agreement even after
reviewing all of the available information, it was discarded.

2.3. Training transfer learning network models

Public deep learning models pretrained with ImageNet database
(http://www.image-net.org), capable of classifying 1000 natural ob-
jects, were used for training the model for otoendoscopic images.
Among many deep learning models publicly available, Alexnet [10],
GoogLeNet [11], ResNet [12] (ResNet18, ResNet50, ResNet101),
Inception-V3 [13], Inception-ResNet-V2 [14], SqueezeNet [15], and
MobileNet-V2 [16] were used and compared since these network
models are known to show higher performance in the accuracy when
compared with any other networks with similar prediction time.
Smaller size networks models were also included to see the perfor-
mance for online processing. When transferring layers in public models
to newmodels, we replaced the last fully connected layer of eachmodel
with a new fully-connected layer with six output nodes, followed by a
softmax activation function. The trainingwas conducted using an Adap-
tive moment estimation (ADAM) [17] with a batch size of 50, the max-
imum epoch of 20 and an initial learning rate of 0·0001. The initial
learning rate of 0·0001, which may seem low, was selected according
to our experience that using conventional learning rate of 0·01 to
0·001 did not converge in the current application. For the fully con-
nected layer, we assigned weight and bias learning rate factors of 10
to render faster learning in the new layer than in the transferred layers.
This study was conducted using Deep Learning Toolbox in MATLAB
2019a over four graphics processing unit (GPU) in the DGX station
(NVIDIA, inc., USA). To augment data, we conducted random X and Y
translation of input images from −45 to 45 pixels, random rotations
from −30 to 30 degrees, random scales between 0.8 and 1.2 and ran-
dom left/right flips to render translation, rotation, scale and left/right
invariance.

1. Selection of the best two models: the best two among nine models
were selected by evaluating the performance of each model in
terms of accuracy and calculation time. From a total of 10,544
otoendoscopic images, 80% of the images were used for training;
20% were left out for validation of the model. This training-
validation stepwas done twicewith different sets of training and val-
idation data. According to the mean accuracy and calculation time,
we chose two models.

2. Performance according to data size, and hidden layer in the fully
connected layer and colour channels: We evaluated the perfor-
mance for all ninemodels for the half and a quarter of the full dataset,
to compare thosewith the performance trainedwith all the data.We
also evaluated the performance for a model with an additional hid-
den layer (node size =25) between the input layer and the output
layer in the fully connected neural network. We also evaluated the
performance for changing colour (RGB) orders by changing R and G
channels in the image data since public network models were
trained with natural images different from the current ear images.

3. Ensemble classifier: We generated an ensemble classifier that com-
bines classifiers' outputs from the best two models. Each classifier
scores the probability of an input image to be one of six classes and
the maximal score among all classes is chosen as a predicted label.
The ensemble classifier adds the two scores from the two models
for an input image and the class having a maximal score is chosen
to be the image's label.

4. Cross-validation: For the best two models and the ensemble classi-
fier, we conducted five-fold cross-validation for each classifier and
evaluated the classification performance in terms of accuracy.

3. Results

Accuracy, training time (GPU time), the number of parameters of
each transferred model is presented in Table 1. The number of parame-
ters was referred from the MATLAB official web site (https://www.
mathworks.com/help/deeplearning/ug/pretrained-convolutional-
neural-networks.html). There was no significant improvement in the
models with a hidden layer (number of nodes = 25, H25 in Table 1).
The average accuracy between different sets of data size showed signif-
icant improvement according to data size - 78·88% for data set of n =
2000, 85·62% for data set of n = 5000, and 90·21% for the entire data
set of n = 10,544 (Fig. 3). The performance of nine models was evalu-
ated without a hidden layer in the fully connected neural network.
The best accuracy was yielded by the Inception-ResNet-V2 (92·1%),
Inception-V3 (92%) and ResNet101 (91·55%) in order. Despite its accu-
racy, the Inception-ResNet-V2 (33,283 s) had three times longer train-
ing time than those of Inception-V3 (11,938 s) or ResNet101
(12,215 s). Therefore, we finally chose Inception-V3 and ResNet101 as
best transferred network models for the subsequent analysis.

From these twomodels, we generated an ensemble classifier, which
decides the image label according to the sum of the two models' scores
for the given image (Fig. 4). Fig. 5 shows examples of improvement
using the ensemble classifier by evaluating the sum of classification
scores of the two network models. Repeated measures one-way
ANOVA for the 5-fold cross-validation tests (Fig. 6) showed that the en-
semble model was significantly better than the other twomodels in ac-
curacy [p = 0·0005, Repeated measures one-way ANOVA].

