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Abstract

Sequential multiple assignment randomized trials (SMARTs) are a useful and increasingly popular 

approach for gathering information to inform the construction of adaptive interventions to treat 
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psychological and behavioral health conditions. Until recently, analysis methods for data from 

SMART designs considered only a single measurement of the outcome of interest when 

comparing the efficacy of adaptive interventions. Lu and co-workers (2016) proposed a method for 

considering repeated outcome measurements to incorporate information about the longitudinal 

trajectory of change. While their proposed method can be applied to many kinds of outcome 

variables, they focused mainly on linear models for normally distributed outcomes. Practical 

guidelines and extensions are required to implement this methodology with other types of repeated 

outcome measures common in behavioral research. In this paper we discuss implementation of this 

method with repeated binary outcomes. We explain how to compare adaptive interventions in 

terms of various summaries of repeated binary outcome measures, including average outcome 

(area under the curve) and delayed effects. The method is illustrated using an empirical example 

from a SMART study to develop an adaptive intervention for engaging alcohol- and cocaine-

dependent patients in treatment. Monte Carlo simulations are provided to demonstrate the good 

performance of the proposed technique.

Keywords

sequential multiple randomization trial (SMART); longitudinal data; binary outcome; logistic 
regression

There has been increased interest in recent years in the development of adaptive 

interventions (AIs). AIs are evidence-based treatment protocols that specify how information 

about the participant’s progress in the course of the intervention (e.g., early signs of non-

response or poor adherence) should be used to modify aspects of the type, dosage, intensity, 

or delivery modality of an intervention. AIs are often motivated by evidence indicating that a 

particular intervention option (e.g., a particular type, intensity, scope, or delivery modality of 

treatment) is not beneficial for a sizable portion of the target population. Further, it is often 

possible to identify early in the course of an intervention those individuals for whom an 

intervention option would ultimately not be beneficial (Almirall & Chronis-Tuscano, 2016) 

and hence offer an alternative that would be more helpful for them. Adaptive interventions 

play an important role in various domains of behavioral research, including clinical 

psychology (Connell, Dishion, Yasui, & Kavanagh, 2007), education (Connor et al., 2011), 

organizational behavior (Eden, 2015), and health behavior change (Nahum-Shani, Hekler, & 

Spruijt-Metz, 2015; Almirall, Nahum-Shani, Sherwood, & Murphy, 2014).

The Sequential Multiple Assignment Randomized Trial (SMART) (Murphy, 2005) is an 

experimental design that can aid in the development of effective AIs. A SMART includes 

multiple stages of randomizations, where each stage is designed to address scientific 

questions concerning the selection and individualization of intervention options at a given 

decision point. The uptake of SMART studies in behavioral research is increasing rapidly 

(Almirall et al., 2016; Gunlicks-Stoessel, Mufson, Westervelt, Almirall, & Murphy, 2016; 

Naar-King et al., 2016; Page et al., 2016).

While there are various forms of SMARTs (Nahum-Shani et al., 2012), a prototypical 

SMART includes two stages of randomizations. At the first stage, each individual is 

randomized to one of two initial intervention options, but then the second stage of 
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randomization is restricted to participants who are showing early signs of insufficient 

progress, referred to as early non-responders. That is, early non-responders are re-

randomized to second-stage intervention options (e.g., to two different rescue treatments), 

whereas responders are not re-randomized. Depending on the study design, responders often 

either continue with the initial intervention, or transition to a less intense or less costly 

intervention option. Designing the study such that different intervention options are offered 

to early responders versus early non-responders leads to several AIs that are embedded in 

the SMART by design. Each embedded AI is operationalized by a relatively simple decision 

rule that recommends a particular initial intervention option for all individuals in the target 

population, and then a different subsequent intervention option for early non-responders 

versus early responders. Many SMART studies are motivated by scientific questions 

concerning the comparison of these embedded AIs.

