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Abstract
Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methyla-
tion occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine meth-
ylation frequently occurs at sites of protein–protein and protein–nucleic acid interactions, providing specificity for binding 
partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform—
catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)—
has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in 
intrinsically disordered regions of proteins—the latter two of which are intimately connected with biological liquid–liquid 
phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene 
transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins 
and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will 
continue to grow.
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Introduction

Post-translational modifications (PTMs) functionally 
diversify the proteome [1]. Arginine methylation was first 
described over 50 years ago. Paik and Kim were investi-
gating methylated products of a calf thymus enzyme (now 
known as PRMT1) and determined that arginine is a methyl 
acceptor [2, 3]. The arginine side-chain consists of an ali-
phatic 3-carbon  (Cβ,  Cγ,  Cδ) chain and a terminal guani-
dinium ion  (Nδ,  Cε,  Nω/Nω′) (Fig. 1a, top). Arginine guani-
dinium groups remain protonated at physiological pH with a 
reported pKa ~ 12.5–14.0, the highest of all amino acids [4]. 
This allows arginine residues to form salt bridge interactions 
and, as a donor, to participate in up to five hydrogen-bonding 
interactions. Guanidinium electrons are delocalized into pi-
orbitals, allowing for π-stacking interactions. Methylation of 
arginine does not significantly alter the pKa of the guanidin-
ium functionality [4]. Methylation does alter its shape and 
charge distribution (Fig. 1b), increases its hydrophobicity, 

and decreases its H-bonding potential by one per methyla-
tion event (for review of methylarginine chemical biology, 
see [5]). Overall, arginine is a key amino acid regulator of 
protein–protein and protein–nucleic acid interactions.

The family of protein arginine methyltransferase 
(PRMT) enzymes catalyzes methylarginine, which occurs 
on approximately 0.5% [6] to 1% [7] of cellular peptidyl-
arginines. PRMTs catalyze the transfer of a methyl group 
from S-adenosyl methionine (SAM) to an arginine guani-
dinium group nitrogen (for review of PRMTs, see [8]). All 
9 annotated mammalian PRMTs are capable of monometh-
ylation (Rme1, also annotated as MMA) at either terminal 
guanidinium nitrogen  (Nω) (Fig. 1a, middle). PRMTs are 
further classified by the type of dimethylarginine catalyzed: 
Type I PRMTs (PRMT1-4,6,8) catalyze the addition of a 
second methyl group to the same guanidino nitrogen as the 
first, generating asymmetric dimethylarginine (Rme2a, also 
ADMA) (Fig. 1a, bottom left); Type II PRMTs (PRMT5,9) 
catalyze symmetric dimethylarginine (Rme2s, SDMA)—one 
methyl group on  Nω and one on  Nω′ (Fig. 1a, bottom right); 
Type III PRMT7 activity is limited to Rme1. In yeast, a 
Type IV PRMT activity has been described that catalyzes 
methylation at the internal guanidinium  Nε position (Rme1δ, 
not reviewed here) [9, 10]. Although Rme1 has long been 

Cellular and Molecular Life Sciences

 * David Shechter 
 david.shechter@einstein.yu.edu

1 Department of Biochemistry, Albert Einstein College 
of Medicine, Bronx, NY 10461, USA

http://orcid.org/0000-0001-9388-6004
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03140-2&domain=pdf


2934 B. M. Lorton, D. Shechter 

1 3

considered a short-lived intermediate species on the pathway 
to Rme2a or Rme2s, recent proteome-wide analyses show 
that Rme1 is abundant, occurring on over 3000 proteins [11, 
12]. PRMT1 is by far the most abundant enzyme, respon-
sible for up to 85% of all PRMT activity [13]; PRMT5 is 
the primary Type II methyltransferase [14]. An important 
insight for this review is that different PRMT types can 
share identical substrates. Opposing Rme2a or Rme2s marks 
could, therefore, allow tuning of biophysical processes. In 
support of this hypothesis, loss of one PRMT type will often 
result in “scavenging” by opposing PRMTs. For example, 
loss of the type I methyltransferase PRMT1 resulted in 
methylarginine-product switching with a global increase 
of Type II-catalyzed Rme1 and Rme2s [6]. Although still 
uncharacterized, dysregulation of PRMTs resulting in these 
scavenging methylation events likely promotes anomalous 
cellular physiology and disease.

Arginine methylation occurs on a variety of protein 
sequence motifs (Table  1). Glycine-and-arginine-rich 
(GAR) motifs (also referred to as RGG boxes and RGG/
RG motifs) are the most commonly reported. Similar motifs 
with arginine positioned next to an amino acid bearing a 
small R-group side-chain, such as alanine or serine, are also 

methylated. Another recurrent PRMT substrate is the RXR 
motif: two arginine residues separated by any amino acid. 
Outside of these common motifs, arginine methylation is 
found at divergent sequences [15, 16], such as AKTRSS 
(histone H2AR17), VLRDNI (H4R23), and SVYRQQ 
(Mediator subunit MED12 R206). Furthermore, methylar-
ginine occurs in protein domains of low structural complex 
(LC) and/or in regions enriched with positively charged 
residues—features of intrinsically disordered regions 
(IDRs; Fig. 2) [17]. Indeed, the phenomenon of biologi-
cal liquid–liquid phase separation (LLPS)—of widespread 
interest—is frequently mediated through LC domains and 
charge-enriched IDRs [18, 19].

Effectors of methylarginine marks are largely composed 
of epigenetic ‘reader’ proteins and RNA-binding proteins 
(RNABPs; Fig. 3). These effectors are often subunit com-
ponents of protein complexes that function in chromatin-
templated processes and RNA biology. Only a handful of 
structural domains that interact with methylarginine marks 
have been characterized. These include: Tudor (including 
extended-Tudor (eTUD), tandem tudor (TTD), and other 
Tudor-like domains; Fig. 4a, b); Trp-Asp 40 repeat (WD40; 
Fig. 4c); and both plant homeodomain (PHD; Fig. 4d, e) 
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Fig. 1  Arginine methylations and their chemical states. a All PRMTs 
catalyze the addition of one methyl group to one of the terminal ω 
nitrogens of the guanidinium side chain, producing monomethylargi-
nine (Rme1 or MMA). Type I enzymes (PRMT1,2,3,4,6,8) catalyze 
a second methylation to the same ω nitrogen, producing asymmetric 

dimethylarginine (Rme2a or ADMA). Type II enzymes (PRMT5, 
9) catalyze a second methylation to the ω′ nitrogen, producing sym-
metric dimethylarginine (Rme2s or SDMA). b Electrostatic potential 
maps of L-arginine and its methylated derivatives reveal a diffuse, 
positive characteristic. Red = electron dense, blue = electron poor
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Table 1  Survey of methylarginine containing proteins

Protein UniProtKB Motifs Arginine # [PRMT] References (Arg #)

Histones
 H2A P0C0S8 SGRGK

KARAK, VGRVH
AERVG, KTRII
AIRND

3 [5, 6, 7]
11, 29 [1, 6]
42, 77
88

[224], [225], [226] (3)
[227] (11, 29)
[228] (42, 88)
[229] (77)

 H2B P10853 KKRKRTRKE
ASRLA; AVRLL

29, 31, 33 [7]
79, 99

[230] (29,31,33)
[228] (79, 99)

 H3 Q71DI3 ARTKQTARKS
APRKQ
AARKS
RYRPG
EIRRYQ
LIRKL, LARRI

2 [5, 6]; 8 [2, 5]
17 [4]
26 [4]
42 [4, 6]
52, 53
63, 128

[225] (5,6); [231], [232] (8)
[233] (17)
[234] (26)
[235] (42)
[229] (52, 53)
[228] (63, 128)

 H4 P62805 SGRGK
AKRHRKV
VLRDN
AIRRL, ETRGV, VIRDA
LKRQG

3 [1, 5, 6, 7]
17, 19 [7]
23;
35, 55, 67
92

[236] [224], [94], [226], (3)
[230] (17,19)
[237] (23)
[228] (35,55,67)
[229] (92)

DDR/Transcription
 KLF4 O43474 PKRGRRSW 417, 419, 420 [5] [34]
 RUVBL1 Q9Y265 QGRCD 205 [5] [47]
 TDP1 Q9NUW8 PGRFQ; KDRPW 361, 586 [5] [55]
 TOP3B O95985 QGRG RGR 833, 835 [1, 3, 6] [60]
 RNAP2 P24928 EPRSP; SPRYT 1603 [5]; 1810 [4, 5] [79], [78]
 MED12 Q93074 PVRLP; PTRHL; RLRQQ 1862; 1899; 1912 [4] [88]; [89]; [90]
 TP53 P04637 QIRGRERFE 333; 335; 337 [5] [238]
 MRE11 P49959 GAR motifs, multiple sites 570-665 [1] [43]
 BRCA1 P38398 Unknown sites 504-696 [1] [45]

mRNP Biology
 SmB P14678 IGRA AGR GI; QGRGT; PGRGG; 

MGRGA; PGRGT 
108, 112; 147; 172;
181, 209 [5]

[12]; [143]

 SmD1 P62314 AGR GRG RGR GRG RGR GRG RGG 98-114 [5] [142]; [239]
 SmD3 P62318 AAR GRG RGMGRGN 110; 112; 114; 118 [5] [142]; [239]
 FUS P35637 GAR motifs, multiple sites 213-218; 242-259; 377-503 [1] [12]; [161]; [147]; [160]
 EWS Q01844 GAR motifs, multiple sites 300-333; 455-506; 563-638 [12], [240]
 TAF15 Q92804 GAR motifs, mainly GDRGG 206 [1]; 431, 459, 475; 483*

528 [1], 535 [1], 562, 570 [1]
[149] (206, 528, 535, 570); [12]

 hnRNP A1 P09651 SQRGR 
FGRGG; SGRGG 
GSRGG; GGRSS; SGRRF

194 [1]
218 [5], 225 [5]
232, 336, 370

[171] (194)
[172] (218,225)
[12]

 hnRNP A2/B1 P22626 SLRNY; SGRGG; DSRGG; NFRGG; 
SGRGF; GGRGG; GSRNM; GGRSR

203, 213, 228,
238, 266, 325, 350

[12]

 hnRNP A3 P51991 SLREH; RSRGF; SQRGR; RGRGG; 
MGRGG; FGRGG; GGRGG; GSRGS; 
SSRGG; GGRSS

52*, 76, 214, 216,
226, 239, 246, 257,
286, 354

[12], [150]

 AUF1 (hnRNP D) Q14103 GSRGG; AGR ARG RGG; SRRGG 272, 278, 280, 282, 345 [12]
 RBMX (hnRNP G) P38159 PSRGG; SSRGP; PKRSA; PVRSS 125, 144, 164, 172 [12]
 hnRNP H1 P31943 MRRGA 233 [12]
 hnRNP K P61978 PPRGG; GGRGS 316, 377 [12]
 DDX4 Q9NQI0 SKRGG; YRRGG; GCRGG; SERGG; 130; 146, 147; 157; 208 [1] [17]
 Lsm4 Q9Y4Z0 KGRG RGG; KGRGM; AGRGV; GGR 

GRG G; TGRGQ
88, 90; 102; 109
115, 117; 125 [5]

[143]

 G3BP1 Q13283 RLRGPGGPRGG; GMRGPPRGG; 
VGRGL

429, 435; 443 [1, 5]; 447 [1]
460 [5]

[197]
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and ubiquitin E3 ligase n-recognin (UBR; Fig. 4f) type 
zinc fingers. Tudor and WD40 domains bind methylargi-
nine marks through cation-π and π–π stacking interactions. 
Tudor domains use conserved aromatic residues to build an 
‘aromatic cage’ around the interacting guanidinium group 
(Fig. 4a, b). Similarly, WD repeat protein 5 (WDR5) forms 
a ‘phenylalanine clamp’ by stacking the arginine-guanidino 
moiety between two phenylalanine residues deep within a 
central cavity (Fig. 4c). Both binding modes are comple-
mented by strong hydrophobic effects generated from des-
olvation of the charged guanidinium group. While the zinc 
finger folds are structurally similar, some differences are 
apparent. The arginine interaction site on the recombina-
tion activating 2 (RAG2, Fig. 4d) PHD domain is broad, 
shallow, and neutrally charged. Whereas the PHD and UBR 
domains of Ubiquitin-like containing PHD and RING finger 
domains 1 (UHRF1, Fig. 4e) and UBR1 (Fig. 4f) proteins 
both present recessed, negatively charged grooves to accom-
modate arginine binding.

