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Abstract

Anxiety disorders, such as post-traumatic stress (PTSD), panic, and phobic disorders, can be 

conceptualized as a failure to inhibit inappropriate fear responses. A common, effective treatment 

strategy involves repeated presentations to the feared cue without any danger (extinction). 

However, extinction learning has a number of important limitations, and enhancing its effects, 

generalizability and durability via cognitive enhancers may improve its therapeutic impact. In this 

review we focus specifically on the role of the cannabinoid system in fear extinction learning and 

its retention. We address the following questions: What are the neural circuits mediating fear 

extinction?; Can we make fear extinction more effective?; Can cannabinoids facilitate fear 

extinction in humans?; How might the cannabinoid system effect fear extinction? Collectively, 

translational evidence suggest that enhancing cannabinoid transmission may facilitate extinction 

learning and its recall, and that the cannabinoid system is a potential pharmacological target for 

improving the active learning that occurs during exposure-based behavioral treatments prompting 

future research in terms of mechanisms research, novel treatment approaches (‘cognitive 

enhancers’), and pharmacotherapeutic drug discovery.
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INTRODUCTION

Anxiety disorders, such as post-traumatic stress (PTSD), panic, and phobic disorders, can be 

conceptualized as a failure to inhibit inappropriate fear responses [1, 2]. Cognitive 

behavioral therapy (CBT) is a high efficacious, empirically-validated, first-line treatment for 

anxiety disorders [3]. One of the core features of CBT involves repeated presentations to the 

feared cue without any danger (clinically referred to as exposure treatment leading to 
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desensitization) of fear and subsequently diminishes emotional responsiveness to these cues 

[4]. Over time, in the absence of an aversive outcome, the patient begins to recognize what 

was previously anxiety-provoking no longer predicts a bad outcome and avoidance 

behaviors become less frequent. In the laboratory, Pavlovian fear conditioning and extinction 

are used to model this type of learning, during which a neutral cue (a conditioned stimulus, 

CS) is paired with an aversive event and this association is weakened by being exposed to 

the CS-alone, in the absence of the aversive consequence, and thus promotes ‘fear 

extinction’.

One drawback of extinction is that it is a transient phenomenon and fear that becomes 

extinct can come back after time has elapsed (spontaneous recovery), as a result of a change 

in experimental context (renewal shift), or from an unsignaled presentation of the aversive 

unconditioned stimulus (US; reinstatement effect) [5–11]. Thus, the process of extinction is 

a thought of as new learning, and fear reduction results from inhibition rather than erasure of 

the original fear memory [11]. Fear extinction and its recall has become the prime 

translational neuroscience target for the treatment of anxiety disorders [12–14]. Enhancing 

the neural and neurochemical substrates of inhibitory fear learning could solve this challenge 

and improve treatment outcomes [12–14].

WHAT ARE THE NEURAL CIRCUITS MEDIATING FEAR EXTINCTION?

Convergent evidence from rat and human work have elucidated that discrete, yet 

interconnected, brain structures are important to facilitate the learning and recall of 

extinction (amygdala [AMYG], ventromedial prefrontal cortex [vmPFC], and hippocampus 

[HPC]) [9, 15–32]. At acquisition, sensory information about the CS and US converge at the 

AMYG and become associated (i.e. yielding the fear memory) and translated into 

conditioned responses of fear (CRs) [18, 19]; of note the AMYG may also be involved in 

extinction learning [20–22]. AMYG activation has been correlated with fear responses 

during conditioning in human subjects based on functional magnetic resonance imaging 

(fMRI) studies [23, 33, 34]. Prefrontal brain regions that interconnect with the AMYG, 

particularly the vmPFC, are important for consolidation and retrieval of extinction memories 

and consequent attenuation of fear CRs perhaps via inhibiting AMYG output neurons [23–

29]. During extinction recall vmPFC and HPC activation, as well as, vmPFC thickness both 

correlate with magnitude of extinction retention [23, 30, 31, 35, 36]. Poor extinction 

retention and vmPFC-HPC dysfunction displayed by patients with anxiety disorders, such as 

PTSD, could undermine the efficacy of the therapeutic effects of exposure [37–42]. Despite 

having converging translational evidence from rodents to clinical patients of the critical 

neural mechanism underlying extinction recall and its retention, few strategies exist to 

augment the generalization and retention of extinction memory in the clinical setting in 

order to maximize treatment effects of exposure-based therapies.