The use of data from a prototypical SMART to compare embedded AIs requires careful 

consideration of the unique features of the SMART (Nahum-Shani et al., 2012). Nahum-

Shani and colleagues (2012) suggested that embedded AIs could be compared in an 

unbiased and efficient manner using weighting and replication. Recently, Lu and colleagues 

(2016) extended this methodology for use with repeated outcome measures arising from a 

SMART. By capitalizing on both the key features of the SMART and the key features of 

longitudinal data, the method developed by Lu and colleagues (2016) enables researchers to 

better understand the process by which the effect of an AI unfolds over time and possibly to 

improve statistical efficiency (i.e., to obtain smaller standard errors in the comparison of 

embedded AIs).

While the theorems provided by Lu and colleagues (2016) are applicable to various types of 

outcomes, the examples used to illustrate the methodology, as well as the simulation studies 

conducted to evaluate its performance, assumed that the repeated outcome of interest is 

continuous. Kidwell and colleagues (2018) use a weighting and replication approach with a 

binary outcome, but not for longitudinal data. The goal of the current manuscript is to 

further extend this work by discussing practical implications pertaining to the use of this 

methodology in a setting where the repeated outcome measure of interest is binary. Binary 

outcomes are very common in behavioral research, such as in studies of drug use, alcohol 

and smoking (Hedeker et al., 2007) and in studies of learning and memory (Vuorre & 

Bolger, 2017). However, they present several challenges in the analysis of longitudinal data. 

For example, some estimands of interest, such as the area under the curve (AUC), will no 

longer be linear combinations of model parameters as they would be in a linear model with 

continuous outcomes. Therefore, the proposed methodology represents an important step in 

expanding the toolbox of data analysis methods behavioral scientists can employ with 

SMART study data.

We begin by providing a brief review of the method of Lu and colleagues (2016) for 

repeated continuous outcome measures, including key modeling considerations and 

estimation features. We then provide an extension to a setting in which the outcome is binary 

and discuss how to estimate important quantities, such as binary outcomes averaged over 

time and delayed effects. Simulation studies are provided to evaluate the performance of this 

extension in terms of bias, efficiency, and confidence interval coverage and also to 
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investigate the extent to which efficiency is improved when implementing the method in 

various ways. Throughout, data from the ENGAGE SMART study (McKay et al., 2015) will 

be used for illustration. The goal of ENGAGE is to inform the development of an adaptive 

intervention for re-engaging alcohol and cocaine dependent patients in intensive outpatient 

programs (IOPs).

Empirical Example: ENGAGE SMART Study

The ENGAGE experiment was motivated by the need to develop an AI for re-engaging 

cocaine and alcohol dependent patients in IOPs and improving substance use outcomes in 

this high risk group. The first purpose of this study was to determine whether it is better, at 

the first intervention stage, to offer a brief, phone-based motivational interviewing (MI) 

session that focuses on helping the individual re-engage in their IOP or to offer a brief 

phone-based MI session that focuses on helping the individual make a personal choice 

among various available treatment options, including (in addition to IOP), individual 

cognitive-behavioral therapy (CBT), telephone-based stepped care, and medication 

management (see McKay et al., 2015). The two types of phone-based MI sessions are 

denoted MI-IOP and MI-PC, respectively. The second purpose of the study was to determine 

whether the better second-stage course of action for participants who do not respond to the 

initial outreach efforts is to offer MI-PC or to offer no further phone-based MI contact 

(abbreviated NFC for no further contact, although patients were still allowed to continue 

treatment in the outpatient program if they re-engaged on their own).

The experimental design is illustrated in Table 1; it involved 6 cells, labeled A-F and 

assigned via sequential randomization as follows. Cocaine- and alcohol- dependent 

individuals were recruited when they entered treatment at the IOP, and their treatment 

attendance was tracked for 8 weeks. Those who failed to engage in treatment early in the 

program were randomized with equal probability to either MI-IOP or MI-PC. At the end of 

the second month, participants showing signs of non-response (i.e., continued 

disengagement in treatment) were re-randomized to either MI-PC or NFC, whereas all 

participants showing signs of response received no further contact (i.e., responders were not 

re-randomized).