Arginine methylation has long been considered a “per-
manent” PTM, hypothesized to be removed by enzymatic 
cleavage or more drastic measures such as histone eviction 
and/or histone-tail clipping [20]. Protein arginine deimi-
nases (PADs) catalyze hydrolysis of peptidyl-arginine-
guanidino group ketimines (=NH2) into peptidyl-citrulline 
ketones (=O), releasing ammonia  (NH3) [21]. The charge 
and functionality of the guanidinium group are lost in the 
conversion to citrulline which cannot be methylated. A 
subset of Jumonji domain-containing (JmjC) lysine dem-
ethylase enzymes are now known to act on methylarginine 
residues, catalyzing arginine demethylation via oxidation 
of the methyl group followed by release of formaldehyde 
 (H2C=O) [22, 23]. JmjCs preserve the guanidino function-
ality, demonstrating that arginine methylation is in fact a 
reversible PTM. Additionally, two JmjC isoforms ‘remove’ 
methylarginine marks by proteolytic clipping of histone 

H3 and H4 N-terminal tails. Clipping occurs C-terminal to 
PRMT5-deposited H3R2me2s and H4R3me2s [24].

Here, we review our current understanding of eukaryotic 
cellular consequences of arginine methylation. We present 
evidence for how arginine methylation regulates biological 
processes through modulation of the following three themes: 
(1) protein PTM crosstalk, (2) functional properties of IDRs, 
and (3) phase separation of non-membranous organelles.

Arginine methylation and chromatin

Arginine methylation has largely been studied for its role 
as a histone PTM, where it directly influences reader pro-
tein interactions by either facilitating or impairing binding 
(reviewed [25, 26]). Histones are the major protein compo-
nent of chromatin—the physiological form of the eukaryotic 
genome. The combinatorial and reversible nature of histone 
modifications allow for dynamic modulation of chromatin-
templated biochemistries via crosstalk between histone 
PTMs [27–29]. These crosstalks modulate interactions with 
epigenetic reader proteins, which are often subunits of multi-
protein chromatin-remodelling complexes [30]. Arginine 
methylation is also prevalent on a host of non-histone pro-
teins involved in numerous chromatin-associated processes 
[31]. In this section, we discuss how arginine methylation 
of histone and non-histone proteins influence chromatin-
templated processes.

DNA damage response, repair, and genome 
integrity

Arginine methylation is a central player in the DNA damage 
response (DDR) system (reviewed in [32]). As mammalian 
cells sustain much DNA damage due to normal cellular 
metabolism, replication errors, and environmental factors, 

Table 1  (continued)

Protein UniProtKB Motifs Arginine # [PRMT] References (Arg #)

Immunology
 FOXP3 Q9BZS1 QGRDLRGG 48, 51 [1] [202]

Signaling
 SMAD4 Q13485 GSRTA 272 [1] [241]
 SMAD6 O43541 GQRGAQGAG RRR 74, 81 [1] [242]
 SMAD7 O15105 PGRAG; AVRGA 57; 67 [1] [243]

Other
 COBL Q5NBX1 SERSA; AIRGH 1226; 1234 [2] [204]
 GAPDH P04406 AFRVP 234 [4] [209]
 SIRT7 Q9NRC8 FGRGC 388 [6] [211]
 ASK1 Q99683 ATR GRG S 78, 80 [1] [244]

*annotated in uniprot database
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the DDR is an elaborate network of molecular systems that 
detects, diagnoses and, if possible, coordinates the repair of 
damaged DNA. Arginine methylation has a pivotal role in 
preserving genomic integrity by orchestrating the elaborate 
DDR pathways.

Arginine methylation of transcription factor KLF4 (Krüp-
pel-like factor 4) is principal to the decision to pursue DNA 
damage repair and survival [33]. KLF4 turnover is a key 
determinant influencing its role in DDR [34]. KLF4 is a 
short-lived protein (t1/2 = ~ 4 h); proteasomal degradation 
of KLF4 is mediated by the E3 ubiquitin ligase VHL (von 

Hippel-Lindau), ubiquitylating lysine residues in the KLF4 
N-terminal activation domain [35]. PRMT5-dependent 
methylation of KLF4 inhibits VHL-mediated ubiquityla-
tion, resulting in reduced KLF4 turnover and upregulated 
p21 that prompts cell cycle arrest and inhibition of apoptosis 
[34]. Arginine methylation of KLF4 occurs at residues R374, 
R376, and R377 in a disordered region of the C-terminus 
(Fig. 2) not captured by structural studies [36, 37]. This 
suggests that methylarginine deposition may conformation-
ally reorient or occlude the N-terminal region of KLF4 in 
a manner that antagonizes ubiquitylation but preserves its 

Fig. 2  Arginine methylations are frequently found on protein intrinsi-
cally disordered regions. All arginine methylated proteins discussed 
in this review were analyzed with DISOPRED3. Predicted disordered 
regions are shown in grayscale on a per-amino acid basis (white = 
no predicted disorder, black = 100% predicted disorder). Known sites 

of arginine methylation are indicated with a purple flag. All proteins 
are full-length except MED12 (1618–2176 aa); RNAP2 (C-terminal 
500aa); ASK1 (N-terminal 500aa); BRCA (400–900 aa); and COBL 
(C-terminal 500aa) All sequences shown to scale, as indicated at the 
bottom right
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transcriptional activity. Nevertheless, upon DNA damage, 
PRMT5 methylates KLF4 and downregulates KLF4 turnover 
to promote DNA repair, highlighting a ubiquitin-arginine 
methylation crosstalk in DDR activation. KLF4 targets many 
genes and is increasingly investigated for its role in can-
cer [33]. PRMT5 [14, 38] and KLF4 [34, 39] upregulation 
are commonly observed in a number of cancers, potentially 
identifying methylarginine-dependent KLF4 stabilization as 
a key component promoting carcinogenesis.

Non-homologous end-joining (NHEJ) and homologous 
recombination (HR) are the main pathways responsible for 
double-strand DNA break (DSB) repair [40]. PRMT1-cata-
lyzed Rme2a was found on proteins crucial for both types of 

DSB repair, namely, p53 binding protein 1 (53BP1), meiotic 
recombination 11 (MRE11), and breast cancer type 1 sus-
ceptibility protein (BRCA1) (reviewed [41]). Methylation 
within the GAR motif of 53BP1 (Fig. 2) is required for its 
DNA-binding activity [42]; this prevents exonuclease pro-
cessing by MRE11 at DSBs, preserving dsDNA and stimu-
lating NHEJ repair. Methylation within the GAR motif of 
MRE11 (Fig. 2) is necessary for nuclease activity and resec-
tion at DSBs, exposing single-stranded DNA (ssDNA) and 
initiating HR-dependent repair [43, 44]. BRCA1 is heavily 
methylated on the region between 504 and 802 aa (Fig. 2) 
that contains 12 arginine residues within RXR motifs. Argi-
nine methylation differentially affects BRCA1 recruitment 

Fig. 3  Selection of proteins 
with putative arginine-interact-
ing domains. Proteins known to 
specifically bind to arginine are 
shown. Domains characterized 
to interact with arginine are 
colored as indicated; accessory 
domains are shown in gray. 
Helicase (HEL); K homology 
(KH); LOTUS (LT); (PK); Plant 
homeodomain (PHD) in purple; 
(RING); RNA-recognition 
motif (RRM); Staphylococcal 
nuclease (SN); SET and Ring-
finger associated (SRA); Tudor 
and tudor-like (TUD) in blue; 
Ubiquitin-associated (UBA); 
Ubiquitin-like (UBL); Ubiquitin 
E3 ligase n-recognin (UBR) in 
orange; WD40 repeat (WD) in 
green. All sequences are shown 
to scale, as indicated at the 
bottom
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to various promoters [45]; however, the effects of Rme2a 
on BRCA1 function are not well understood. Intriguingly, 
the methylated region nearly encompasses a BRCA1 DNA-
binding domain (498–663 aa) [45], leading to the hypothesis 
that arginine methylation alters BRCA1/DNA interaction 
and regulates its tumor suppressor function in DNA repair 
pathways.

Resistant to ultraviolet B-like protein 1 (RUVBL1) 
RUVBL1 is a coactivator of TAT-interactive protein 60-kDa 
complex (TIP60) that catalyzes H4 lysine 16 acetylation 

(H4K16ac). H4K16ac inhibits 53BP1 from binding DSBs, 
thereby committing cells to HR-dependent repair [46, 47]. 
PRMT5-dependent Rme2s plays a key role in directing the 
NHEJ-to-HR repair type switch during S/G2 of the cell 
cycle [47]. RUVBL1 and PRMT5 interact in HEK293T and 
HeLa cells; however, attempts to provide direct evidence 
of RUVBL1 methylation by PRMT5 using in vitro assays 
were unsuccessful [47]. Mass spectrometry (MS) analysis 
of RUVBL1 revealed R205me2s in domain II (DII) of the 
protein [47, 48]—a domain hypothesized to function in 

Fig. 4  Representative examples of characterized arginine-interact-
ing domains. Coloumbic potential surface maps are depicted with 
interacting ligands. Black squares indicate arginine residues. Bind-
ing site details are shown in zoomed boxes. a Tudor domain, SND1 

(anti-syn me2s conformation, PDB: 3OMC) b Tudor domain, SMN 
(syn-syn me2s conformation, PDB: 4A4E). c WD40 Repeat domain, 
WDR5 (PDB: 4A7J). d RAG2-PHD (PDB: 2V88). e UHRF1-PHD 
(PDB:3SOW). f UBR1 (PDB:5TDB)
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its biological oligomerization [49]. Although RUVBL1 is 
not predicted to be disordered (Fig. 2), structural studies 
show that R205 is located on a flexible region of the pro-
tein [48]. Depletion of PRMT5 in HeLa cells subsequently 
irradiated to induce DNA damage resulted in persistent 
foci of NHEJ repair markers 53BP1 and γH2AX. Simi-
larly, upon irradiation of RUVBL1-depleted cells, persis-
tent foci were observed, which were efficiently cleared by 
ectopic expression of  RUVBL1WT but not methylation-
incompetent  RUVBLK (R205K) [47]. Upon DNA dam-
age in PRMT5-deficient cells and in RUVBL1 knockdown 
cells reconstituted with  RUVBL1K, 53BP1 levels increased 
while H4K16ac decreased [47]. Therefore, activation of 
HR-dependent DNA repair implicitly relies on RUVBL1 
R205me2s catalyzed by PRMT5; this methylation is required 
for TIP60 acetyltransferase activity, installment of H4K16ac, 
and inhibition of 53BP1 accumulation at DSBs.