Overall, the system was able to achieve an average of 93·73% diag-
nostic accuracy. Fig. 7 displays the confusion matrices for Inception-
V3, ResNet101, and the ensemble classifier at the fold (among 5-folds)
having a maximal accuracy. Fig. 8 shows a representative figure of clas-
sification result from “InceptionV3 + ResNet101 ensemble” model.

http://www.image-net.org
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html


Table 1
Performance table of training models.

Transferred models Accuracy GPU time (seconds) Parameters (millions) Number of layers

Full Full-H25 Quarter Half

SqueezeNet 85.55 85.5 73.5 82.8 4137 1.24 68
Alexnet 87.2 83.6 73.7 82.6 3805 61 25
ResNet18 90.65 90.2 83.4 86 4256 11.7 72
MobileNet-v2 90.75 89.8 79.9 84.9 7032 3.5 155
GoogLeNet 90.9 88.7 68.2 85.5 5104 7 144
Resnet50 91.2 91.4 81.3 86.3 7302 25.6 177
Resnet101 91.55 91.7 83.6 86.1 12,215 44.6 347
Inception-v3 92 92.1 84.1 89.5 11,938 23.9 316
InceptionResnet-v2 92.1 91.9 82.2 86.9 33,283 55.9 825

“Quarter” set used about 2000 images for training and validation.
“Half” set used about 5000 images for training and validation.
“Full” represents an average accuracy of twice evaluation of full dataset (80% training and 20% validation).
“Full-H25” represents adding additional 25 fully connected hidden layer to “Full” model.
GPU time represents the processing power needed for training the model.
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4. Discussion

Despite many efforts to improve diagnostic accuracy, diagnosis of
otitismediamainly relies on otoscopy and often relies on physician's ex-
perience [18]. Diagnosis by otoendoscopy requires expertise in image
diagnosis; in a study with video-presented examination for diagnosis,
otolaryngologists performed significantly better than pediatricians and
general practitioners [19]. Even for otolaryngologists, diagnosis of otitis
media by otoendoscopy is not trivial. In a study, a series of surveys for
diagnosis of eardrum images with twelve fellowship-trained
neurotologists in the United States was conducted with overall correct-
ness of diagnosis for ear pathologies ranging from 48·6 to 100%. Along
with the diagnosis, the reviewer was also asked to rate the confidence
of diagnosis, which revealed overall mean 8·1 out of 10, which means
even for a specialist, they are only about 80% certain about their diagno-
sis on average. In these situations, the current deep network model
could help physicians by suggesting possible diagnosis based on
otoendoscopic image, and they could achieve better diagnostic accuracy
by combining clinical information along with suggestion.

The current image classification model, based on transfer learning
with deep convolutional neural network, classified middle ear and
EAC pathologies into six categories with a mean accuracy of 93·73%,
which is unprecedented in terms of both accuracy and diagnostic diver-
sity. This high accuracy formultiple classes is partly due to the size of the
current database. In the current model, 10,544 labelled otoendoscopic
images were used, which is significantly bigger than any other studies
to our knowledge. Previous studies from other groups utilized 391 and
389 images and yielded 80·6% and 86·84% of five classes focused only
on otitis media [3,20]. Compared to other previous studies, the
* p<0.0001

* p=0.0012 *p=0.0012

Fig. 3. Accuracy grouped by sample size. The bar represents 95% Confidence interval.
Quarter: Data set of n = 2000. Half: Data set of n = 5000. Full: Data set of n = 10,544.
*: statistically significant [Mann-Whitney test].
advantage of the current model is that this study included almost all
eardrum and EAC pathologies, especially tumors, attic retraction, and
eardrum atelectasis, which is a crucial part of diagnosis in the real-
world clinical setting. Retraction of the eardrum may indicate chronic
otitis media, especially if retraction pocket or destruction is present in
the attic area and should not be missed in the clinic. Middle ear tumors
such as glomus tumor and congenital cholesteatomaare rare, and due to
its rare prevalence, there is a considerable chance ofmissing the diagno-
sis unless examined by an experienced physicianwith clinical suspicion.
The current image classification model is the first to diagnose these
pathologies.

It should be noted that we intentionally included all the clinical ear
images (except for no ear images), without any selection bias for train-
ing. Unlike X-ray images or histology slide images, there is no standard-
ization for image acquisition or quality controls in the ear images.White
balance is not always equal, which in turn leads to inconsistent skin or
eardrum colour. Camera exposure may not optimally focus on eardrum
in case of a tortuous external auditory canal or mass blocking the ear-
drum. Blurry or out of focus images happen quite often. The eardrum
is not always in the centre of the image. Rotation, tilting of the image
is inconsistent. Such example is illustrated in Fig. 2B. We included
most of the images as long as a clinician could get an impression for di-
agnosis upon given image. We speculate that this practical image data-
base (including uncleaned data)makes the performance of themodel to
be dependent on the database size.