The multiple, sequential randomizations in ENGAGE—i.e., the stage 1 randomization 

among all participants, and the stage 2 randomization, which was restricted to non-

responders—give rise to 4 embedded sequences of treatments, which are summarized in 

Table 1. Note that an adaptive intervention is a protocol that recommends how to sequence 

and individualize intervention options, where the term ‘individualization’ refers to offering 

different intervention options to different sub-groups comprising the target population (e.g., 

to responders vs. non-responders). Since an adaptive intervention specifies how to treat each 

sub-group, outcome information from individuals in each of the sub-groups (e.g., both 

responders and non-responders) is consistent with, and can be used to evaluate, the adaptive 

intervention. In the ENGAGE SMART, one of the embedded AIs recommends offering MI-

IOP initially, and then MI-PC for non-responders and NFC for responders. We refer to this 

adaptive intervention as later choice, as it offers personal choice only during the second 

stage (to non-responders). Consistent with this adaptive intervention are individuals who 
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were offered MI-IOP initially, and then MI-PC if they did not respond (subgroup b in Figure 

1) and NFC if they responded (subgroup a in Figure 1). The second adaptive intervention 

embedded in ENGAGE recommends offering MI-PC initially, and then MI-PC for non-

responders and NFC for responders. We refer to this adaptive intervention as choice 

throughout, since personal choice is facilitated initially (to all individuals who enter the re-

engagement program), as well as subsequently (to non-responders). Consistent with this 

adaptive intervention are individuals who were offered MI-PC initially, and then MI-PC if 

they did not respond (subgroup e in Figure 1) and NFC if they responded (subgroup d in 

Figure 1). ENGAGE also includes two other embedded interventions, which are actually 

non-adaptive in that the same second-stage intervention option (no further contact; NFC) is 

offered to both early non-responders and early responders. One of them begins with MI-IOP 

and the other with MI-PC. We refer to the former as no choice, since personal choice is not 

facilitated at either stage of the intervention. Consistent with no choice are individuals, who 

were offered MI-IOP initially, and then NFC if they did not respond (subgroup c in Figure 1) 

or if they responded (subgroup a in Figure 1). We refer to the later as initial choice, since 

personal choice is facilitated only at the first stage of the intervention. Consistent with initial 

choice are individuals who were offered MI-PC initially and then NFC if they did not 

respond (subgroup f in Figure 1) or if they responded (subgroup d in Figure 1). As noted 

earlier, both no choice and initial choice are non-adaptive (because they involve treating 

participants in the same manner regardless of responder status), but are still considered here 

as adaptive interventions for ease of presentation. Of course, a SMART can be designed 

such that all four embedded sequences are adaptive, namely such that non-responders and 

responders are treated differently in all embedded sequences (see example in Pelham et al., 

2016).

Timeline follow-back assessments obtained approximately monthly over six months were 

summarized to obtain monthly measurements of drinking and cocaine use behaviors. The 

goal is to use these repeated measurements to compare the adaptive interventions (AIs) 

embedded in this SMART. The methodology discussed here can be easily extended to enable 

the use of additional measurement occasions before and after exposure to second-stage 

intervention options.

Denote the observable data for subjects in this SMART by X, Y1, A1, Y2, A2, Y3, Y4, Y5, Y6 , 

where Y t is the outcome measured at month t; A1 and A2 are the randomly assigned first- and 

second-stage intervention options, respectively; and X is a vector of baseline measures 

obtained prior to the initial randomization (e.g., age, gender). Let A1 denote the indicator for 

the first-stage intervention options, coded −1 for MI-IOP and +1 for MI-PC, and A2 denote 

the indicator for the second-stage intervention options for non-responders, coded −1 for 

NFC and +1 for MI-PC. A2 is left undefined for responders because they were not re-

randomized; all responders receive NFC. Throughout, we assume the dataset is in a long 

form, such that each participant has six observations (rows in the dataset) corresponding to 

the six measurement occasions. In this paper, we also assume equal timing of observations, 

relative to each other and to the randomization times, across subjects; however, this 

assumption can be relaxed.
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In the following section, we discuss how such repeated outcome data can be used to 

compare embedded AIs, following the method proposed by Lu and colleagues (2016). We 

present the procedure in six steps.