Topoisomerase I (TOP1) relieves superhelical tension 
resulting from supercoiled DNA created during transcrip-
tion and replication. After relaxation, TOP1 aligns nicked 
DNA strands for ligation to restore dsDNA [50]. Failures 
in ligation result in TOP1 cleavage complexes (TOP1cc) 
remaining covalently bound to DNA [50]. Replication and/
or transcriptional machineries collide with TOP1cc, gen-
erating DSBs and consequential cell death [51]. Tyrosyl-
DNA phosphodiesterase 1 (TDP1) repairs DNA by excising 
TOP1cc lesions [52], and genetic disruption of TDP1 pres-
ages hypersensitivity to anti-cancer drugs like camptothecin 
(CPT), which stabilize TOP1cc [53, 54]. PRMT5 methylates 
TDP1 at R361 and R586, both of which reside in structured 
non-catalytic regions of the protein (Fig. 2) [55]. MS analy-
sis of TDP1 isolated from control and CPT-treated mouse 
embryonic fibroblasts (MEFs) revealed that R361me2s was 
present only in CPT-treated cells, whereas R586me2s was 
present in both conditions. CPT-induced DNA damage 
increased TDP1 methylation by ~ 40%. Comparing TDP1-
knockout MEF cellular extracts complemented with either 
PRMT5-treated  TDP1WT or TDP1 KK (R361K/R586K, Rme-
incompetent) showed decreased  TDP1KK hydrolysis in an 
ex vivo activity assay. In CPT-treated human colorectal 
cancer cells (HCT116), immunofluorescence demonstrated 
a time-dependent increase in repair foci; however, foci were 
noticeably reduced in PRMT5-deficient cells. Additionally, 
in CPT-treated TDP1-deficient MEFs and in those express-
ing  TDP1KK, a marked increase of TOP1-associated DNA 
double-strand breaks were observed compared to cells 
expressing  TDP1WT [55]. These results depict an implicit 
role for TDP1 arginine methylation in repair of TOP1-asso-
ciated DNA damage.

Topoisomerase 3B (TOP3B) is the only mammalian 
topoisomerase that possesses activity toward DNA and 
RNA, facilitating transcription and translation, respectively 
[56]. In both the nucleus and cytoplasm, TOP3B associates 

with Tudor domain-containing protein 3 (TDRD3)—an 
ssDNA- and RNA-BP and reader of histone H4R3me2a. 
TDRD3 localizes TOP3B to chromatin or polyribosomes 
and, furthermore, mediates the switch between distributive 
and processive topoisomerase activities [56, 57]. Chroma-
tin-associated TOP3B relieves negatively supercoiled DNA 
and resolves R-loops (three-stranded DNA/RNA hybrids, 
associated with neurodegenerative disorders and DNA dam-
age [58]) generated by RNA polymerase II (RNAP2) tran-
scriptional activity [57]. Polyribosome-associated TOP3B 
prevents topological tension in RNA that may arise during 
transcription or protein translation [59]. TOP3B is methyl-
ated on residues R833 and R835 in its disordered C-terminal 
GAR domain (Fig. 2) [60]. PRMTs 1, 3, and 6 methylate 
TOP3B in vitro. Rme2a was detected on TOP3B immu-
noprecipitated from HeLa cells, confirming in vivo meth-
ylation. To test methylarginine influence on TOP3B activ-
ity, wild type and methylation-deficient (R833K/R835K) 
 TOP3BKK were expressed in and purified from HEK cells 
and then used in an in vitro DNA relaxation assay.  TOP3BKK 
exhibited substantially reduced activity compared to wild 
type. In addition,  TOP3BKK resulted in increased R-loop 
formation in vitro, and knockdown of TOP3B increased 
R-loops in vivo—a phenotype rescued by ectopic expres-
sion of wild type but not  TOP3BKK [60]. Therefore, TOP3B 
Rme2a enhances topoisomerase activity and prevents R-loop 
accumulation, thereby preserving genomic integrity during 
transcription.

Transcriptional regulation and methylarginine 
crosstalk

Transcriptional regulation is achieved by many processes 
that are governed by histone PTMs, including coordina-
tion of transcription factors (TFs) and chromatin remodel-
ers. Histone PTM crosstalk has emerged as a central player 
in chromatin physiology and epigenetic regulation of gene 
expression. Modulation of RNAP2 dynamics also regulates 
transcriptional output. Together with DNA methylation, 
these factors control access to and dissemination of the 
underlying genetic information. In this section, we discuss 
the regulatory roles of arginine methylation with respect to 
gene transcription.

DNA methylation (5-methyl cytosine) at promoter CpG 
(cytosine–phosphate–guanosine) dinucleotides is a hallmark 
of transcriptional repression. DNA methylation is estab-
lished by the de novo DNA methyltransferases DNMT3A 
and DNMT3B, whereas epigenetic inheritance of DNA 
methylation patterning is predominantly perpetuated by the 
maintenance DNA methyltransferase DNMT1 [61, 62]. To 
faithfully propagate DNA methylation during DNA replica-
tion, DNMT1 is recruited to hemi-methylated DNA by the 
multidomain protein UHRF1 [63]. DNMT1 recruitment to 
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DNA replication forks is mediated through multiple chro-
matin interactions mediated by UHRF1 (Fig. 3): the SRA 
(SET- and RING-associated domain) interacts with hemi-
methylated DNA [63] and the TTD (tandem Tudor domain) 
interacts with histone H3K9me2/me3 [64]. In addition, the 
PHD domain interacts with unmodified histone H3R2; con-
versely, all forms of H3R2 methylation disrupt UHRF1 bind-
ing [65]. Overexpression of PRMT6 in mESCs increased 
H3R2me2a levels and globally decreased DNA methyla-
tion; likewise, chromatin-bound UHRF1 was substantially 
reduced in chromatin immunoprecipitation (ChIP) and 
nuclear fractionation assays [66]. In MCF7 breast cancer 
cells, which exhibit elevated PRMT6 expression, depleting 
or drugging PRMT6 markedly increased global DNA meth-
ylation and dramatically reduced H3R2me2a but did not per-
turb UHRF1 or DNMT1 levels. These experiments demon-
strate PRMT6-dependent H3R2me2a inhibits UHRF1-H3 
interaction and, consequently, impedes DNMT1 recruitment 
to chromatin, resulting in hypomethylated DNA—a signa-
ture feature of dysregulated transcription. Furthermore, a 
strong correlation exists between PRMT6 overexpression 
and DNA hypomethylation in oncogenic transformation 
[66–68].

The ADD (ATRX-DNMT3-DNMT3L) domain of 
DNMT3A contains both a GATA-1-like and a PHD-like zinc 
finger domain. The PHD domain was first reported to target 
DNMT3A to chromatin by specifically recognizing PRMT5-
dependent H4R3me2s [69]. In K562 erythroid cells, loss of 
H4R3me2s by PRMT5 knockdown impaired recruitment of 
DNMT3A and diminished DNA methylation. Hypomethyla-
tion resulted in aberrant activation of γ-globin expression, 
implicating arginine methylation as a direct driver of DNA 
methylation in fetal-to-adult hemoglobin switch [69]. How-
ever, subsequent studies reported that DNMT3A is guided 
to chromatin by PHD domain interaction with unmodified 
histone H3K4 and is negated by H3K4me2/3; neither study 
could recapitulate an interaction with H4R3me2s [70, 71]. 
The crystal structure of DNMT3A bound to an unmodi-
fied H3K4 peptide (PDB:3A1B [70]) supports the H3K4-
dependent recruitment model and suggests a potential role 
for H3R2 methylation in DNMT3A recruitment by direct-
ing H3K4me status [72]. Lack of structural support for a 
DNMT3A/H4 interaction does not necessarily rule out a 
function for H4R3me in direct or indirect DNMT3A recruit-
ment. This literature does, however, highlight the power 
of combining structural studies with quantitative binding 
assays to confirm direct interactions and correlate biological 
studies with in vitro analysis.

PTMs on the RNAP2 carboxy-terminal domain (CTD) 
coordinate both transcriptional and non-transcriptional 
processes. Mammalian RNAP2 CTD is highly disordered 
(Fig.  2) and contains 52 heptapeptide repeats (YSPT-
SPS, consensus) [73–77]. R1603 and R1810 occur in two 

non-consensus repeats (#2 and #31) and are methylated by 
both Type I and Type II PRMTs [78, 79]. R1810me2a is 
catalyzed by PRMT4 (more commonly referred to as coac-
tivator-associated arginine methyltransferase 1, CARM1) 
[78]. In in vitro assays using RNAP2 purified from HeLa 
cells, CARM1 methylated hypophosphorylated RNAP2 but 
not the hyperphosphorylated form due to pre-existing methy-
larginine marks. Pre-phosphorylated RNAP2 CTD peptides 
were not CARM1 substrates. Thus, in vivo, RNAP2 arginine 
methylation occurs before phosphorylation and transcrip-
tional initiation. CARM1 depletion in MEFs resulted in 
misexpression of small nuclear RNAs (snRNAs) and small 
nucleolar RNAs (snoRNAs). In human hematopoietic Raji 
cells expressing an R1810A mutant, this misexpression phe-
nocopied, suggesting that CARM1-dependent R1810me2a 
transcriptionally influences splicing by moderating availabil-
ity of spliceosomal and nucleolar ribonucleic acid compo-
nents. Additionally, although TDRD3 knockdown did not 
influence transcription of snRNA and snoRNA, RNAP2 
CTD-peptide binding assays indicated that TDRD3 spe-
cifically interacts with R1810me2a [78]. This suggests that, 
like H4R3me2a, RNAP2 R1810me2a may recruit TDRD3/
TOP3B to chromatin and/or assist in its transfer to RNA co-
transcriptionally [57].

