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RESEARCH NOTE

Conceptual DFT as a chemoinformatics 
tool for the study of the Taltobulin anticancer 
peptide
Norma Flores‑Holguín1†, Juan Frau2† and Daniel Glossman‑Mitnik1,2*† 

Abstract 

Objective:  A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides 
was considered for the calculation of the molecular properties and structure of the Taltobulin anticancer peptide. A 
methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reac‑
tivity descriptors.

Results:  The molecular active sites were associated with the active regions of the molecule were associated with the 
nucleophilic and electrophilic Fukui functions. Finally, the bioactivity scores for the Taltobulin peptide are predicted 
through a homology methodology relating them with the calculated reactivity descriptors.
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Introduction
The biodiversity of the marine environment and the asso-
ciated chemical diversity constitute a practically unlim-
ited resource of new antitumor agents in the field of the 
development of marine bioactive substances [1].

Hemiasterlins comprise a small family of naturally 
occurring N-methylated tripeptides with highly alkylated 
unnatural amino acids, was originally isolated from the 
sponge Hemiasterella minor (class Demospongiae, order 
Hadromedidia, family Hemiasterllidae). Hemiasterlins 
act as potent tumor growth inhibitors [2, 3].

A synthetic analogue of hemiasterlin, taltobulin (HTI-
286) has been synthesized in which the 3-substituted 
indole ring was replaced by phenyl group. Taltobulin 
inhibits the polymerization of purified tubulin and dis-
rupts microtubule organization in cells. Then, it is con-
sidered as a potent inhibitor of proliferation and has 

substantially less interaction with multidrug resistance 
protein than currently used antimicrotubule agents [4].

Assuming that an understanding of the chemical inter-
actions is essential for the development of new phar-
maceutical drugs, in this work we will be studying the 
chemical reactivity properties of Talbodulin by resorting 
to the Conceptual DFT methodology, which will allow 
the determination of the global properties as well as the 
local properties for the prediction of the active reaction 
sites, both electrophilic and nucleophilic. In a similar 
way, the descriptors of bioactivity (bioactivity scores) 
will be established through a procedure described in the 
literature [5, 6] trying to relate them with the global and 
local CDFT reactivity descriptors that result from a cal-
culation protocol based on DFT already validated by our 
group in previous research [7–14].

Main text
Computational methodology
The ChemAxon Calculator Plugins for Conformers 
Searching available in Marvin View 17.15.0 were used 
to generate 3D structures from SMILES strings, and to 
propose low energy conformers for structure property 
prediction and calculation. For the molecule considered 
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in the current study, the lowest energy conformers 
were used as a starting point for the geometry optimi-
zation. The geometries of all the selected conformers 
were optimized with the DFTBA program. The molecu-
lar structures of the five lowest energy conformers were 
reoptimized by resorting to the MN12SX/Def2TZVP/
H2O model chemistry. The optimized structures were 
confirmed to be real minima by vibrational frequency 
analysis (no imaginary frequency).

Results and discussion
The molecular structures of the optimized conformers 
of Taltobulin obtained as mentioned in the previous sec-
tion, and whose graphical sketch is shown in Fig. 1, has 
been submitted to optimization in absence of solvent by 
resorting the DFTBA model available in Gaussian 09 [15] 
and then reoptimized using the MN12SX/Def2TZVP/
H2O model chemistry mentioned in that section. Having 
verified that each of the structures corresponded to the 
minimum energy conformations by running a frequency 
calculation analysis, the electronic properties were deter-
mined by using the same model chemistry.

Becke has recently mentioned that the adiabatic con-
nection and the ideas of Hohenberg, Kohn, and Sham 
applying only to electronic ground states is a common 
misconception [16]. In this regard, the HOMO–LUMO 
gap within the KS model represents a nice estimation 
of the lowest excitation energy [17]. Under this assump-
tion, the determination of the maximum wavelength 
absorption of the Taltobulin peptide was performed by 
conducting a ground-state calculation with the afore-
mentioned density functional at the same level of model 
chemistry and theory to obtain the HOMO–LUMO gap 

and subsequently, the �max . The electronic energy of 
the neutral molecular system of Taltobulin, the HOMO 
and LUMO orbital energies, and the maximum absorp-
tion wavelengths �max calculated with the MN12SX/
Def2TZVP/H2O model chemistry are −  1517.422  au, 
− 6.240 eV, − 1.733 eV, and 275 nm, respectively.

