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Abstract

Thiopeptides are natural antibiotics that are fashioned from short peptides by multiple layers of 

post-translational modification. Their biosynthesis, in particular the pyridine synthases that form 

the macrocyclic antibiotic core, has attracted intensive research but is complicated by the 

challenges of reconstituting multiple pathway enzymes. By combining select RiPP enzymes with 

cell free expression and Flexizyme-based codon reprogramming, we have developed a benchtop 

biosynthesis of thiopeptide scaffolds. This strategy side-steps several challenges related to the 

investigation of thiopeptide enzymes and allows access to analytical quantities of new thiopeptide 

analogs. We further demonstrate that this strategy can be used to validate the activity of new 

pyridine synthases without the need to reconstitute the cognate prior pathway enzymes.

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing 

family of peptide-derived natural products that exhibit natural combinatorial biosynthetic 

logic.1 RiPP biosyntheses initiate from a gene-encoded precursor peptide, which contains a 

core region that undergoes enzymatic post-translational modification, and a leader region, 

which is typically responsible for recruiting and coordinating these enzymes through 

specific recognition sequences (RSs). These RSs have affinity for select domains of RiPP 

biosynthetic enzymes, increasing substrate local concentration to the otherwise promiscuous 

enzyme active sites, and allowing the modification of diverse cores.2,3 Natural pathways 

exhibit leader peptides with multiple RSs and recruit whole suites of post-translational 

modifying enzymes to convert precursor peptides into mature natural products. The 

combination of RS-programmable recruitment and promiscuous enzymes inspires recent 
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efforts at repurposing this strategy to scaffold new-to-nature hybrid biosynthetic pathways. 
4–8

Thiopeptides are one of the most extensive natural examples of this combinatorial, RS-

directed biosynthesis,9,10 and the three class-defining transformations include the formation 

of azoles, dehydroamino acids, and pyridines from serine and cysteine residues (Figure 1a). 

Many of these enzymes are remarkably promiscuous and thiopeptide pathways have proven 

capable of generating many variants.11,12 For example, hundreds of mutants of thiocillin, 

GE37468, and thiostrepton have been generated by gene replacement strategies.13–15 

However, competition between the pathway enzymes for functional groups on non-native 

substrates can give rise to complex mixtures of products and slower processing of mutant 

substrates or host toxicity can restrict production of potential compounds. The in vitro 
reconstitution of whole thiopeptide biosynthetic pathways, which has recently been achieved 

for thiomuracin, can circumvent some of these problems, but relies on access to soluble, 

well-behaved proteins.16,17 This can be especially challenging for the tRNA dependent 

Lantibiotic-type dehydratases. Additionally, this strategy still does not overcome enzyme 

competition. Alternative strategies, such as a chemoenzymatic approach, could allow rapid 

access to novel structural variants and ease characterization of new thiopeptides and 

thiopeptide-associated enzymes.18

We envisioned that carefully chosen RiPP enzymes might be combined with orthogonal 

chemical handles to create a flexible in vitro platform for the benchtop preparation of 

thiopeptides (Figure 1b).19,20 More specifically, in vitro transcription-translation could be 

used to express designer hybrid leader peptide substrates displaying RSs for the 

cyclodehydratase LynD from aesturamide biosynthesis and pyridine synthase, TclM from 

thiocillin biosynthesis. Both enzymes have well-defined RS motifs and broad substrate 

promiscuity. Additionally, LynD exhibits excellent selectivity for Cys conversion to 

thiazolines while ignoring Ser/Thr residues.21,22 Alternatively, if oxazoles are of interest, 

then PatD, which acts on Ser/Thr/Cys, could be used in place of LynD. 20 Oxidation of 

thiazolines to thiazoles might be effected by the azoline-oxidase, TbtE from thiomuracin 

biosynthesis, which acts in a leader peptide independent manner.16 In place of Lantibiotic 

dehydratases, we would use robust Flexizyme technology to introduce the unnatural amino 

acid Se-phenylselenocysteine (SecPh), which undergoes oxidative elimination with H2O2 to 

generate dehydroalanines (Dhas) for the pyridine-forming cycloaddition.23–25 Flexizymes 

are aptamers developed to condense a wide array of amino acid esters with tRNAs of choice 

(see Supplementary Fig. 6), allowing codon reprograming in in vitro transcription/translation 

systems.26,27 In total, this would cut the number of enzymes or proteins necessary to prepare 

a thiopeptide in vitro from, six, in case of thiocillin (TbtIJKLMN), to three (LynD, TbtE, 

and TclM, Figure 1). Although quantities of peptide made by in vitro transcription-

translation and Flexizyme reprogramming are small relative to other technologies, such as 

amber codon suppression/in cell expression or solid phase peptide synthesis, the approach is 

rapid (~2 hr.), robust, and flexible for peptides of this size and complexity. Thus, we 

anticipate that this strategy might ultimately enable rapid characterization of new pyridine 

synthases and associated enzymes and aid elucidation of new thiopeptides.
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In order to validate this strategy, we first had to confirm that existing Flexizymes could 

incorporate SecPh into in vitro translated peptides and that LynD and TbtE could 

accommodate SecPh at cysteine-adjacent positions. We confirmed that the dinitrobenzyl 