Comparing Adaptive Interventions With Repeated Outcome Measures

For each step, we provide a general conceptual overview. We then explain, when relevant, 

the modifications required for the case of binary rather than numerical outcome variables.

Step One: Create the Assigned Weights.

In a prototypical SMART such as ENGAGE, outcome data from early non-responders is 

under-represented, by design, in the sample average of each embedded AI. This is because 

only early non-responders are re-randomized to subsequent intervention options and hence 

are split into two subgroups, whereas early responders are not re-randomized and hence are 

not split into two subgroups. Using standard regression methods to compare the embedded 

AIs in such a setting will result in biased estimates (see details in Nahum-Shani et al., 2012; 

Lu et al., 2016). Hence, weights are used to correct for this imbalance. Because the 

randomization probabilities are known, one option is to assign a weight based on these 

known probabilities, namely the inverse of the randomization probability. In the case of 

ENGAGE, participants were randomized with equal probability (0.5) to either of the two 

first-stage intervention options, and then non-responders were re-randomized with equal 

probability (0.5) to the second-stage intervention options. Hence, by design, a non-responder 

would have 0.5×0.5=0.25 chance of being assigned to a particular AI, whereas a responder 

would have a 0.5 chance. Capitalizing on these known probabilities, the assigned weights 

would be wi = 1/0.25 = 4 for non-responders and wi = 1/0.5 = 2 for responders.

An alternative to using known weights as described above is to estimate the weights by 

using covariates that might be correlated with the repeated outcome measures. This 

approach, which has the potential to asymptotically improve efficiency of the estimator 

(Brumback, 2009; Hernan, Brumback, & Robins, 2002; Hirano, Imbens, & Ridder, 2003), 

can be employed in the current setting by conducting two logistic regressions to estimate the 

probability of assignment to the first- and second-stage intervention options respectively. To 

estimate the probability of assignment to the first-stage intervention options, the indicator 

for the first-stage intervention options A1  can be regressed on covariates that are measured 

prior to the first-stage randomization (e.g., baseline information) and that are thought to 

correlate with the repeated outcomes. To estimate the probability of assignment to the 

second-stage intervention options among non-responders, the indicator for the second-stage 

intervention options A2  among non-responders can be regressed on covariates that are 

measured prior to the second-stage randomization and that are thought to correlate with the 

repeated outcomes. The covariates for predicting A2 could include both the baseline 

information and time-varying information obtained during the first intervention stage. Based 

on these logistic regressions, an estimated probability of assignment for first-stage and 

second-stage intervention options can be obtained for each individual. Multiplying the two 

probabilities yields the estimated weight for each individual.
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The weights are reminiscent of inverse-probability of treatment weighting in causal 

inference (Robins, 1986); in addition, in observational study analyses, such weights must be 

estimated, which is reminiscent of the second approach to weighting discussed above. 

However, the goal of the estimated weights is not to correct for imbalance in how individuals 

are distributed across the assigned treatments, as is usually the case in the analysis of 

observational studies (Harder, Stuart, & Anthony, 2010; Rosenbaum & Rubin, 1983; Schafer 

& Kang, 2008). Indeed, in ENGAGE, treatment assignment probabilities at each stage are 

known, by design: all individuals at baseline (e.g., regardless of baseline severity or history 

of treatment) are assigned with equal probability to either initial MI-IOP or initial MI-PC; 

all responders are assigned ‘no further contact’ in the second-stage; and all non-responders 

(e.g., regardless of severity) are assigned with equal probability to either second-stage MI-

PC or second-stage NFC. Rather, the goal of estimating the weights is to improve efficiency 

(see Hirano, Imbens, and Ridder 2003, Lu et al., 2016).

Step Two: Restructure the Dataset.