Reducing the number of images for training to 2000 images, and
5000 images, the average accuracy was declined to a level of around
80% and 86%. MannWhitney tests for accuracy among the three condi-
tions showed statistical significance (Fig. 3). These results indicate that
it is hard to get a satisfactory result with a small amount of data for
training even in the transfer learning, at least in the current ear diagno-
sis. If the otoendoscopic imageswere acquired in a standardized setting,
similar accuracy could have been achievable with fewer images. A big
amount of data is advantageous for a deep network model to find fea-
tures that explain various disorders regardless of clinical conditions.

Another thing to note is that as the data set gets bigger, the perfor-
mance gap between training models gets reduced (Table 1). With this
in mind, the efficiency of training (training time versus accuracy) for
each model should be considered in choosing the best model. As for
InceptionResNet-V2 model, the accuracy is only 0·5% better than
Inception-V3 model, yet requiring almost 3 times as much training
time, in other words, processing power. Therefore, Inception-V3
model seems to be the best choice considering the efficiency of training.
When it comes to execution time, the number of parameters are related
to calculation time. The MobileNet-V2 model, which has only 3·5 mil-
lion parameters, achieved 90·75% accuracy, which is not best in terms
of accuracy. However, given that it has fewer parameters than other
competitors, this model could be more useful in devices with less
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ResNet101 model, Ensemble: Prediction using ensemble of both models, Target: Ground truth. The second row shows classification scores of Inception-V3 model. The third row shows
classification scores of ResNet101 model. Classification scores are represented in the following order: Aradom-Myriaom-Normal-Ome-Tp-Tumor.
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Fig. 6. Accuracy comparison between three methods. The bar represents 1 Standard
deviation. Mean accuracy is 0·9154, 0·9251, 0·9373, respectively. *: statistically
significant (P = 0·0001) [Repeated measures one-way ANOVA].
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processing powers, such as mobile phones. In this case, CNN models
with fewer parametersmay be optimalwith acceptable diagnostic accu-
racy, given that the model has been trained with a sufficiently large
number of images.

Adding an additional fully connected layer in front of the final
classifiers did not help in this study. Changing colour (RGB) orders
by switching R and G channels in the image data show similar or
lower accuracy than utilizing natural RGB channels. Although all
these variations were not beneficial in the current study, we think
it is too early to conclude the generality for these schemes in other
applications.

Transfer learning method is popularly used in the medical image
analysis as it makes it possible to apply deep learning techniques to a
relatively small dataset without significantly sacrificing accuracy. It
shows a highly reliable accuracy in various medical image diagnosis
[7,8]. This study is in line with the previous studies of transfer learning
with fine-tuning tomake it applicable to the specific domain of medical
image diagnosis. In thefield of ophthalmology, transfer learningwas ap-
plied to diagnose retinal optical coherence tomography (OCT) images,
allowing similar accuracy to a model with the full training data with
less training data [21,22]. Also, there are studies focused onmicroscopic
histological images utilizing transfer learning for classification [23].
Since transfer learning is efficient in training time, several transfer
models can be built practically with a given data set. Instead of using
one model, several studies have combined different models to improve
O
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Fig. 7. Confusion matrices for Inception-V3, ResNet101, and ensemble classifier at the fold (am
Output class in y axis refers to classification by InceptionV3 based model. No: Normal eardrum
tympanic perforation, Ar: Attic retraction or adhesive otitis media. My: myringitis and/or o
tumor or cerumen impaction.
classification accuracy [24,25]. In those studies, transfer learning has
been used as feature extractors. Features from each model are
concatenated to train a new network. Utilizing trained models as fea-
ture extractors are limited in the fine-tuning of the transfer layers
since the classifier is independently trained with feature extraction net-
works. Furthermore, feature sets frommultiple models may contain re-
dundant information as the number of parameters increases. In contrast
to combining features to retrain a new classifier, we simply combined
classification scores of eachmodel and determined image labels accord-
ing to the maximal scores (the probability of being the class). The clas-
sification using an ensemble of Inception-V3 and ResNet101 model
(Fig. 4) increased diagnostic accuracy significantly (Fig. 6). Usually,
transferred Inception-V3 model is a better performer, but in some
cases, transferred ResNet101 is more accurate, and the ensemble
method was able to take advantage of combining inconsistencies of
the two models. Fig. 5 shows an example for this ensemble approach,
where shows the score of each model, which is softmax value
representing the probability of each classification. Upon inspection,
the classifier that has a sum of classification scores close to 2 (maximum
1 for each model), which means the model is almost certain about the
diagnosis, tends to be chosen by ensemble model. It resembles a case
conference between two physicians, in this case, Inception-V3 and
ResNet101, arguing over the right diagnosis and the onewithmore cer-
tainty winning the argument.