CAN WE MAKE FEAR EXTINCTION MORE EFFECTIVE?

New evidence has shown that pharmacological agents known as “cognitive enhancers” can 

facilitate fear extinction in animals and exposure-based therapy in humans. Several signaling 

pathways within the brain, such as the GABAergic, glutamatergic, noradrenergic, 
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cholinergic, and cannabinoid systems, have been implicated as potential pharmacological 

targets to improve learning and recall of extinction in both rats and humans (for a review see 

Kaplan and Moore [43]). In this review we focus specifically on the fear extinguishing 

effects of cognitive enhancers that act on the cannabinoid system.

In the past decade rodent studies have implicated the cannabinoid (CB) system within 

extinction neural circuitry (e.g. AMYG, vmPFC, HPC) as important for regulating 

extinction learning and retention. In a seminal study, Marsicano and colleagues [44] found 

that mice with a genetic deletion of type 1 CB (CB1) receptors were strongly impaired in 

short-term and long-term extinction of auditory fear conditioning, without any observable 

deficits in fear memory acquisition and consolidation, and these impairments of extinction 

were not due to sensory-motor deficits or by increased anxiety. Moreover, wild-type mice 

treated with the CB1 antagonist, rimonabant [SR141716], displayed a similar phenotype to 

the CB1-deficient mice, further suggesting that CB1 receptors are critical for successful 

extinction of fear memories.

Similarly, local infusions of AM251, a CB1 antagonist, into brain regions important for 

extinction learning and memory, such as the dorsal HPC [45] or the infralimbic cortex (IL), 

a homologous structure to the human vmPFC [46], have been shown to block consolidation 

for fear that is contextually related to the extinction period and impair extinction of fear-

potentiated startle, respectively. Several studies have corroborated and extended these 

findings by showing profound impairments in extinction retention when CB1 antagonists 

were given either prior to or immediately following extinction learning. Together, these 

studies suggest that CB1 receptor activation is an important mechanism for learning and 

retaining what is learned during the extinction period and for being able to retrieve what has 

been learned in the future [47–50].

Based on these findings it is not surprising that activation of CB1 receptors, via agonists 

(e.g., WIN 55,212–2, HU210, Δ9-tetrahydrocannabinol [THC]), and other drugs that 

enhance release of endogenous cannabinoids (eCBs) (e.g., AM404, an eCB reuptake 

inhibitor, and URB597, a fatty acid amide hydrolase (FAAH) inhibitor that blocks hydrolysis 

of anandamide) have also been shown to facilitate extinction learning [51, 52] and enhance 

the retention of extinction [45–47, 51, 52]; but see [47]). Chhatwal and colleagues [47] have 

shown that administration of AM404 given to rats prior to extinction learning led to dose-

dependent enhancements in extinction and decreased the recovery of conditioned fear 

responses. Moreover, these enhancements in extinction with AM404 could be blocked with 

co-administration of a CB1 antagonist, further supporting that the enhancement of extinction 

is likely CB1-dependent [47].

Moreover, Lin and colleagues have found that local injections of WIN 55–212,2 [46, 53] or 

AM404 [46] into the IL cortex prior to training improves the extinction of fear-potentiated 

startle and local injections of HUB210 and/or WIN 55–212,2 into the AMYG during fear 

extinction blocks the return of extinguished fear-potentiated startle in rodents [54]. Similarly, 

extinction learning can be enhanced with local infusions of anandamide into the dorsal HPC 

[45]. Collectively, these animal studies suggest that the durability of learning and recall of 
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extinction can be facilitated by enhancing CB1 receptor activity in fear extinction brain 

circuits (AMYG, HPC, IL) and prompt us translate these findings into human studies.

WHAT EFFECTS DO CANNABINOIDS HAVE ON FEAR AND FEAR 

CIRCUITRY IN HUMANS?