In a prototypical SMART, observations from early responders are consistent with more than 

one embedded AI (see details in Nahum-Shani et al., 2012). Since data from a particular 

responding individual can be used to estimate the mean outcome under multiple embedded 

AIs, familiar regression procedures in standard statistical software (e.g., SAS, R, SPSS) 

cannot be directly employed to simultaneously compare all embedded AIs (see Nahum-

Shani et al., 2012; Lu et al., 2016). For example, in ENGAGE, responders to MI-IOP 

provide outcomes that are consistent with two interventions: later choice (which 

recommends MI-IOP initially and then MI-PC for non-responders and NFC for responders), 

and no choice (which recommends MI-IOP initially and then NFC for both non-responders 

and responders). Responders to MI-PC also provide outcomes that are consistent with two 

interventions: choice throughout (which recommends MI-PC initially and then MI-PC for 

non-responders), and initial choice (which recommends MI-PC initially and then NFC for 

both non-responders and responders). Hence, in order to estimate the mean outcome under 

all four AIs embedded in the ENGAGE SMART study simultaneously, outcome data from 

each responder should be used twice (to inform two estimated means).This can be done by 

restructuring the data in the following manner.

In the original long-form dataset, each participant in the ENGAGE study has six 

observations, one per measurement occasion. For each responder, each of the three 

observations is then replicated, so that instead of one observation per measurement occasion, 

the new dataset includes two identical observations per measurement occasion. A2 is set to 1 

in one of the replicated observations, and we set A2 to −1 in the other replicated observation. 

Note that A2 is missing in the original dataset for responders, since responders were not re-

randomized to second-stage intervention options.

For example, suppose that the original data included 40 responders and 50 non-responders, 

each with 6 observations (for each of the 6 measurement occasions), namely 240 

observations for responders and 300 observations for non-responders. Then the new dataset 

will include 480 observations for responders (2 identical observations for each of the 6 
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measurement occasions, for each of the 40 responders) as well as the same 300 observations 

for non-responders as before. Replicating observations of responders in that manner enables 

investigators to conveniently “reuse” repeated outcome measures from each responding 

individual to investigate the performance of two embedded AIs using one fitted regression 

model. As before, the new dataset should contain a variable providing the weights (either 

known or estimated) for each observation.

Step Three: Specify a Model.

To facilitate comparison of the AIs, it is helpful to specify a model for how individuals 

change over time in the course of a given AI. As an example, consider a piecewise linear 

model, which can be used with the new weighted and replicated dataset to compare the four 

embedded AIs. The outcome variable can change over time, and the rate of change over time 

might vary before and after the re-randomization to second-stage intervention options. 

Because of this potential change, the time variable t is partitioned into two variables: number 

of months S1 t  spent in stage 1 (i.e., before re-randomization) and number of months S2 t

spent in stage 2 (i.e., following re-randomization).

For example, suppose that the first randomization is made at the same time as the first 

outcome measurement Y1. Then for t = 1, we would set S1 1 = 0 and S2 1 = 0 because no 

time has elapsed in treatment yet. Next, suppose that the second measurement occasion Y2
has occurred 1 month following the first-stage randomization and immediately before the 

second-stage randomization. Hence, for t = 2, S1 2 = 1 and S2 2 = 0 because one time unit 

has elapsed since the first randomization, but the second randomization has not occurred yet. 

The second randomization occurs at t = 2, so t = 3 corresponds to S1 3 = 1 and S2 3 = 1. S1
is truncated at 1 because the first phase of the study lasted 1 time unit; thus, for t ≥ 3, we 

would set S1 = 1 and S2 = t − 2.

It is important to code the time variables S1 and S2 in a way which reflects the design of the 

study as closely as possible. In many SMART studies, the first measurement Y1 is a baseline 

measurement which is observed before the first action is applied. However, ENGAGE was 

somewhat unusual in that A1 was assigned half a month before Y1 was observed; this is 

explained further in the empirical analysis section below. Therefore, in the empirical data 

analysis we actually coded S1 1 = 0.5 instead of S1 1 = 0. For t ≥ 2, we code S1 t = 1.5 and 

S2 t = t − 2.