Based on the confusion matrix of the ensemble classifier, the classi-
fication system is a good performer in the diagnosis of normal, otitis
media with effusion, tympanic perforation, and tumors which exceeded
over 90% accuracy. Additional representative figure (Fig. 8) illustrates
examples of otoendoscopic images. As for otitis externa or myringitis,
accuracy is 77·91% with 89·33% sensitivity and 99·02% specificity. It
often misdiagnosed as tympanic perforation or tumorous condition; in
some cases of myringitis, the EAC may be whitish, wet circular fashion,
with the centre being dark, mimicking large perforation. Also, it may be
confused with tumors, which makes sense since it hinders the proper
view of the eardrum and external auditory canal. Mostly, these images
often contain discharges, crusts in the EAC, which should have been re-
moved prior to taking images for better accuracy. Label “ARADOM” re-
fers to attic retraction or adhesive otitis media, accuracy is 85·78%
with 90·19% sensitivity and 98·25% specificity. It was commonly
misdiagnosed as tympanic perforation or normal. In non-severe cases,
retraction could be subtle and clinicians may find it hard to decide
whether it is normal or grade I retraction by Tos or Sade classification
ass 

My Om Tu No Tp Ar My Om Tu

ong 5-folds) having a maximal accuracy. Target class in x axis refers to ground truth label.
and external auditory canal (including some tympanosclerosis, healed perforation). Tp:

titis externa. Om: Otitis media with effusion. Tu: middle ear or external auditory canal



Fig. 8. Representative figure of classification results from “InceptionV3 + ResNet101 ensemble” model. Abbreviations are identical to Fig. 7. Labeling is ordered as Ground truth–
Classification. Tu-No: ground truth is tumor, but the system classified as normal. Om-Tu: ground truth is otitis media with effusion, but the system classified as tumor.
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[26–28]. On the other hand, severe cases of attic retraction ormiddle ear
atelectasis often reveal the ossicles inside the tympanic membrane,
sometimes making it hard to distinguish between total perforation
and severe atelectasis. Detecting attic retraction is very important
since it implies underlying chronic otitis media, and it often requires
surgical treatment to prevent progression. This model's capability of
predicting attic retraction or adhesive otitis media, with an accuracy of
85·78% is the most important and practical technologic advancement
to be of use in clinics.

In terms of predicting normal and abnormal otoendoscopic findings,
overall sensitivity and specificity is 93·69% and 96·82%, respectively. It
shows the possibility to be used for screening of ear disease in regular
routine health checkup.

Fig. 8 illustrates examples of otoendoscopic image classified in the
ensemble model. Trivial cases tend to be appropriately classified, and
most misclassified items have some ambiguities; the classification sys-
tem tends to be not entirely wrong about the diagnosis. For example,
in Fig. 8, image labelled TUM-TP, meaning ground truth is tumor, but
there is also tympanic perforation present, it does have tympanic perfo-
ration, which the classification system has labelled accordingly and is
also a correct diagnosis.
Acquisition of the otoendoscopic image could be easily done by non-
doctors with a little degree of training, and remote diagnosis based on
the otoendoscopic photo may not significantly differ whether the
photo was taken by otolaryngologist or telehealth facilitator [29]. In
areas short of otolaryngologists, someother speciality doctors (pediatri-
cians, family medicine, or general practitioners), or even non-doctors
could take otoendoscopic photos, and analyze images for ear disease
based on our system and decide the next step. If the diagnosis is normal
or otitismediawith effusion, observation is recommended. Otherwise, if
otitis externa or myringitis is suggested, physicians of other specialities
could try antibiotics before referring the patient to an otolaryngologist
for further intervention. For attic retraction, tympanic perforation, or tu-
mors, referring the patient to otolaryngologist would be appropriate for
the next step. A system based on the current study could aid early diag-
nosis of one of the most common childhood illness, otitis media [30],
which may alleviate the burden of growing number of patients with
hearing impairment.

For otolaryngology specialists, this model could be useful for gener-
ating second opinion and be used for double checking the diagnosis, es-
pecially tumors and attic retractionswhich could have beenmissed due
to insufficient experience or low clinical suspicion. This model did not
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take external patient factors such as age, presence of fever and otologic
symptoms such as (pulsatile) tinnitus, ear fullness, otalgia, hearing loss,
otorrhea, etc. In real-life clinical settings, physicians may take
otoendoscopic image and correlate the current classifier's results with
clinical information for diagnosis. In turn, the current deep learning
classifier may be trained with these non-image information for better
diagnosis rate.

Considering many previous studies regarding the diagnosis rate of
ear disease, which were b80% on average [2,19,31], we carefully claim
that this automated diagnosis image classification system can perform
better than an average otolaryngologist specialist, and since this classi-
fication system covers most of ear disease domains including attic re-
traction, tumors, which is unprecedented, it is ready for use in real-
world clinical settings. Ultimately, it may help the world ease the bur-
den of hearing impairment by contributing to early diagnosis of ear
disease.
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