Non-empirical reports from recreational marijuana users or other studies on drug effects of 

marijuana/THC suggest that agonists of the CB1 system can promote calmness and/or 

reductions in subjective anxiety [55–57]. An early placebo-controlled study demonstrated 

that nabilone, a synthetic THC, significantly diminished nervousness in patients with anxiety 

[58]. Consistent with this and evidence from rodents [59, 60], a study in humans conducted 

in our laboratory using fMRI found that an acute dose of THC (7.5 mg) significantly 

reduced AMYG responding to cues that convey the potential for threat (fearful and angry 

faces) without altering subjective levels of anxiety [61]. Moreover, the level of cannabis use 

has been inversely related to AMYG reactivity to threat signals [62]. However, it should be 

noted that others have reported that administration of THC, particularly at a higher dose (10 

mg) increases AMYG activation [63], and modulates activation in frontal and parietal 

regions [64] while increasing levels of anxiety and autonomic arousal to fearful faces [63, 

64]. These divergent findings highlight the complexity of THC’s effect on fear responding, 

which may be bimodal such that low doses of THC may be anxiolytic [57] whereas high 

doses of THC are anxiogenic [55, 65, 66].

Besides THC, cannabidiol (CBD), a non-psychotomimetic compound also found in 

Cannabis sativa, has been shown to have anxiolytic effects [64, 67–69] and can reduce or 

reverse the negative symptoms induced by THC [63, 70]. CBD (600 mg) has been shown to 

attenuate AMYG and anterior cingulate cortex (ACC) activation and reduce forward 

connectivity between the ACC and AMYG to fearful faces, as well as reduce anxiety levels 

and autonomic arousal in healthy volunteers [63, 64, 67, 71]. Moreover, administration of 

CBD decreases subjective anxiety in patients with social anxiety disorder [72, 73]. 

Interestingly, converging evidence from rodent studies suggests CBD administration may be 

used to facilitate extinction of contextual fear memory [51] or prevent reconsolidation of 

contextual fear memories [74].

The above findings point to potential, and complex, effects that exogenous pharmacological 

modulation of cannabinoid receptors may have on anxiety and its underlying brain circuitry. 

One important contributor to these complex effects may be the differential sensitivity to the 

effects of THC and other cannabinoid modulators between individuals [75, 76]. Part of the 

individual differences may be driven by genetic variation [77, 78]. Studies using imaging 

genetics (coupling functional brain imaging with genotyping) in humans have shown that 

genetic variation in an FAAH inhibition (FAAH 385A), which would alter the extent of 

hydrolysis of anandamide and thereby increase endocannabinoid signaling, is associated 

with decreased AMYG reactivity to threatening faces [79, 80] and with reduced reactivity to 

stress [80], further supporting a role for the cannabinoid system in fear regulation. 

Collectively, these data demonstrate that modulation of the cannabinoid system would have 

down-stream effects on anxiety and neural substrates involved in processing social signals of 
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fear (e.g., AMYG reactivity to fearful faces) which are observable in humans. As noted 

above, emerging evidence from rodent studies show that these effects can be specifically 

linked to the extinction of previously acquired fear. However, until recently, it was not 

known if these effects can be translated to humans.

CAN CANNABINOIDS FACILITATE FEAR EXTINCTION IN HUMANS?

Until recently current knowledge about cannabinoids and fear extinction recall and the 

underlying neural and neurochemical substrates were limited to studies using animal 

models. Klumpers and colleagues [81] conducted a behavioral Pavlovian fear conditioning 

study using fear-potentiated startle, in healthy, marijuana-naïve, adult volunteers. The 

authors acutely challenged the volunteers with either oral dronabinol (synthetic THC) or 

placebo (PBO) during extinction learning to test the hypothesis that THC would increase 

retention of fear extinction. All subjects participated in partial discrimination fear 

conditioning, in which a neutral face CS was presented and co-terminated with an aversive 