Pursuing identification of an in vivo interaction between 
RNAP2 R1810me2a and TDRD3, co-immunoprecipitation 
(coIP) experiments with RNAP2 subunit D were performed. 
Unexpectedly, a CTD variant containing R1810me2s was 
purified [79]. RNAP2 purified from PRMT5-deficient 
HEK293 cells lacked R1810me2s; furthermore, CTD pep-
tides containing R1603 or R1810 were both methylated by 
PRMT5 in vitro. Using a candidate interactor peptide bind-
ing assay, R1810me2s bound nuclear Survival of Motor Neu-
ron (SMN) protein. IPs confirmed RNAP2-SMN interaction, 
and both R1810A mutation or PRMT5-depletion disrupted 
the interaction in HEK cells. SMN interacts with Senataxin, 
a helicase responsible for R-loop clearance at transcriptional 
pause sites, facilitating termination and RNAP2 release 
[79–81]. CTD R1810A mutation or depletion of Senataxin, 
PRMT5, or SMN all resulted in persistent and accumulated 
R-loops at the ACTB gene termination region [79]. Thus, to 
prevent R-loop accumulation at transcriptional terminator 
sites, SMN binds PRMT5-dependent RNAP2 R1810me2s 
and recruits Senataxin helicase activity to RNAP2 CTD. In 
contrast to the termination role of R1810me2s, R1810 citrul-
lination is also implicated in transcriptional pause release 
and elongation control [82]. Citrullination and arginine 
methylation are mutually exclusive; therefore, the biologi-
cal consequences of these opposing regulatory events are 
likely of great significance and important areas of future 
study. Collectively, these results further suggest that a cross-
talk occurs between arginine methylation, citrullination, and 
serine phosphorylation at the RNAP2 CTD.
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Mediator is a megadalton multi-subunit protein complex 
conserved throughout Eukarya; it binds RNAP2 to loop it 
with distal DNA. By interpreting regulatory signals broad-
cast by enhancer-bound transcription factors and activating 
non-coding RNAs (ncRNA-a), Mediator modulates tran-
scriptional activity [83–86]. Mediator subunit 12 (MED12) 
is a key structural component of Mediator’s transient kinase 
module [87]. MED12 directly interacts with ncRNA-a [85], 
and knockdown of MED12 or certain ncRNA-a results in 
reduced DNA-looping [83]. The C-terminal IDR of MED12 
(Fig. 2) is asymmetrically dimethylated by CARM1 at resi-
dues R1862, R1912 [88], and R1899 [89, 90]. MED12 is 
not fully methylated in cells [90] and also interacts with 
the putative arginine demethylase Jumonji domain contain-
ing protein 6 (JMJD6) [91]. Together, these suggest that 
MED12 cellular functions are tuned by arginine methyla-
tion. R1862me2a and R1912me2a sensitized breast cancer 
cells to chemotherapeutics [88]. R1899me2a was found 
to be necessary for MED12’s capacity to bind RNA, as 
knockdown of CARM1 inhibited ncRNA-a interaction 
[90]. Additionally, MED12 R1899me2a peptide interacted 
strongly with the Tudor domain of TDRD3 in pulldown 
assays, whereas R1862/R1912me2a was dispensable for 
this interaction. MED12/RNA interactions were also found 
to be TDRD3 dependent. As TDRD3 recruits TOP3B to 
DNA and RNA, MED12 R1899me2a potentially mobilizes 
topoisomerase activity to enhancers bound by ncRNA-a to 
facilitate transcription. As Mediator’s role is to assemble 
large ribonucleoprotein complexes, the presence of arginine 
methylation mediating some of these interactions suggests 
a very important role for this PTM. Furthermore, Mediator 
contains many IDRs [92]; as discussed later in this review, 
these IDRs are hotspots for both arginine methylation and 
nucleic acid binding and also contribute to the regulation of 
phase separation.

Histone PTM crosstalk between arginine and lysine 
pairs

Arginine methylation of intrinsically disordered histone 
N-terminal tails (Fig. 2 and Table 1) is implicated in cross-
talk to other PTMs—such as between arginine and lysine 
(RK) pairs—and reader recruitment. A prime example of 
this crosstalk is the methylation status of histone H3R2 and 
H3K4. H3R2me2s and H3K4me3 often colocalize at active 
gene promoters; conversely, H3R2me2a and H3K4me3 are 
mutually exclusive [93]. H3K4 trimethylation is dependent 
on the status of H3R2 methylation [72]. PRMT5-catalyzed 
H3R2me2s is read by WDR5—a subunit component of the 
mixed lineage leukemia (MLL) H3K4 methyltransferase 
complex—to recruit MLL and establish H3K4me3 at pro-
moters. Conversely, PRMT6-dependent H3R2me2a excludes 
WDR5 interaction, antagonizing MLL recruitment [72, 94]. 

Dysregulation of histone PTM crosstalk can have deleterious 
effects and contribute to disease and cancer pathogenesis. 
Alterations in TGFß signaling pathways are also observed 
in numerous cancers [95]. In A549 lung cancer cells, TGFß 
treatment resulted in PRMT5-upregulation and concomitant 
H3R2me1/me2s increase; subsequent WDR5/MLL recruit-
ment increased H3K4me3 and elevated expression of epithe-
lial-to-mesenchymal-transition genes [96]. Knockdown or 
drugging of PRMT5 or WDR5 abrogated this response, and 
PRMT5 inhibition also impaired the ability of A549 cells 
to migrate or invade matrigel, phenotypic traits of invasive 
cancer [96]. These results show how arginine methylation 
is central to controlling inducible gene transcription. Fur-
thermore, the cellular consequences determined by oppos-
ing H3R2 dimethylarginine marks on H3K4 methylation 
elegantly highlight the crosstalk between this RK pair.

Rag2 recombinase simultaneously interacts with both 
H3R2me2s and H3K4me3 [97]. The RAG2 PHD finger 
forms a groove with which it binds the first six residues of the 
H3 N-terminal tail (ARTKQT) (Fig. 4d). Quantitative bind-
ing studies revealed that RAG2 prefers H3R2me2sK4me3. 
This was surprising as H3R2me2s decreased H3 tail bind-
ing affinities of other PHD finger proteins known to interact 
with H3K4me3, e.g., UHRF1. This is a striking example of 
histone PTM crosstalk and, furthermore, demonstrates how 
methylarginine effectors, even within the same protein-fold 
family, have evolved to specifically recognize differentially 
patterned methylation at RK pairs.

H3K4/H3R8 constitutes another RK pair engaging in his-
tone PTM crosstalk. The reader protein Spindlin-1 (SPIN1) 
is a transcription factor implicated in rRNA expression and 
Wnt-signaling. SPIN1 also has increasingly emergent roles 
in cancer [98–100]. SPIN1 has three Spin/Ssty2 Tudor-like 
domains that interact with H3K4/H3R8. [101–103]. SPIN1 
co-crystallized with an H3R8mes2a/H3K4me3 peptide 
(PDB: 4MZF). Strikingly, SPIN1 affinity for H3K4me3-con-
taining peptides progressively increased with modulation of 
H3R8 methylation states (H3R8me0 < me1 < me2s < me2a) 
[102]. Furthermore, ChIP studies revealed overlap of 
R8me2a and K4me3 at common Wnt-responsive promoters 
[102]. Together, these results indicate that SPIN1 recruit-
ment to chromatin results from synergistic crosstalk between 
H3K4me3 and H3R8 methylation.

H4K20me3 and H4R23me2a form another SPIN1-inter-
acting RK pair, potentially engaged in antagonistic crosstalk 
[103]. An X-ray crystal structure of SPIN1 complexed with 
an H4K20me3 peptide was solved (PDB: 5Y5W). In vitro, 
SPIN1 did not bind R23me0 but did bind H4R23 peptides 
with greater affinity as methylation progressed from me1 to 
me2s to me2a. However, an H4K20me3R23me2a peptide 
bound SPIN1 with ~ 8-fold less affinity than H4K20me3 but 
with ~ 5-fold greater affinity than H4R23me2a, suggesting 
that, when dually methylated, simultaneous recognition of 
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this RK pair is unlikely and may function to temper SPIN1 
interactions with the H4 tail [103]. Intriguingly, four resi-
dues separate H3K4 and H3R8, whereas three residues sepa-
rate H4K20 and H4R23, and two residues separate H3R2 
and H3K4. This linear separation suggests a potential physi-
cal mechanism of reader recruitment by PTM crosstalk. We 
speculate that other bivalent RK methylation pairs may exist 
with appropriately spaced methylation marks.

Histone PTM crosstalk also occurs across different his-
tone types. PRMT5-catalyzed H3R8me2s and H4R3me2s 
are associated with gene repression in development and dif-
ferentiation (reviewed in [14]). In basal epidermal keratino-
cytes, H3R8me2s and H4R3me2s colocalize and antagonize 
expression of involucrin (IVL)—a transcriptional activa-
tor required for differentiation. Furthermore, stimulation 
of the PKCδ/p38δ pathway increased IVL expression and 
decreased PRMT5 and H3R8me2s/H4R3me2s levels at IVL 
promoter (hINV), demonstrating how regulation of arginine 
methylation functions in keratinocyte differentiation [104]. 
Recall that KLF4 half-life is increased when methylated by 
PRMT5 during DDR signaling [34]. KLF4 is also impor-
tant for keratinocyte differentiation, and KLF4 expression 
is stimulated by PKCδ; however, its half-life remained unaf-
fected [105], consistent with the hypothesis that PKCδ inhib-
its PRMT5 expression. This is also consistent with the idea 
that shorter-lived signaling pathways, such as differentia-
tion of proliferating cells, are expedited by quick turnover 
of responsive proteins; in contrast, in longer-lived pathways, 
such as cell cycle arrest, reduced turnover rate of responsive 
proteins is necessary. KLF4 methylation provides a prime 
example of how arginine methylation of a single protein reg-
ulates transcriptional activities in diverse cellular processes.

It has not escaped our notice that crosstalk between 
additional histone RK pairs exists, such as H3R17/H3K18, 
H3R26/H3K27, and H4R3/H4K5 (for review of previously 
identified histone arginine/lysine interplays, see [106]). 
For example, CARM1 methylates H3R17 when H3K18 is 
acetylated but not when H3K18 is unmodified [107]. Like-
wise, CARM1 preferably methylates H3R26 when H3K27 
is acetylated but not when H3K27 is trimethylated [108]. 
Therefore, CARM1 activity is stimulated on substrate 
arginines by prior acetylation of adjacent lysine residues 
(neutral charge), whereas unmodified and methylated lysine 
residues (positive charge) deter CARM1-dependent methyl-
transferase activity [106]. In a reciprocal fashion, PRMT1-
dependent H4R3me2a stimulates p300 acetylation [109] of 
H4K8 and H4K12 [110], whereas prior acylations (acetyla-
tion, butyrylation, crotonylation) at H4K5 prevent PRMT1 
activity at H4R3 [111]. Thus, it is becoming increasingly 
clear that crosstalk between histone arginine methylation 
and histone lysine modifications functions collectively to 
regulate chromatin-based processes and downstream cel-
lular consequences. Future interrogation of additional 

modifications such as citrullination, phosphorylation, and 
ubiquitylation will likely expand our understanding of his-
tone PTM interplays.

Arginine methylation in ribonucleoprotein 
biology

Messenger RNA (mRNA) transcripts are dynamically bound 
by > 1000 proteins, forming messenger ribonucleoprotein 
particles (mRNPs)—the physiological form of the transcrip-
tome (reviewed [112]). Arginine methylation is present on 
many RNABPs [113] and contributes to regulating nearly 
every aspect of mRNP biology, from nascent pre-mRNA 
stabilization and splicing, through nuclear export, to cyto-
plasmic localization, during translation, and into decay (pre-
viously reviewed [113, 114]). RNABP IDRs are increasingly 
reported to drive compartmentalization and efficiency of 
cellular processes by organizing non-membranous phase-
separated organelles (PSOs, reviewed [115]) via formation 
of reversible LLPS droplets, hydrogels, and fibrillary gels 
([116, 117], reviewed [118, 119]).

