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RepViz: a replicate‑driven R tool 
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Abstract 

Objective:  Visualization of sequencing data is an integral part of genomic data analysis. Although there are several 
tools to visualize sequencing data on genomic regions, they do not offer user-friendly ways to view simultaneously 
different groups of replicates. To address this need, we developed a tool that allows efficient viewing of both intra- 
and intergroup variation of sequencing counts on a genomic region, as well as their comparison to the output of user 
selected analysis methods, such as peak calling.

Results:  We present an R package RepViz for replicate-driven visualization of genomic regions. With ChIP-seq and 
ATAC-seq data we demonstrate its potential to aid visual inspection involved in the evaluation of normalization, out-
lier behavior, detected features from differential peak calling analysis, and combined analysis of multiple data types. 
RepViz is readily available on Bioconductor (https​://www.bioco​nduct​or.org/packa​ges/devel​/bioc/html/RepVi​z.html) 
and on Github (https​://githu​b.com/elola​b/RepVi​z).
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Introduction
DNA-sequencing has become an essential part of bio-
medicine and biology. Several computational tools have 
been developed for analyzing such data. However, a vis-
ual inspection of the data by a researcher is still impor-
tant both at the level of basic quality control and as a 
confirmation of the analysis results. Visualization can 
also guide the analysis design and interpretation of the 
results. Numerous tools have been developed to visual-
ize genomic data, including UCSC genome browser [1], 
Integrative Genomics Viewer (IGV) [2], or BamView [3]. 
Additional tools are available in R such as ggbio [4], Gen-
VisR [5], Gviz [6], rbamtools [7], Sushi [8]. Other R tools 
like Genomation [9] and ChIPpeakAnno [10] enable the 
visualization of the genome by taking the average of mul-
tiple regions or via a heatmap, but lack the resolution 
of read coverage. Altogether, there is still a demand for 
a specific tool to efficiently visualize groups of biological 
replicates at specific genomic locus.

Currently, genomic visualization of the sequencing data 
is especially important in the analysis of chromatin data, 
such as ChIP-seq and ATAC-seq. Specific histone modi-
fication markers with distinct dynamics require custom 
parameterization in calling the differential signal and, 
therefore, constitute a more complex situation compared 
to, for example, RNA-seq analysis [11, 12]. Accordingly, 
the selection of a proper peak calling or differential peak 
calling tool and parameters for specific histone modifica-
tion markers is often a complex and iterative process in 
which visualization has an important role. Visualization 
of the intragroup replicates can be used to check if the 
assumptions of a given differential peak caller are met 
with the analyzed data. Additionally, visualization of the 
replicates can guide the evaluation of the normalization 
steps [13, 14] and identification of potential outliers.

In an effort to provide a user-friendly tool to visualize 
groups of replicates on genomic regions, we propose a 
replicate-driven R tool, RepViz. RepViz allows simulta-
neous viewing of both intra- and intergroup variation in 
sequencing counts of the studied conditions, as well as 
their comparison to the output features (e.g. identified 
peaks) from user selected analysis methods. The RepViz 
tool is primarily designed for chromatin data, such as 
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ChIP-seq and ATAC-seq, but can also be used with other 
sequencing data, such as RNA-seq, or combinations of 
different types of genomic data.

Implementation
RepViz is implemented in R and can run on both MacOS, 
Windows, and Linux. The tool uses comma-separated 
value (CSV) files as an input and is easy to use. RepViz 
is divided into three main functions that produce the 
visual outputs (Fig.  1a). The first function visualizes 
Binary Alignment Map (BAM) data. In the visualiza-
tion, the samples are organized by group and the differ-
ent replicates are color-coded; an additional visualization 
is produced for the group averages (Fig. 1b, three upper 
panels). The second function enables the visualization 
of Browser-Extensible Data (BED) files, such as peaks 
detected by a peak calling software. This enables soft-
ware comparison or replicate comparison after individual 
peak calling (Fig.  1b, fourth panel). The third function 
is for visualizing the genomic track. The default input 

consists of two CSV files: one related to the BAM files 
and another optional file related to the BED files (Fig. 1b, 
lower panel).

Main text
Data processing, peak calling and differential peak calling
We tested RepViz with public data from GEO and using 
available tools for peak calling and differential peak call-
ing. Details of the sequencing data used in the examples 
are provided in Additional file 1: Table S1, and details of 
the peak caller and differential peak callers are provided 
in Additional file 1: Table S2. The quality of the sequenc-
ing data was assessed with FastQC (http://www.bioin​
forma​tics.babra​ham.ac.uk/proje​cts/fastq​c) and the fastq 
files were aligned against reference genome (mm10 and 
hg19 according to cases) with Bowtie 2 (2.2.6) [15]. The 
peaks were called using MACS2 (2.1.1) [16] with the 
parameters–broad–nomodel -q 0.05. The differential 
peak callers can be roughly divided in two categories: 
the one step methods (PePr [17], THOR [14] and dif-
fReps [18]) that use their own peak callers and the two 

a b

Fig. 1  Overview and biological case examples of RepViz using histone modification data. a Overview of the main functions implemented in the 
software. b Example of a promoter region marked by H3K27Ac (GSE85467), where the mean signal in the second biological condition is driven 
by a single outlier replicate, but still leads to a significant differential peak call by multiple differential peak callers. Five replicates in two biological 
conditions are displayed in the first two panels and their mean signals in the third panel. The fourth panel is a visualization of the called peaks, 
where the uppermost row is from a peak caller MACS2 (PC) and the other rows are from differential peak callers (DP) (Additional file 1: Table S2). The 
lowest panel is the genomic track
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step method (DiffBind [19]) that requires an external 
peak caller. For DiffBind we used the peaks called with 
MACS2. The differential peak calling was done with the 
default settings of the software cited in Additional file 1: 
Table S2. To emphasize that the scope of this study is the 
visualization tool the differential peak callers were ran-
domly numbered in the examples.