US at a partial reinforcement rate of 75% (CS+). A second neutral face CS was presented 

during this period but never paired with the US (CS−). Extinction training occurred the 

following day, in which the CS+ and CS− were presented but the CS+ was presented in the 

absence of the US. Approximately 2 hours prior to extinction learning participants were 

administered an oral dose of THC (10 mg) or PBO. An extinction retention test was 

conducted, drug-free in all participants, approximately 48 hours after extinction learning and 

involved non-reinforced presentations of the CS+ and CS−. Contrary to their hypothesis, the 

authors did not find an effect of THC on fear extinction. During extinction learning THC did 

reduce SCRs to the CS+, however this effect was not maintained during the extinction 

retention test and THC had no effect on fear-potentiated startle either during extinction 

learning or during the retention test. Therefore the authors concluded that their findings 

suggested that facilitation of the CB1 system with THC does not affect long-term 

conditioned fear extinction in humans.

A recent study [82], conducted in our laboratory with a similar design produced findings not 

consistent with the above observations reported by Klumpers et al. [81]. Using a 

randomized, double-blind, placebo-controlled, between-subjects design, we tested healthy 

volunteers with a combined standard Pavlovian fear extinction paradigm and an acute 

pharmacological challenge with oral dronabinol (THC; 7.5 mg) or PBO. The THC/PBO 

administration occurred prior to extinction training and we tested extinction retention 24 

hours after extinction training [82]. Via partial discrimination fear conditioning, participants 

were presented with two neutral CSs (CS+s; e.g., blue and yellow squares) that co-

terminated with an aversive US at a partial reinforcement rate of 35%. A third CS (e.g. red 

square) was presented during fear conditioning but never paired with the US (CS−). On the 

following day, one of the CS+s was extinguished (CS+E) whereas the other CS+ was not 

(CS+U). Approximately 2 hours before extinction learning participants were administered 

an oral dose of THC (7.5 mg) or PBO. Approximately 24 hours after extinction learning we 

conducted an extinction memory recall test to the following conditions: CS+E, CS+U, and 

CS−. Here, we observed that participants who had previously received PBO displayed 

evidence of a return of fear after the passage of a day’s time to a CS that was previously 

extinguished, whereas THC attenuated this ‘spontaneous recovery’ of fear [82]. Our study 
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provided the first evidence to suggest that pharmacological enhancement of extinction 

learning is feasible in humans using cannabinoid agonists.

It is important to discuss the potential factors that may have contributed to the conflicting 

results from our study [82] and those from Klumpers et al [81]. For instance, Klumpers and 

colleagues administered a slightly higher dose of THC (10 mg) than we did (7.5 mg). We 

had previously used this lowest effective dose, which did generate behavioral and subjective 

effects [57, 61, 83]. This lower dose has also been shown to reduce response of the 

amygdala to facial cues that signal the potential for threat (fearful and angry faces) in 

healthy recreational marijuana users [61], whereas administration of a higher dose of oral 

THC (10 mg) has been shown to increase amygdala activation [63] and increase levels of 

anxiety and autonomic arousal to fearful faces [63, 64]; a future dose-response study 

comparing 7.5mg vs. 10mg is needed to clarify this open question. In addition, differential 

sensitivity to the effects of THC between individuals may also contribute these conflicting 

findings [75, 76]. Another major difference between the two studies is that we examined 

extinction retention 24 hours following training of extinction whereas Klumpers and 

colleagues examined retention of extinction 48 hours after that training. In their study, THC 

did reduce SCRs generated by the CS+ during the training of extinction, but this effect was 

not maintained at 48 hours post training (extinction retention test), therefore future studies 

are needed to determine if the effects that we observed on Day 2 would persist for a longer 

period of time beyond 24 hours. Lastly, sex differences, particularly related to hormone 

influences, could have also potentially affected the efficacy of THC on fear extinction. 

Previous studies have shown fear extinction can be facilitated by high estradiol levels [84, 

85]. Female participants in our study completed the study sessions approximately 1 week 

before the onset of menses to ensure the examination occurred during periods when estrogen 

levels were low, whereas accounting for differences in hormonal levels within the menstrual 

cycle at the time of testing was not explicitly mentioned in the Klumpers et al [81] study. 