According to the results obtained when studying mela-
noidins [7–13] as well as peptides from marine sources 
[14], it can be said that the calculations performed with 
the MN12SX density functional render HOMO and 
LUMO energies that satisfy the approximate Koop-
mans’ theorem. Thus, the application of the KID proce-
dure will be justified. The global reactivity descriptors 
Electronegativity χ [18, 19], Global Hardness η [18, 19], 
Electrophilicity ω [20], Electrodonating Power ω− [21], 
Electroaccepting Power ω+ [21] and Net Electrophilicity 
�ω± [22] were calculated by resorting to the HOMO and 
LUMO energies determined with the MN12SX density 
functional with results being χ = 3.986 eV, η = 4.507 eV, 
ω  =  1.763  eV, ω−  =  5.800  eV, ω+  =  1.814, and 
�ω± = 7.614 eV. The interested reader in the mathemati-
cal formulations of these reactivity descriptors is referred 
to the original works and to our previous research on the 
field [7–14]. As expected from the molecular structure of 
this species, its electrodonating ability is more important 
that its electroaccepting character.

We now turn our attention to the local descriptors of 
chemical reactivity, namely the Electrophilic Fukui func-
tion f −(r) [18, 19, 23], the Nucleophilic Fukui function 
f +(r) [18, 19, 23] and the Dual Descriptor (DD) �f (r) 
[24–28]. As for the case of the global reactivity descrip-
tors, the interested reader in the mathematical formu-
lations of these reactivity descriptors is referred to the 
original works and to our previous research on the field 
[7–14]. The Electrophilic Fukui functions f −(r) and 
Nucleophilic Fukui functions f +(r) for the Taltobulin 
peptide are shown in Fig. 2.

Within the field of Chemoinformatics applied to 
the discovery of new pharmaceutical drugs, it is usual 
to verify the drug-likeness of the involved molecules 
resorting to some empirical rules, as for example, the 
Lipinski Rule of Five (Ro5) [29]. This can be achieved 
by using the readily available Molinspiration soft-
ware and the results for the case of Taltobulin are pre-
sented next as miLogP (the octanol/water partition 
coefficient) = 4.43, TPSA (the molecular polar surface 
area)  =  98.73, nAtoms (the number of atoms of the 
molecule) =  34, nON (the number of hydrogen bond 
acceptors) = 7, nOHNH (the number of hydrogen bond 
donors)  =  3, nviol (the number of violations of the 
Ro5) = 0, nrotb (the number of rotatable bonds) = 11, 
volume (the molecular volume) = 479.94 and MW (the 
molecular weight)  =  473.66. Although this criteria 

Fig. 1  Graphical sketch of the molecular structure of the Taltobulin 
peptide
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cannot always be applied in general to peptides, it can 
be seen from the previous results that for Taltobulin the 
number of violations of the Ro5 is 0, which means that 
Taltobulin can be considered as a druggable molecule.

As the next step, a new task was accomplished by 
resorting to the same software for the determina-
tion of the bioactivity scores for different drug targets 
whose values for the Taltobulin peptide are GPCR 
Ligand = 0.43, Ion Channel Modulator = 0.15, Kinase 
Inhibitor  =  -  0.12, Nuclear Receptor Ligand  =  0.19, 
Protease Inhibitor = 0.68 and Enzyme Inhibitor = 0.42.

These bioactivity scores for organic molecules can 
be interpreted as active (when the bioactivity score is 
> 0), moderately active (when the bioactivity score lies 
between −  5.0 and 0.0) and inactive (when the bioac-
tivity score < −5.0). That means that the Taltobulin 
peptide can be considered a potentially bioactive as a 
Protease inhibitor, besides being able to act a ligand for 
GPCR and as an Enzyme inhibitor.

Limitations
In this research note, we have presented the results of a 
study of the chemical reactivity of a the Taltobulin anti-
cancer peptide on the basis of the Conceptual DFT as a 
tool to explain the molecular interactions, the molecu-
lar properties related to bioavailability and the bioactiv-
ity scores.

However, this information is insufficient to be consid-
ered for peptidomimetics studies and additional results 
from other peptides will be necessary.
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Fig. 2  Graphical representation of the Electrophilic Fukui function f−(r) (left) and Nucleophilic Fukui functions f+(r) (right) of the Taltobulin 
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