Chromatin is perhaps the largest PSO within the nucleus 
[120]. Other PSOs—such as nucleoli, Cajal bodies, and 
speckles—participate in rRNA and ribosome biogenesis, 
snRNP assembly, and as storage wells for a variety of splic-
ing factors, respectively [121]. As a means of regulating 
their function, mRNPs undergo dynamic reorganization 
and reversibly form PSOs, such as germ granules, mRNA 
transport granules, processing bodies (P-bodies), and stress 
granules (SGs). Germ granules function in early embryo-
genesis and contain maternal proteins and mRNA transcripts 
that are consumed prior to transcriptional activation of the 
embryonic genome (reviewed [122]). P-bodies function in 
mRNA turnover and contain de-adenylated transcripts and 
components of the mRNA decay machinery, e.g., decapping 
enzymes, and Lsm1-7 proteins (reviewed [123]). SGs are 
conglomerates of non-translating mRNAs and proteins, such 
as translation factors, kinases, RNA helicases, and signal-
ing molecules that form when cells experience stress (e.g., 
heat shock, oxidation), resulting in stalled or failed transla-
tion initiation (reviewed [124]). Arginine methylation status 
of RNABPs is linked to both normal physiological LLPS 
and dysregulated pathological accumulation of irreversible 
filamentous, ß-amyloid-like masses. These disease-associ-
ated aggregates are especially prevalent in neurodegenera-
tive proteinopathies such as amyotrophic lateral sclerosis 
(ALS), frontotemporal dementia/lobe degeneration (FTD/
FTLD), multiple sclerosis (MS), Alzheimer’s disease (AD), 
Huntington’s disease (HD), as well as in numerous cancers 
[125–127]. In this section, we discuss arginine methylation 
as it applies to mRNP biology, phase separation, and associ-
ated disease.
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snRNPs and spliceosome biogenesis

SMN is responsible for building the Sm (“Smith antigen”)-
core—a heptameric ring of Sm proteins (B/B’, D1, D2, 
D3, E, F, G)—on U1, U2, U4/U6, and U5 snRNAs to form 
snRNPs, which are vital for spliceosome assembly [128] 
(for review of SMN, see [129]). The intrinsically disordered 
C-terminal tails of SmB/B’, SmD1, and SmD3 (Fig. 2) are 
rich in GAR motifs (Table 1) that are methylated by PRMT5 
complexed with methylosome protein 50 (MEP50) and the 
Ion Chloride nucleotide sensitive protein (pICln) [130]. The 
SMN Tudor domain (Fig. 3b) binds directly to SmB/B’, 
SmD1, and SmD3 in an arginine methylation-dependent 
manner, facilitating Sm-ring construction [131]. Deletion 
of PRMT5 in murine neural progenitor cells results in post-
natal death due to aberrant splicing of cell cycle genes, such 
as MDM4, at weak 5′-donor sites [132]. In PRMT5-depleted 
hematopoietic cells, decreased global Sm protein dimethyla-
tion results in defective splicing and deficient DNA repair, 
eventuating cell death [133, 134]. Likewise, in primary sper-
matocytes, TDRD6 interacts with PRMT5 and with argi-
nine-methylated SmB prior to snRNP formation, suggesting 
that TDRD6 guides Sm proteins to PRMT5 for methylation 
and subsequent snRNP assembly [135]. In TDRD6-deficient 
diplotene spermatocytes, loss of SmB dimethylation leads 
to impaired spliceosome maturation and defective splicing, 
which ultimately suspended spermiogenesis [135, 136]. Fur-
thermore, as cancer cells are addicted to PRMT5′s function 
in splicing, development of therapeutics targeting PRMT5 
may be of high clinical significance [137].

Auto-antibodies against Sm proteins were discovered over 
50 years ago [138] and were subsequently used to isolate 
snRNPs [139]. As snRNP functions were discovered [140], 
it was soon discovered that SMN interacts with Sm pro-
tein GAR motifs [141]. It became clear that Rme2s played 
a critical role in assembly of the spliceosome [142, 143]. 
Interestingly, Rme2s was the actual “Smith” antigen on 
SmD1/D3 [144]; Rme2a was also reported to occur on Sm 
protein [145]. Furthermore, X-ray crystal structures of SMN 
bound to Rme2s and Rme2a were solved [146], suggesting 
that dynamic Sm methylarginine isoforms are biologically 
significant.

Non‑Sm proteins in splicing, phase separation, 
and disease

Arginine methylation is prevalent on numerous non-Sm pro-
teins fundamental to mRNP biology, such as these classes: 
(1) FET proteins (Fused in Sarcoma, also translocated in 
liposarcoma, FUS/TLS [147]; Ewing sarcoma, EWS [148]; 
and TATA-associated factor 15, TAF15 [149]); (2) hetero-
geneous nuclear RNPs (hnRNPs) A1, A2/B1, A3, D, G, H, 
K, and others [114, 150]; and (3) DEAD-box (DDX) RNA 

helicases (Fig. 2). Some of these proteins remain bound to 
RNA and regulate their further processing, nuclear export, 
cytoplasmic functions, and mRNP phase behavior. These 
proteins are enriched with LC domains, IDRs, and GAR 
motifs that directly participate in LLPS. Furthermore, dys-
regulated phase separation arising from mutation or impair-
ment of arginine methylation within these proteins results 
in their cytoplasmic accumulation and disease-associated 
irreversible aggregation [126, 147, 151–153].

FET proteins

FET proteins are predominantly disordered (Fig. 2). Their 
domain structure comprises an N-terminal transcriptional 
activation domain of low complexity and a semi-structured 
C-terminal RNA-binding domain (RBD) followed by a non-
canonical proline–tyrosine nuclear localization signal (PY-
NLS, interacts with transportin (TRN) nuclear import recep-
tor). The semi-structured RBD contains three disordered 
GAR motifs interspersed with a structured RNA recognition 
motif (RRM) and zinc finger domain [154]. Transcriptional 
activation is primarily observed by FET fusion proteins aris-
ing from oncogenic translocation. Wild-type FET transcrip-
tional activity is hypothesized to be auto-inhibited in part 
by cation-π interactions between GAR motif-arginines and 
activation domain aromatic residues [155], suggesting that 
auto-inhibition may also be affected by arginine methylation. 
Recent attention has been focused on FET proteins, espe-
cially FUS, largely due to the potential of their LC domains 
and IDRs to undergo LLPS. In addition, these proteins are 
prominent components of PSOs, such as mRNA transport 
granules and SGs. FET proteins are suggested to accumu-
late downstream of SG formation, i.e. they are not required 
for nucleation [127], and likely function to condense and 
shield RNA transcripts in a reversible manner. Furthermore, 
arginine methylation, serine/threonine phosphorylation, gly-
cosylation, and ubiquitylation PTMs occur on FET proteins 
[156–158]. Thus, dynamic PTMs of FET protein IDRs may 
function to shuttle them in and out of granular assemblies, 
mediating phase behavior and mRNA accessibility. Further 
interest in FET proteins is sparked by their association with a 
variety of diseases, as translocations, mutations, and recently 
arginine methylation status have been shown to dysregu-
late LLPS, leading to the formation of anomalous SG-like 
cytoplasmic aggregates observed in cancers and numerous 
neurodegenerative disorders [116, 117, 127, 156].

FUS is integral to many roles in mRNA biology during 
early vertebrate gastrulation and neurogenesis [151, 159]. 
At least 20 different sites of PRMT1- or PRMT8-catalyzed 
Rme2a occur in FUS GAR motifs [160, 161]. As arginine 
methylation occurs in the third GAR motif (RG3, 473-505aa) 
and within PY-NLS (506-526aa; R514, R518, R521, R522 
and/or R524), it is hypothesized to affect FUS subcellular 
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localization [147]. ALS-associated mutations in PY-NLS 
(R521G, R524S, R522G) exclude arginine methylation and 
were also thought to impair FUS localization. To test these 
hypotheses, HeLa cells expressing wild-type FUS (FUS-
WT) and ALS mutants (which mislocalized in the cyto-
plasm) were treated with the general methylation inhibitor 
adenosine dialdehyde (AdOx). FUS-WT and, strikingly, all 
ALS mutants were primarily localized to the nucleus after 
AdOx treatment. A separate report confirmed these results 
and showed that PRMT1 depletion in HEK cells and in dis-
sociated murine spinal cord motor neurons also abrogated 
cytoplasmic mislocalization of ALS mutants [162]. Similar 
results were observed with EWS- and TAF15-mutants found 
in FTLD-FUS aggregates [147]. These results suggest that 
arginine methylation comparably affects nuclear transloca-
tion of all FET proteins; however, methylarginine marks 
within PY-NLS appear to have no significance here. Consist-
ent with this hypothesis, a GFP-reporter assay showed that 
only GFP-RG3 successfully localized the nucleus, whereas 
both PY-NLS and Arg-to-Lys mutant RG3 both failed to 
import into the nucleus [147]. Overexpression of PRMT1 
in HEK cells slightly increased cytoplasmic FUS levels in 
cell fractionation assays, suggesting a role for Rme2a in 
FUS localization or retention in the cytoplasm [13]. HSQC 
NMR analysis confirmed that the FUS C-terminus contain-
ing RG3 and PY-NLS is intrinsically disordered. Addition-
ally, the loss of glycine peaks observed upon addition of 
TRN demonstrated that the RG3 region directly interacts 
with nuclear import receptor [147]. To directly test the 
hypothesis that FUS Rme2a influences TRN binding, NMR 
and pulldown assays were employed using unmodified and 
RG3-Rme2a FUS peptides, which confirmed that Rme2a 
disrupts TRN interaction [147]. PRMT1 knockout resulted 
in elevated levels of unmodified and monomethylated FET 
proteins and loss of Rme2a. Furthermore, unmodified and 
Rme1-FUS peptides were shown to enhance TRN interac-
tion [163]. These experiments clearly point to a regulatory 
mechanism for FUS (and likely for EWS and TAT15) sub-
cellular localization by which arginine methylation within 
FET-RG3 motifs directly influences TRN interaction and 
nuclear translocation; this process is dysregulated in FET 
protein-associated disease [147].