Although some of these differences in study design between the two studies may help 

explain the conflicting findings, these are the first and only two studies to investigate the role 

of the cannabinoid system in human fear extinction and future studies are necessary to 

replicate these observations. Together these studies couple the basic science of fear 

extinction learning and human neuropsychopharmacology to enhance fear inhibition and 

prompt more studies of this kind. Moreover, more studies are needed to help explain the 

brain and neurochemical mechanisms by which cannabinoid agonists mediate extinction 

learning and its retention.

HOW MIGHT THE CANNABINOID SYSTEM AFFECT FEAR EXTINCTION?

In the brain, endocannabinoids (eCBs) are released postsynaptically and diffuse back to 

presynaptic CB1 receptors, densely localized within AMYG, vmPFC, and HPC [86–89], 

thereby inhibiting presynaptic neurotransmitter release [90, 91]. It has been hypothesized 

that during extinction learning eCB activation of CB1 receptors within the AMYG decreases 

local GABAergic networks, which leads to a disinhibition of principal neurons and finally to 

the extinction of conditioned fear responses [44, 91]. Interestingly, intra-basolateral AMYG 

infusion of CB1 agonist enhances retention of inhibitory training (e.g., via memory 

consolidation) [92]. In addition, activation of CB1 receptors within the vmPFC during 
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extinction induces neuronal plasticity within the vmPFC, and thus enhances top-down 

inhibition on the AMYG [46]. In parallel, activation of HPC CB1 receptors increases 

glutamatergic neurotransmission, which may facilitate extinction memory formation over the 

long term [45].

Studies on the effect of cannabinoids on the underlying neural circuitry involved in the 

retention and recall of extinction memory in humans are ongoing in the lab, which combine 

fMRI with a similar Pavlovian fear conditioning-extinction paradigm as in our recent 

behavioral study [82] (mentioned above) to assess the effects of THC on extinction circuit 

function (e.g., vmPFC and HPC activation) when tested for recall and maintenance of 

extinction learning at 24 hours and 1 week after training, respectively. Preliminary fMRI 

results from our lab [93] suggest that THC administration during extinction learning 

subsequently increases vmPFC activation and functional coupling with the HPC to a 

previously extinguished CS (vs. a non-extinguished CS+) during recall of extinction 

memory compared to PBO (unpublished). Based on these preliminary results we would 

hypothesize that THC facilitates retention of extinction memory via increased recruitment of 

the vmPFC and HPC. Studies, such as this, are important proof-of-concept studies that 

translate animal to human studies and ultimately to clinical trials. This process will facilitate 

our knowledge of the role and neural mechanism of cannabinoids in extinction learning, and 

subsequently may lead to new pharmacologic strategies (e.g., cannabinoid-enhancing 

modulators) that can be combined with to improve exposure-based behavioral treatments.

SUMMARY

Although CBT is an effective first-line treatment for anxiety disorders, such as PTSD, some 

patients continue to have an anxiety disorder diagnosis, fail to achieve stringent criterion for 

good end-state functioning [94, 95], and some fail to complete treatment [96]. Even fewer 

respond to first-line pharmacological treatments, such as selective serotonin reuptake 

inhibitors (SSRIs) [97, 98]. The Institute of Medicine in 2007 concluded that little empirical 

evidence exists to support pharmacological treatment for PTSD; therefore new treatments 

are desperately needed [99].

As mentioned previously, basic science research has shown that activation of the 

cannabinoid system can improve the learning and retention of extinction, whereas inhibition 

of this system impairs fear extinction [44–47, 49–51, 53, 91, 100, 101]. Moreover, we 

provided the first evidence that THC when given prior to extinction training to previously 

conditioned fear can improve the recall of that extinction memory in humans [82] and have 

preliminary data to suggest that this effect may be due to increased recruitment of the 

vmPFC and HPC [93]. If activation or agonism of the CB1 receptor, thereby enhancing 

cannabinoid neurotransmission, can improve the recall of what is learned during extinction 

training, then the cannabinoid system may prove to be a promising neurochemical target. 

This target appears to be most relevant in the clinical setting where there is a need to 

maximize, retain and sustain treatment effects of exposure-based therapies.
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