(Dnb) ester-specific Flexizyme dFx could ligate the Dnb ester of SecPh by means of an in 
vitro microhelix assay (see Supplementary Figure S2).25 Hybrid substrates were prepared by 

codon reprogramming the tryptophan codon – although Flexizyme allows a number of 

codons to be reprogrammed – due to the scarcity of Trp residues in thiopeptides, using the 

AsnE2 tRNA body.28 The loaded AsnE2trp-tRNA was used to incorporate SecPh at positions 

Ser1 and Ser10 of the thiocillin core. For ease, initial DNA templates were prepared by 

cloning into plasmid pMCSG7 which necessarily incorporated an N-terminal sequence tag 

leading to the design of our test substrate (Figure 2a), and transcription-translation reactions 

were prepared on 2.5 µL analytical scale using NEB PURExpress. 26,27 In the event, LynD 

was able to convert all six cysteines in several test substrates into thiazolines, which were 

further processed to thiazoles by TbtE as confirmed by high resolution liquid 

chromatography and mass spectrometry (HR LC/MS) (Figure 2b and Supporting 

Information). Subsequent treatment with 1 M H2O2 efficiently converted both SecPh 

residues to Dhas (Figure 2c). In the last proof-of-concept step, the excess H2O2 could be 

quenched by addition of tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and TclM 

added in situ provided complete conversion of the linear substrate into a cyclic thiopeptide 

(Figure 2d), confirming that TclM is compatible with this designed leader strategy.

We next began to explore the requirements of the designer leader peptide. The N-termini of 

natural thiopeptide leader peptides have been implicated in an affinity-enhancing interaction 

with pyridine synthase enzymes.29 Although our studies have shown this interaction 

dispensable for pyridine synthase processing, 22 we chose to test the potential impact of 

changes to the N-terminus on processing of designer leader peptide substrates. Thus, we 

prepared two new hybrid substrates in which we replaced the original pMCSG7-derived N-

terminus with two different excerpts from the N-terminus of TclE, the native precursor 

peptide for TclM (Table 1A, entries 3 and 4). In a third substrate we truncated the leader 

peptide leaving only a short MSSQ tag before the LynD RS (Table 1A, entry 1). The relative 

impact of these changes was assessed by integration of extracted ion chromatograms (EICs) 

for the product (Table 1A, entry 2; Figure 2c,d). Interestingly, the TclE fragment sequences 

decrease thiopeptide formation and seem to negatively impact LynD processing. Moreover, 

removal of the pMCSG7-derived sequence greatly reduces processing by LynD/TbtE pair. 

Taken together, these results further confirm that the N-terminus of TclE is dispensable for 

TclM processing but LynD may be sensitive to the location of its cognate RS within the 

larger peptide context. To further probe the latter aspect, we designed a series of leader 

sequences, in which spacers were introduced between the LynD RS and TclM RS (Table 1A, 

entries 5–9).20 In almost all cases, the substrates were converted to thiopeptides, suggesting 

that LynD is broadly tolerant of diverse sequence space between the RS and core, although 

at reduced efficiency. As an extreme example of this spacing promiscuity, a substrate with 

the LynD RS sequence N-terminal to the complete native TclE leader peptide was made and 

subsequently processed to the mature thiopeptide (Table 1A, entry 10). This last result 

suggests a potentially broadly applicable strategy for circumventing reconstitution of all 
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pathway enzymes in thiopeptide formation: express the full leader as a C-terminal fusion to 

LynD RS.

We next examined allowable changes to the core sequence. The TclM-containing thiocillin 

pathway has been shown to tolerate a wide array of changes to the core peptide in vivo; we 

therefore focused on changes to the core that were unproductive in those studies (Table 1B, 

entries 4 and 5).13,30 For example, Val6 of native thiocillin had been recalcitrant to charged 

or hydrophilic residues, such as lysine or aspartic acid. This limitation is a barrier to 

antibiotic development, as Val6 appears to be an ideal position for modulating the solubility.
31 In contrast, hybrid substrates bearing a V6D or V6K mutation were readily transformed to 

the cyclic thiopeptide in vitro. Additionally, the LynD/TbtE pair in vitro provided greater 

product control relative to the native thiocillin enzymes, TclI, TclJ, and TclN, as exemplified 

by a C7S mutant (Table 1B, entry 6). In the in vivo system, a similar mutant gave mixtures 

of different modifications and apparent misprocessing. LynD, however, modifies all 

cysteines indiscriminately and left the newly introduced serine untouched. We focused 

considerably more mutagenesis on the C-terminus of the core, because studies have 

suggested TclM might be sensitive to C-terminal modifications, 22,32 and such modifications 

would be necessary for linking the current hybrid substrates with mRNA display in the 

future (Table 1B, entries 7–13). Deletion of even one amino acid from the C-terminus was 

unfavorable for TclM and/or LynD processing (Table 1B, entries 7–10). In contrast, 

extending the C-terminus (Table 1B, entry 13) did not significantly impact enzymatic 

processing. These data suggest that the hybrid strategy is amenable to C-terminal extensions 

and new sequences, not previously accessible by in vivo engineering approaches, although, 

more extensive investigations will be needed to understand the limitations.