A distinguishing feature between FUS-associated FTLD 
and FUS-ALS inclusions is that TRN is present in the former 
but not the latter [162]. More than 50 mutations near PY-
NLS are associated with FUS-ALS [164]. As these muta-
tions do not influence their Rme2a levels, FUS-ALS mutants 
fail nuclear import and accumulate in the cytoplasm in part 
due to their inability to bind TRN—implicating Rme2a as 
a potential driver of FUS-ALS aggregation. On the other 
hand, FUS-FTLD arises not due to mutation but rather hypo-
methylation; thus, inclusions contain unmodified and mono-
methylated FUS [163]. FUS LLPS is reported to occur as 

cytoplasmic FUS levels breach threshold and begin accumu-
lating in SGs, eventually undergoing irreversible liquid-to-
solid phase transition (LSPT) [117, 165]. In this light, TRN 
also functions as chaperone to discourage phase separation 
of hypomethylated FUS in FTLD; conversely, TRN chaper-
one activity is abrogated by Rme2a, leading to accumulation 
and condensation of FUS in ALS [116, 117]. FUS likely 
self-assembles through intermolecular interactions between 
its N-terminal prion-like LC domains [117, 166]. Arginine 
methylation was initially reported to not have an effect on 
FUS solubility [163]. Recently, however, C-terminal RG3-
PY domain arginines were found to be critical for regulating 
FUS phase behavior [116, 117]. PRMT1-dependent Rme2a 
reduced FUS LLPS, requiring higher concentrations for 
demixing compared to hypomethylated FUS [117]. This 
was proposed to result from diminished intermolecular 
H-bonding between LC and RG3 domains due to arginine 
methylation, which interferes with cross-ß-sheet structural 
interactions vital to LLPS [116]. Therefore, GAR motif Rme 
plays a central part in FET protein biochemistry, directing 
subcellular localization and chaperoning cytoplasmic phase 
behavior, by tuning their interactions with TRN. hnRNPs—
another class of intrinsically disordered RNABPs that that 
influence LLPS—are discussed next.

hnRNPs

hnRNPs are core components of mRNPs. Some hnRNPs are 
transported back to the nucleus after delivering processed 
transcripts to the cytoplasm, while others remain and regu-
late cytoplasmic mRNP processes, including incorporation 
into and out of P-bodies and SGs. [167, 168]. Additionally, 
hnRNPs are linked to pathogenesis of cancer and numer-
ous neuropathies (for review, see [169]). Early studies into 
the cellular distribution of arginine methylation reported 
that ~ 65% of Rme2a in the nucleus occurred on hnRNPs 
[170]. PRMTs methylate arginines within hnRNP RRMs and 
GAR motifs—the functions of which we discuss next.

hnRNPA/B protein family members consist of hnRNPs 
A1, A2/B1, A3, and A0, each of which contains two N-ter-
minal RRMs and a C-terminal IDR containing several GAR 
motifs and an LC domain (Fig. 2). Arginine methylation of 
hnRNP A1 GAR motifs occurs by both PRMT1 [171] and 
PRMT5 activities [172]. Early work on hnRNPs reported 
that PRMT1-dependent Rme reduced hnRNP A1 RNA- and 
ssDNA-binding capacity [171]. hnRNP A1 is now known 
to aid in cellular stress recovery by associating with and 
resolving SGs [173]; additionally, hnRNP A1 GAR motifs 
are important for translation at internal ribosome entry sites 
(IRES), functioning as IRES-transactivating factors (ITAFs) 
[153]. Using wild-type and mutant hnRNP A1 GAR motifs, 
i.e., Arg-to-Lys (unmodified arginine mimic) and Arg-to-
Ala substitutions, which were engineered for cytoplasmic 
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retention, Rme was found to be dispensable for RNA binding 
and SG association. The Arg-to-Ala mutant, but not Arg-
to-Lys, failed to associate with RNA in IP experiments and 
had markedly reduced association with SGs in cellular stress 
assays. Thus, arginine residues within hnRNP A1 GAR 
motifs are required for RNA and SG interactions. In IRES 
translation assays, GAR motif Rme2a was shown to signifi-
cantly suppress ITAF activity. Additionally, wild type and 
lysine-substituted GAR motifs both reduced SGs to an equal 
extent during stress assay recovery periods. These results 
show that GAR motif arginines are necessary for cytoplas-
mic functions of hnRNP A1 and that Rme2a decreases ITAF 
activity [153], potentially to decommission translation in 
SGs.

PRMT5 also methylates hnRNP A1 GAR motifs at R218 
and R225 [172]. Knockdown or drugging of PRMT5 signifi-
cantly repressed translation of four different IRES reporters; 
furthermore, two of these IRES were known to be regulated 
by hnRNP A1. To test Rme2s dependence on IRES activity, 
native, single-, or double-site (R218K/R225K) hnRNPA1 
were expressed in hnRNP A1-depleted HEK cells containing 
an IRES reporter. Only the double mutant failed to rescue 
IRES translation deficits created by hnRNPA1 depletion, 
suggesting that R218 or R225 is necessary for IRES trans-
lation. hnRNP A1 Rme2s does not affect its subcellular 
localization. However, in PRMT5 knockout MEFs, loss of 
Rme2s significantly reduces hnRNP A1-IRES interaction. 
This study illustrates a regulatory mechanism for hnRNP 
ITAF activity being activated by PRMT5-dependent Rme2s 
and inactivated by PRMT1-dependent Rme2a—again high-
lighting the interplay between different forms of arginine 
methylation.

A role for Rme at hnRNP A1 RRM was discovered to 
function in drug-resistant pancreatic cancer [174]. PRMT3 
catalyzes R31me2a in the first RRM of hnRNP A1, increas-
ing its ability to bind and stabilize mRNA transcripts of the 
ATP-binding cassette subfamily member G2 (ABCG2) drug-
efflux protein pump. Overexpression of ectopic PRMT3 
in pancreatic cancer cell lines resulted in upregulation of 
ABCG2. PRMT3 is also upregulated in drug-resistant pan-
creatic cancers; thus, inhibition of PRMT3 and consequent 
reduction of hnRNP A1 arginine methylation may prove to 
be a successful strategy in combatting chemoresistance [174, 
175]. hnRNP A1 RRMs are associated with G-quadraplex 
DNA that function in telomere protection, and hnRNP A1 
GAR motifs interact with and enhance G-quadraplex unfold-
ing, promoting telomerase activity [176, 177]. It will be 
interesting to see how arginine methylation of hnRNP A1 
RRMs and GAR motifs influences its function at telomeres.

Splice variants hnRNP A2 and B1 GAR motifs are 
PRMT1 substrates, modified with both Rme1 and Rme2a 
[178]. Studies reporting the degree to which Rme occurs 
vary, ranging from Rme2a at a single site (R254, rat brain) 

[150] to multiple sites of Rme1 within all four C-terminal 
GAR motifs (T-cells) [16], suggesting that arginine meth-
ylation patterns are cell type specific. PRMT-1 methylation 
of hnRNP A2 in vitro was restricted to four residues within 
GAR motifs [126]. hnRNP A2/B1 arginine methylation was 
first reported to facilitate import into the nucleus, as cyto-
plasmic localization was increased upon deletion of GAR 
motifs or AdOx treatment [179]. Conversely, hnRNPA2/B1 
Rme was reported to have no influence on nucleo-cytoplas-
mic distribution—this conclusion was based on an R-to-A 
mutant of the single R254me2a site that found no difference 
in subcellular localization [150]. Thus, arginine methylation 
outside of R254 likely does influence hnRNP A2/B1 nuclear 
localization, potentially in a cell type-specific manner. As 
with FET proteins, arginine methylation of hnRNP A1 and 
A2/B1 also mediates LLPS behavior.

hnRNP LLPS phase behavior is mediated by its LC 
domain, containing a prion-like domain surrounded by 
multiple GAR motifs [126]. Increased hnRNP expression or 
mutations within LC domains often results in dysregulated 
phase separation and accumulation of cytoplasmic aggre-
gates observed in many pathologies [165, 180]. Splicing fac-
tor transactivating response DNA-binding protein 43 kDa 
(TDP43) is a physiological binding partner of hnRNP A2 
and is commonly found together with FUS and hnRNPs in 
disease-associated inclusions [181]. Using solution NMR, a 
study probing the mechanism behind hnRNP self-assembly 
and LLPS found that the hnRNP A2 LC domain is com-
pact and structurally disordered as a monomer. Addition-
ally, hRNP A2 LC remains predominantly disordered when 
phase separated and participates in weak (Kd ~ mM), broadly 
distributed, multivalent interactions [126]. An aggregation-
prone D290V disease-associated mutant enhanced local 
intermolecular interactions. This suggested that chemical 
changes in hnRNP-LC domains mediate self-association 
and potentially nucleate LLPS, similar to that observed with 
both hnRNPA1 [165] and FUS [182]. Phase separation of 
hnRNP A2 LC domain induces co-condensation and aggre-
gation with TDP 43 LC domains. NMR analysis revealed 
that hnRNPA2–TDP43 interactions were broadly distributed 
throughout the length of their LC domains. This demon-
strated that LC domain interactions contribute to liquid–liq-
uid demixing, by self-associating, and/or by comingling with 
other protein LC domains prone to undergo LLPS.

To investigate the role of arginine methylation on 
LLPS, hnRNP A2 LC was methylated by PRMT1 in vitro 
and brought to critical concentration for phase separa-
tion. Compared to the native protein, after centrifugation 
PRMT1-modified hnRnNP A2 LC remained 50% more 
concentrated in the supernatant, demonstrating that Rme2a 
decreases LLPS. Molecular simulations showed that Rme2a 
LC domains are structurally expanded and that GAR motif-
Rme2a disrupts ‘interaction hotspots’ observed between 
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aromatic residues and unmodified GAR motif arginines 
important for LLPS. FUS and hnRNPs are also subject to 
citrullination; citrullination of FUS and hnRNPs is inversely 
correlated with ALS-associated aggregation, thus implying 
a direct role for arginine methylation of IDRs in perturbing 
phase separation and protein aggregation [183].

Other mRNP proteins in germline, processing body, 
and stress granules

DDX4 (also known as Vasa, as first identified and described 
in Drosophila) is a putative RNA-helicase enriched in germ 
granules (also known as nuage (oocytes) and chromatoid 
bodies (spermatocytes))—a dense, ‘cloudy’ fibrogranular 
structure present in germ cells and early embryos instrumen-
tal for translation initiation of stored maternal transcripts. 
DDX4 also has emerging roles in ovarian cancer stemness 
[184–186]. DDX4 possesses an internal helicase domain 
that is flanked by intrinsically disordered N- and C-terminal 
tails (Fig. 2). DDX4 IDRs promote LLPS droplets that favor 
inclusion of ssDNA but not dsDNA [17]. Arginine methyla-
tion of DDX4 and related helicases is conserved from planar 
worms to humans [17, 187, 188]. PRMT1-dependent meth-
ylation of DDX4 N-terminal GAR motifs disrupted LLPS, 
dramatically reducing the ordered-to-disordered phase tran-
sition temperature by ~ 25 °C [17]. Mechanistically, DDX4 
N-terminal IDRs mimic block co-polymer architecture, 
clustering similarly charged residues into ~ 10aa ‘blocks’ of 
alternate net charge. Scrambling DDX4 IDR charge blocks 
without perturbing overall net charge abrogated LLPS. 
Additionally, FG/GF and RG/GR dipeptides cluster within 
regions of net positive charge, and mutating DDX4 IDR FG/
GF pairs to AG/GA pairs disrupts LLPS. These observations 
show that both electrostatic and cation-pi interactions are 
required for phase separation. Furthermore, this suggests 
that DDX4 GAR motif-Rme discourages phase separation by 
disrupting quadrupolar cation-pi interactions. Intriguingly, 
FG/GF pairs are separated by ~ 10aa and RG/GR pairs by 
4aa, suggesting a selective pressure for the spacing of these 
dipeptides within DDX4 IDRs. Analysis of the human pro-
teome identified over 1500 similar sequences; moreover, 
sequences in the top 10% mapped to known proteins with 
high LLPS propensity that are present in a variety of PSOs. 
This reveals a potential Rme2a-mediated LLPS-“fingerprint” 
for this protein subclass: alternating blocks of opposing net 
charge, with enrichment of specifically placed FG/GF and 
RG/GR pairs within regions of net positive charge.