Results and discussion
Our R tool, RepViz, enables the user to take a snapshot 
of a defined genomic region with multiple data inputs 
and visualize it in an efficient manner. Unlike the com-
monly used visualization tools, it implements a replicate-
driven approach, allowing user-friendly visualization of 
replicates within and between experimental conditions. 
Here we provide examples on how RepViz can aid visual 
inspection involved in the evaluation of outlier behav-
ior, normalization, differential peak calling analysis and 
combined analysis of multiple data types. Details of the 
sequencing data, peak calling and differential peak calling 
used in the examples are provided in Additional file 1.

The first function of RepViz visualizes BAM files by 
presenting all the replicates on the same scale as well as 
their group-wise averages. This can be used to assess the 
similarity between the replicates within a given biologi-
cal condition, or if the average signal is affected by outli-
ers (Fig.  1b). The replicate-driven visualization is also a 
useful confirmatory step for normalization, enabling for 
instance, comparison of replicates after normalization at 
known house-keeping genes (Additional file  1: Fig. S1). 
With the current genomic browsers, this type of visuali-
zation can be a time-consuming task. For instance, IGV 
does not have an option to group tracks leading to the 
replicates being stacked on top of each other, whereas 
Gviz has an option to group samples together but does 
not allow comparing groups with a different number 
of grouped replicates (see Fig.  2 for more details of the 
comparison).

The second function of RepViz visualizes multiple BED 
files, which can help, for instance, to compare different 

peak calling software. By comparing the called peaks to 
the observed data for each replicate (BAM) the user can 
visually confirm the called features (Fig.  1b, Additional 
file 1: Fig. S2). For example, in the case of ChIP-seq stud-
ies, differential peak calls can be easily inspected in the 
light of replicate behavior, and peak calls that are driven 
by outliers can be detected (Fig.  1b). Additionally, the 
tool allows a replicate-driven inspection of the length of 
the called peak. This is useful because several peak callers 
tend to combine clusters of sharp peaks to broader peaks 
[11, 12]. Finally, the third function of RepViz visualizes 
the gene track to display the genes in the region of inter-
est, such as gene promoters or their vicinity.

In addition to visualizing replicates within a particu-
lar data type, RepViz can visualize multiple data types 
(datasets) simultaneously by considering each dataset as 
a separate group in the input file. With multiple matched 
datasets, the replicate-driven visual inspection can be 
useful for both evaluating the quality of the samples as 
well as assessing the performance of the differential peak 
calling methods between datasets with different dynam-
ics (Additional file 1: Fig. S3). Moreover, a combined visu-
alization of matched histone marker and ATAC-seq data 
can provide replicate specific insights for the relationship 
of histone modification and open chromatin state (Fig. 3). 
Other potential applications of RepViz include, for exam-
ple, the combination of chromatin marker or ATAC-seq 
data with eRNA [20] or non-coding RNA data to inspect 
replicate variability on chromatin level together with 
RNA expression variability at specific genomic regions. 
RepViz will be actively maintained and further developed.

Limitations
RepViz has been developed in order to get a quick snap-
shot of a genomic region. Large genomic regions can be 
slow to print. While ready on the user end, the efficiency 
of the code can still be improved in the later versions. 
RepViz has initially been thought for user with minimal 
knowledge in R, it will be developed in a more advanced 
user-friendly manner later on.



Page 4 of 6Faux et al. BMC Res Notes          (2019) 12:441 

0
20

40
60

80
10

0
12

0
14

0

A
TA

C
_C

as
e

0
20

40
60

80
10

0
12

0
14

0

A
TA

C
_C

tr
l

0
20

40
60

80
10

0
12

0
14

0

C
h

IP
C

as
e

0
20

40
60

80
10

0
12

0
14

0

C
h

IP
_C

tr
l

0
20

40
60

80

A
ve

ra
g

e 
co

ve
ra

g
e

1
2
3
4
5

ATAC_Case
ATAC_Ctrl
ChIP Case
ChIP_Ctrl

a

b c

Fig. 2  Comparison of (a) IGV, (b) Gviz, and (c) RepViz. IGV does not allow grouping of replicates to be presented in one track. With Gviz showing 
replicates in one track is possible, but it is not possible to compare a different number of grouped replicates to each other or include the average 
coverage under the grouped tracks like in RepViz. Data from GSE108990. Panels from the top to bottom are ATAC-seq case, ATAC-seq control, 
ChIP-seq case, and ChIP-seq control. In (c) the lower panel is representing the group-wise average signals for each of the conditions
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Additional file

Additional file 1. The file contains additional tables and additional 
figures.

Abbreviations
BAM: binary alignment map; BED: browser extensible data; CSV: coma-
separated value; DNA: deoxyribonucleic acid; RNA: ribonucleic acid; eRNA: 
enhancer RNA; ATAC-seq: assay for transposable accessible chromatin 
sequencing; ChIP-seq: chromatin immuno-precipitation sequencing; RNA-seq: 
RNA sequencing.
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