We last sought to test whether this strategy could be used to reconstitute new pyridine 

synthases. Recent work has suggested that only a fraction of genetically-encoded 

thiopeptides have been isolated.33 Of the >500 predicted thiopeptide gene clusters, the 

largest family is comprised of members that contain a close homolog of LazC, the predicted 

pyridine synthase from lactazole biosynthesis.34 Additionally, while LazC homology is high 

in this family, the core peptide diversity is broad, suggesting LazC and its homologs may 

exhibit unique substrate promiscuity (see Supplementary Fig. 5). Despite the preponderance 

of predicted LazC homologs, LazC has not yet been reconstituted in vitro. Therefore, we 

expressed and purified LazC as its MBP-fusion and designed three new hybrid sequences as 

potential substrates (Figure 3b). In one LazC substrate, we integrated LynD RS directly into 

the native lactazole leader at a site with apparent natural homology (termed LacHyb1, Figure 

3a), while in the other two, LynD RS was encoded 15 or 25 residues N-terminal to the core 

(termed LacHyb2 and 3, respectively). Additionally, Trp2 and oxazole-forming Ser11 were 

replaced with a serine and thiazole-forming cysteine, respectively (see Supplementary 

Figure 3). Both mutations were previously produced by a gene-replacement strategy 

suggesting that the double mutant may also be a LazC substrate and render the core 

compatible with Trp-reprogramed SecPh incorporation. Upon treatment with LynD/TbtE, 

the four cysteines in each substrate readily underwent conversion to thiazoles and 

subsequent H2O2 oxidation introduced the four Dhas (Figure 3c). Lastly, treatment with 

LazC efficiently yielded the new, pyridine-containing masses, thus confirming activity of 

LazC as a pyridine synthase (Figure 3d). This result was consistent for all three hybrid 
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lactazole leader peptides (Supplementary Fig. 4, traces S22–24 and S42–44) and suggests 

that the hybrid in vitro strategy should work on many other, yet uncharacterized pyridine 

synthases and could ultimately allow elucidation of new thiopeptides.

In summary, we have developed a new, facile strategy to access thiopeptide backbones. This 

approach combines robust, Flexizyme-assisted incorporation of chemical handles into in 
vitro transcribed/translated peptides with three unrelated RiPP enzymes LynD, TbtE, and 

TclM by using designer leader peptides. We demonstrate the ability to make thiocillin 

variants previously unattainable through natural biosynthetic processes and use this strategy 

to reconstitute the pyridine synthase LazC to make lactazoles for the first time in vitro. We 

anticipate this approach will be useful in making new thiopeptide variants with therapeutic 

potential, studying more pyridine synthases and associated enzymes, and may aid 

elucidation of new thiopeptide structures. Finally, we anticipate that this strategy will be 

compatible with high throughput screening techniques, such as mRNA display, which is a 

current focus in our lab.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flexizyme-enabled benchtop biosynthesis of thiopeptide scaffolds. a) Biosynthetic gene 

clusters of thiocillins, thiomuracin GZ, and aesturamide. Genes for key enzymes used in this 

work are highlighted with asterisks. b) Proposed hybrid route to the thiocillin core.
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Figure 2. 
Flexizyme-enabled benchtop biosynthesis of a thiocillin scaffold. a) Sequence of the 

designer precursor peptide, including a pMCSG7-derived sequence, the LynD RS and TclM 

RS. The Trp-codon was reprogrammed to incorporate SecPh. EICs for SecPh and 

hexathiazole precursor peptide after LynD/TbtE treatment (b), hexathiazole and Dha-

containing product after oxidative elimination (c), and fully cyclized thiocillin core (d).
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Figure 3. 
Flexizyme-enabled benchtop biosynthesis of lactazole W2S, S11C. a) Sequence of designer 

precursor peptide. b) Proposed route to lactazole scaffolds. EICs for the hexathiazole and 

Dha-containing product of treatment with LynD/TbtE and H2O2 (c), and fully cyclized 

lactazole core (d).
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Table 1.

Results of flexizyme-enabled benchtop biosynthesis with mutant leader peptides (1A)
a
 and Cores (1B).

b

a
EIC area relative to entry 2 as a standard.

b
Checks indicate a detected EIC. An “X” indicates no EIC detected above the noise threshold of 1.0E2.
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