Lsm (Like-Sm) proteins form heptameric ring complexes 
that encircle pre-snRNAs, pre-mRNAs, and pre-tRNAs. 
Lsm-rings function in various processing steps from splic-
ing (Lsm2-8) to decay (Lsm1-7) [189]. Lsm1-7 binds de-
adenylated mRNA and is a conserved component vital 
for 5′-to-3′ mRNA decay [190]; these are often found in 

phase-separated P-bodies (reviewed [123]). Human Lsm4 
has 8 arginine residues within its disordered C-terminal 
GAR motif (Fig. 2). While this motif is dispensable for Lsm 
complex formation, translational repression, and decay, it 
is required for P-body accumulation [191]. Consistent with 
this idea, the Lsm4 IDR has a high propensity to form LLPS 
droplets that quickly progress into amyloid-like fibrils [186]. 
PRMT5 catalyzes Lsm4 Rme2s, and depletion of PRMT5 
extinguishes P-body accumulation. Deletion or mutagen-
esis of Lsm4 GAR motifs failed (RtoA) to or partially 
(RtoK) rescued P-body formation in Lsm4-depleted cells. 
Thus, PRMT5-dependent Rme2s of Lsm4 GAR motifs may 
directly influence phase behavior to promote P-body amass-
ment [191]. Intriguingly, [G/S]Y[G/S] repeats, prevalent 
in IDRs, promote mRNP-granule-like hydrogel formation 
[192], suggesting that ‘GRG’ repeats, dependent on Rme, 
may have a similar function [191].

Recall that CARM1 installs Rme2a on TOP3B to stimu-
late its topoisomerase activity and enhance TDRD3 associa-
tion [60]. TDRD3 was previously identified as a component 
in SGs and its Tudor domain was necessary for recruitment 
[193]. TOP3B colocalizes with TDRD3 in SGs and read-
ily forms large cytoplasmic foci in response to stress [60]. 
Mutation of TOP3B (R833K/R835K) or Type I PRMT inhi-
bition reduced both the number and size of SGs; however, 
TDRD3 SG-localization was not disrupted. These results 
suggest that TOP3B, in an Rme2a-dependent fashion, is 
recruited to SGs by interacting with TDRD3 Tudor domain.

Ras-GAP SH3-binding protein 1 (G3BP1) is an RNase 
enzyme important in signal transduction and is a nucleating 
factor in SG formation. The G3BP1 C-terminus contains an 
RRM and a disordered GAR motif (Fig. 2). Stimulated by 
Wnt3a, G3BP1 methylation is catalyzed by PRMT1, which 
decreased G3BP1 binding to Ctnnb1 (ß-catenin) mRNA 
[194]. G3BP1 is also important in assembling SGs to pre-
serve mRNA transcripts [195, 196]. PRMT5 also methylates 
G3BP1; however, this study showed that demethylation of 
G3BP1 was a determining factor for its role in seeding SGs 
[197]. A G3BP1 GAR motif deletion mutant expressed in 
U2OS G3BP1-knockout cells failed, unlike native G3BP1, 
to form SGs even under oxidative stress; conversely, overex-
pression of PRMT1 or PRMT5 resulted in reduction of SGs, 
even when oxidatively stressed. Knockout or inhibition of 
either enzyme increased SG formation. In addition, R447 
and R460 were shown to be methylated by PRMT1 and 
PRMT5, respectively; R429, R435, and R443 were differ-
entially methylated by either enzyme. Immunoblots revealed 
that G3BP1 was demethylated under oxidative stress and re-
methylated during recovery. MS analysis of G3BP1 isolated 
from stressed cells confirmed that GAR motifs are demethyl-
ated. These results demonstrate that both G3BP1 GAR motif 
Rme2a and Rme2s suppress SG formation; moreover, they 
establish that demethylation promotes G3BP1-dependent SG 
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nucleation. Intriguingly, different stressors produced differ-
ent Rme responses: ER stress and heat shock both reduced 
Rme2s, whereas both Rme2a and Rme2s are reduced during 
oxidative stress. Nonetheless, demethylation appears to be 
global mechanism triggering G3BP1-dependent reversible 
LLPS and SG stability.

G3BP1 demethylation was linked to JMJD6 activity 
[198]. JMJD6, which is predominantly nuclear, localized in 
cytoplasmic foci coincident with G3BP1 and other SG mark-
ers upon subjection to the stressors mentioned above, iden-
tifying JMJD6 as a novel SG component. Overexpression 
of JMJD6 reduced global Rme2a but did not affect Rme2s, 
indicating that JMJD6 demethylation is Rme2a specific. 
JMJD6 depletion, inhibition, or expression of catalytically 
dead mutant impaired SG formation with no effect on global 
Rme2a. MS analysis of G3BP1 methylation in oxidatively 
stressed cells overexpressing JMJD6 showed decreases in 
both Rme1 and Rme2a; JMJD6 knockdown did not signifi-
cantly affect methylation. Furthermore, in rescue experi-
ments using JMJD6-depleted cells under oxidative stress, 
expression of mutant JMJD6 failed to rescue SG assembly, 
whereas native JMJD6 increased SG accumulation. These 
experiments provide an eloquent example of how arginine 
methylation can be utilized in a reversible manner to regulate 
cellular physiology.

These studies provide prime examples of how arginine 
methylation in IDRs functions in mRNP biology, mediat-
ing several biophysical processes from protein-nucleic acid 
interactions to LLPS. Next, we survey a broad range of 
human physiology influenced by arginine methylation.

Arginine methylation of other cellular 
proteins

T‑cell and B‑cell differentiation and maintenance

Maintenance of cluster of differentiation 4 positive (CD4 +) 
T-helper, CD8 + cytotoxic, and invariant natural killer (iNK) 
T cells is dependent on PRMT5 activity, revealing a regula-
tory role for arginine methylation in γc-dependent Jak3-sign-
aling [199, 200]. Arginine methylation is abundant in these 
cells as well as in peripheral naïve T cells [16], all of which 
have comparable levels of PRMT5 expression; conversely, 
PRMT5 levels are lower in regulatory T cells [199]. PRMT5 
expression is upregulated nearly 4-fold upon stimulation of 
CD4 + and CD8 + cells. In mice, PRMT5 deficiency did not 
affect thymic development of CD4 + or CD8 + cells but sub-
stantially reduced CD4 +/CD8 + naïve, effector, and central 
memory T-cell counts in peripheral tissues (spleen, liver, 
lymph nodes, and bone marrow). PRMT5-depletion did, 
however, result in cell-intrinsic defects in early iNK T-cell 
differentiation. Mechanistically, constitutive splicing of both 

IL2RG (γc) and Jak3 pre-mRNA was impaired by PRMT5 
depletion [199]. ILRG2 exon 6 encodes the γc transmem-
brane domain, suggesting a PRMT5-dependent regulatory 
mechanism that potentially adjusts the receptor-to-soluble 
γc-ratio to establish or maintain T-cell identities. This study 
also found that PRMT5 expression was downregulated by 
the Forkhead box transcription factor 3 (FOXP3), the activ-
ity of which was shown to be mediated by arginine methyla-
tion, as summarized next.

Thymus-derived T-regulatory (tTreg) cell establishment 
and maintenance is reliant on FOXP3 expression, which 
is repressed in peripherally-derived  pTreg-cells (reviewed 
[201]). FOXP3 positively regulates the constitutive expres-
sion of the high-affinity IL-2 receptor chain α (IL-2Rα, also 
known as CD25) and negatively regulates IL-2 expression 
to establish the  Treg-cell transcriptional signature [201]. In 
FOXP3 + T-cells, inhibition of PRMT1 downregulates CD25 
and upregulates of IL-2 expression, suggesting that arginine 
methylation influences FOXP3 function [202]. Genes asso-
ciated with T-helper  (Th)-cell signatures were upregulated 
in PRMT1-inhibited FOX3P + cells. Reciprocal IPs identi-
fied a FOXP3/PRMT1 interaction, and inhibition of PRMT1 
decreased both FOXP3 Rme1 and Rme2a. R48 and R51 were 
identified as PRMT1 substrates by mutational analysis. In 
FOXP3- cells, expression of wild type FOXP3 produced the 
CD25/IL-2 expression signature; double R48/51A FOXP3 
mutation was required to inhibit the CD25/IL-2 phenotype. 
In irradiated mice, PRMT1 inhibition or expression of 
R48/51A in FOX3P-transduced cells resulted in fatal weight 
loss; mice with wild-type FOX3P cells were asymptomatic 
in this regard. These results show that PRMT1-dependent 
arginine methylation of FOXP3 mediates its gene-regulatory 
activity, which promotes  Treg-cell maintenance by inhibit-
ing expression of genes associated with  Th-cell signatures. 
Additionally, PRMT5 has been implicated in B-cell differ-
entiation and maintenance [203]. These studies highlight an 
important role for arginine methylation in adaptive immune 
system development.

Actin and neuronal development

In the brain, the branched webbing of neuronal networks is 
underpinned by the structured entanglement of the filamen-
tous actin cytoskeleton. Protein Cordon Blue (COBL) is an 
actin nucleator highly enriched in the brain and is critical 
for neuronal morphogenesis. COBL is methylated and regu-
lated by PRMT2 [204]. The PRMT2 SH3 domain interacts 
with a disordered region of the COBL C-terminus (Fig. 2). 
IHC showed enrichment of PRMT2 in dendritic tress of 
rat hippocampal neurons (rHCNs) that overlapped with 
COBL at dendritic growth cones. coIP with PRMT2-SH3-
domain peptide precipitated endogenous COBL. In rHCNs, 
PRMT inhibition significantly reduced dendritic counts 
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and branching. Conversely, overexpression of PRMT2 or 
COBL increased both parameters, whereas inhibition of 
methylation in rHCNs overexpressing PRMT2 neutral-
ized these increases. Similar decreases were observed in 
PRMT2-knockdown rHCNs, in which ectopic expression 
of wild-type PRMT2, but not catalytic mutants, rescued 
dendritic counts and branching. Rme was detected on GFP-
COBL immunoprecipitated from rHCNs. COBL contains 
three intrinsically disordered C-terminal WASP homol-
ogy (WH2) domains which fold upon binding to G-actin 
[204, 205]. Arginine methylation occurs near these actin-
nucleating WH2 domains at the COBL C-terminus. The 
observation that PRMT2-dependent arginine methylation 
within COBL WH2 IDR domains enhances actin-binding 
highlights the neuronal development importance of arginine 
methylation mediating both intrinsic disorder and protein-
protein interactions.

Metabolic flux

A distinguishing characteristic of cancer cells is their meta-
bolic switch from oxidative phosphorylation to high-flux 
anaerobic glycolysis (termed the Warburg effect) [206]. 
Accordingly, glycolytic enzymes are commonly upregu-
lated in cancers [207], including glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) in metastatic hepatic tis-
sues [208]. Arginine methylation of GAPDH R234 was 
identified in recent characterizations of the methylome [11, 
12]. CARM1 methylation of GAPDH has inhibitory effects 
on glycolysis; furthermore, GAPDH methylation was sup-
pressed in a panel of human liver cancers [209]. Rme1 and 
Rme2a were detected on FLAG-GAPDH purified from HEK 
cells. Enzymatic assays showed that GAPDH from AdOx-
treated cells was ~ 50% more active than untreated, suggest-
ing that R234me inhibits GAPDH activity. Consistent with 
this idea, GAPDH isolated from Adox-treated cells showed 
a 30% reduction for nicotinamide adenine dinucleotide 
(NAD +)  Km (Michaelis constant), suggesting that R234me 
reduces GAPDH substrate affinity. Likewise, R234F (methyl 
mimic) mutant exhibited a 10-fold increase in glyceralde-
hyde-3-phosphate (G3P) Km, and reduced GAPDH activ-
ity by a striking 80%. CARM1 methylates GAPDH R234 
in vitro, which also inhibited GAPDH activity. In liver can-
cer cell lines, glucose starvation upregulated CARM1 pro-
tein, increased GAPDH R234me, and decreased GAPDH 
activity. Conversely, when glucose was added to culture 
medium, CARM1 levels decreased, R234me diminished, 
and GAPDH activity increased by ~ 50%. These experiments 
reveal a mechanistic link between GAPDH arginine methyla-
tion and glucose levels in liver cancer cells, which may play 
a critical role in maintaining high-flux glycolysis, driving 
the Warburg effect.

SIRT7, glucose sensing, and mitochondrial 
biogenesis

SIRT7 is a histone H3K18-specific deacetylase [210]. Pro-
teomic analyses discovered SIRT7 R388me in a region 
important for its deacetylase activity [12, 16]. R388 is 
conserved from flies to humans, suggesting that modifica-
tion has functional significance. To characterize R388me, 
SIRT7 was expressed in and purified from HEK cells, and 
immunoblots detected both Rme1 and Rme2a on SIRT7. 
AdOx treatment and SIRT7 R388F/K mutation markedly 
reduced both methylation signals, suggesting that R388 is 
the predominant site of methylation [211]. Using a SIRT7 
R388me-specific antibody that detects both Rme1 and 
Rme2a, immunoblots revealed that ~ 50% of endogenous 
SIRT7 is methylated in HEK and L02 (human fetal liver) 
cells, which was significantly reduced by AdOx treatment. 
In vitro methylation assays and coIPs identified PRMT6 as 
the primary SIRT7 methyltransferase. Both wild-type and 
SIRT7 R388 K effectively deacetylated H3 K18ac when 
expressed in HEK and MEF cells; however, R388F failed to 
do so, suggesting that Rme inhibits SIRT7 deacetylase activ-
ity. Consistent with this idea, deacetylation of HEK cell-
extracted chromatin with in vitro methylated SIRT7 showed 
significantly increased H3K18ac compared to unmodified 
SIRT7. Consistently, H3K18ac levels were severely attenu-
ated by SIRT7 purified from H3K cells either co-expressing 
catalytically inactive PRMT6 or depleted for PRMT6, dem-
onstrating that SIRT7 deacetylase activity is suppressed by 
PRMT6-dependent Rme. Deacetylation of H3K18 promotes 
transcriptional silencing of genes implicated in mitochon-
drial maintenance [212]. SIRT7 knockdown significantly 
increased mitochondria, oxygen consumption, and ATP 
production in MEFs [211]. Addback of wild-type SIRT7, 
but not methyl-mimetic R388F, fully restored mitochondrial 
mass and metabolic flux. Acetylation at several SIRT7-target 
gene promoters markedly increased upon PRMT6 inhibition, 
whereas mitochondrial mass, ATP levels, and oxygen con-
sumption all decreased. These effects were not observed in 
PRMT6-inhibited SIRT7-knockdown cells. Together, these 
results indicate that PRMT6-dependent SIRT7 R388me pro-
motes mitochondrial biogenesis and maintenance.

Depletion of glucose in culture media resulted in hypo-
methylation of SIRT7 coincident with a sharp rise in AMPK 
phosphorylation, suggesting that activated AMPK inhibits 
SIRT7 methylation under low-glucose conditions. Consistent 
with this hypothesis, AICAR-induced activation of AMPK 
reduced SIRT7 R388me, whereas AMPK knockout, even 
under glucose starvation, increased SIRT7 methylation. In 
addition, PRMT6 inhibition in AMPK knockout cells abro-
gated SIRT7 methylation, and PRMT6-SIRT7 association 
was mitigated upon glucose starvation or AICAR treatment 
by coIP. These experiments strongly indicate that AMPK 



2950 B. M. Lorton, D. Shechter 

1 3

signals glucose availability to SIRT7 through PRMT6. In 
fasting mice, upon intraperitoneal glucose administration, 
SIRT7 methylation increased while AMPK phosphorylation 
decreased in liver tissues. These results define an AMPK-
PRMT6-SIRT7 axis, connecting glucose sensing to arginine 
methylation and mitochondrial biogenesis. Mechanistically, 
elevated glucose stimulates AMPK activation that signals 
inhibition of SIRT7 HDAC activity via PRMT6-dependent 
SIRT7 R388 methylation. In this manner, H3K18ac is main-
tained, resulting in expression of genes that drive mitochon-
drial biogenesis and homeostasis.

Viral replication and reactivation

PRMTs can be co-opted or inhibited by viruses during 
viral replication [213] and reactivation [214]. West Nile 
virus (WNV) replication depends on cyclization of its 
RNA genome (WNV RNA) [213]. hnRNP D (also known 
as AU-rich element binding protein 1, AUF1, p45 isoform) 
facilitates RNA cyclization. PRMT1 is necessary for GAR 
motif methylation within the disordered AUF1 C-terminus 
(Fig. 2, hnRNP D). Depletion of PRMT1 inhibited AUF1 
methylation and decreased WNV replication. Conversely, 
both cyclization of WNV RNA and replication were most 
efficient with methylated AUF1. Circular dichroism dem-
onstrated that AUF1 has a high degree of disorder; Rme2a 
conformationally structures AUF1. Furthermore, AUF1 
Rme2a displayed significantly increased affinity for WNV 
RNA 5′- and 3′-UTRs, and AUF1 Rme2a enhanced WNV 
RNA replication. Gel-shift assays determined AUF1 Rme2a 
facilitated more efficient RNA interactions at 5′- and 3′-ends. 
Fluorescence-based RNA-restructuring assays demonstrated 
that Rme2a significantly enhances AUF1 RNA 3′-stem-
loop melting—a prerequisite for RNA cyclization. A novel 
function for AUF1 in annealing WNV RNA cyclization 
sequences was discovered; however, a FRET-based assay 
suggested both unmodified and AUF Rme2a hybridize cycli-
zation sequences with comparable efficiency. Nonetheless, 
this report describes how WNV commandeers PRMT1 to 
promote efficient replication of its genome.

Reactivation of the Kaposi’s sarcoma-associated her-
pesvirus (KSHV) genome involves chromatin remodeling 
assisted by PRMT5 [214]. The host chromatin environment 
surrounding latent KSHV viral genome is predominantly 
repressed. Upon viral reactivation, histone modifying 
enzymes, including PRMT5, are appropriated to restructure 
chromatin into a state amenable for transcription of viral 
RNA. Expression of viral RNA was significantly higher in 
PRMT5-depleted reactivated KSHV cells, and ChIP-qPCR 
showed a decrease in H4R3me2s, indicating that PRMT5 
suppresses viral transcription through H4R3me2s. Dur-
ing viral reactivation, KSHV protein ORF59 binds to and 
inhibits the catalytic domain of PRMT5, resulting in loss of 

H4R3me2s and accumulation of H3K4me3, thereby ‘open-
ing’ chromatin for viral replication. Thus, viral inhibition 
of PRMTs promotes transformation of KSHV from latent 
to lytic infection.

Circulating Rme2a: a biomarker of endothelial 
dysfunction

L-Arginine is the precursor of nitric oxide (NO). NO is an 
important vasodilator: endothelial cells of the inner vessels 
use the enzyme nitric oxide synthase (NOS) to convert a 
molecule of L-Arg into NO. NO then diffuses from endothe-
lial cells to the smooth muscle cells surrounding blood ves-
sels, resulting in vasodilation, prompting decreased blood 
pressure and inflammation [215]. As a result of normal pro-
teolysis, methylarginines are released into biological fluids. 
Circulating Rme2a competes with L-Arg for the NOS cata-
lytic site, inhibiting NO synthesis [216]. Circulating Rme2a 
levels have emerged as biomarkers for endothelial dysfunc-
tion and are associated with cardiovascular disease risk in 
patients with rheumatoid arthritis (RA). Targeting Rme2a 
metabolism is, therefore, a potential RA therapy. Thus far, 
owing to variability in results in inter-study comparisons, 
reduction of Rme2a and beneficial effects on cardiovascular 
outcomes are inconclusive [217].

Perspective

Liquid–liquid phase separation is a phenomenon of wide-
spread and recent profound interest. It has largely been 
investigated with respect to RNA granule formation and 
function. A large proportion of the proteins implicated in 
RNA granule phase separation are known targets for arginine 
methylation (e.g., FUS, hnRNP A2, Lsm4). Similar themes 
are beginning to emerge in how different levels of interphase 
genome architecture are compacted and functionally organ-
ized into topologically associated domains, compartments, 
and chromosomal territories. One compelling hypothesis 
is that transcriptionally active and inactive regions are 
organized dependent on the degree of phase separation of 
the chromatin fiber. Consistent with this hypothesis is the 
observation that transcription factors and RNAP2 cluster 
into hubs at active gene loci and enhancer regions and pro-
mote phase separation [218–221]. Intriguingly, numerous 
chromatin-associated proteins are arginine methylated, such 
as histones, transcription factors (e.g., FOXP3 [202], STAT1 
[222], E2F-1 [223]), and RNAP2. In light of observations 
showing RNA granule phase behavior is regulated by argi-
nine methylation, this suggests a similar mechanistic role for 
arginine methylation in mediating phase transitions critical 
for the dynamic three-dimensional organization and function 
of the eukaryotic genome.
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We have explored only a sample of the broad-reaching 
cellular consequences of arginine methylation in Eukarya. 
Over the past 50 years, methylarginine has staked its claim 
as a modification of great significance on the PTM frontier. 
Manifesting in crosstalk with other PTMs, functionalizing 
IDRs, and mediating LLPS, methylarginine plays a key role 
in regulating biophysical processes throughout the cell. As 
we look toward the future, our understanding of cellular 
physiology will continue to grow as mechanisms governing 
phase separation and compartmentalization of biological 
processes are uncovered. Arginine methylation and dem-
ethylation have made an early appearance in this arena of 
disorder-to-order transition and will likely continue to guide 
our knowledge forward.
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