For either coding of S1 and S2, a straightforward piecewise model is therefore

g E Y t X, A1, A2 = β0 + βS1 + βA1S1A1 S1 t + βS2 + βS2A1A1 + βS2A2A2 +
βS2A1A2A1A2 S2 t + φTX,

(1)
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where g() is the appropriate link function (identity link function in the case of a numerical 

outcome variable, logit link in the case of a binary outcome variable), Y t is the primary 

outcome at time (i.e., at measurement occasion), X is a vector of baseline measures included 

in the regression models as mean-centered covariates, and φ is a vector of regression 

coefficients expressing the effects of the baseline measures X. The quantity βS1 + βA1S1A1
expresses the expected change in the outcome during the first intervention stage, that is, the 

effect of increasing S1 t  from 0 to 1. Likewise, the quantity 

βS2 + βS2A1A1 + βS2A2A2 + βS2A1A2A1A2 expresses the expected change during the second 

intervention stage.

Model (1) could be expanded in several ways. For example, the trajectory during the second 

phase could be allowed to be quadratic by including terms for S2
2 in addition to S2. However, 

we use the simple form (1) in this paper.

There are two important features in this piecewise model that accommodate the unique 

features of longitudinal data arising from a SMART. First, the effect of time (i.e., the 

expected change in the outcome) during the first intervention stage is allowed to vary only as 

a function of the first-stage intervention options A1 , whereas the effect of time during the 

second stage is allowed to vary as a function of both the first-stage A1  and second-stage 

A2  intervention options. In other words, model (1) respects the sequencing of the 

measurement occasions relative to the sequencing of the intervention options, enabling 

outcome measurements at each stage to be predicted only by intervention options that were 

introduced prior to that stage. Second, rather than modeling the effect of time as linear 

throughout the study, Model (1) accommodates a possible deflection in this effect at the end 

of month 2 because this is the point at which the intervention might be modified for non-

responders. Lu and colleagues (2016) discussed the bias which would be incurred by failing 

to properly account for these features when using repeated outcome measures arising from a 

SMART to compare embedded AIs.

Step Four: Estimate the Coefficients in the Selected Model.

In order to estimate the model in Equation (1), building on the work of Lu and colleagues 

(2016), we use a weighted regression procedure, solving

0 =
i = 1

N

a1, a2
wici, a1, a2

Di, a1, a2
T Vi, a1, a2

−1 Yi − μi, a1, a2
(2)

to estimate the regression coefficients. The notation in this expression is explained below. 

Further technical details are provided in Appendix A, and sample code in SAS and R is 

provided in the online supplement Appendix B (https://github.com/dziakj1/

BinaryLongitudinalSmart). Let ci, a1, a2
 be the indicator function, which is 1 if the observed 

AI for an individual i is consistent with an underlying sequence a1, a2  and 0 otherwise. 
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Note that in this context, ci, a1, a2
 is a prespecified, known function of the observed data; it is 

not estimated or imputed. In particular, in a SMART like ENGAGE, where only non-

responders are re-randomized to A2, ci, a1, a2
 is defined as follows:

ci, a1, a2
=

1 if A1i = a1, Ri = 1

1 if A1i = a1, Ri = 0, A2i = a2
0 otherwise

where A1i is the first-stage treatment given to participant i, Ri is the early response status 

indicator, taking the values 1 for responders and 0 for non-responders, and A2i is the first-

stage treatment given to participant i (which here is only observed, and only used, if Ri = 1.)

Let Yi be the T-vector of observed outcomes at the T measurement occasions for subject i. 

Let Za1, a2
 be a T×p coded matrix expressing the p covariates in the marginal model for Yi, 

assuming that the underlying sequence (a1, a2) is followed. The value of p depends on the 

complexity of the longitudinal model. If Model (1) is used and there are no baseline 

covariates, then p = 7, corresponding to the intercept and the six covariates 

S1, A1S1, S2, A1S2, A2S2, A1A2S2. If there are additional covariates Xi, they can be represented 

by including an additional entries of Za1, a2
 and expanding the notation to Zi, a1, a2

 to allow 

the values of the covariates to vary among participants receiving the same AI. For generality, 

we will continue to use the i subscript for the Z matrix, with the understanding if there are no 

baseline covariates, Zi, a1, a2
 will actually be the same for all participants receiving the same 

AI. Next, μi, a1, a2
= E Yi Zi, a1, a2

, which is the T-vector of expected values of the outcome 

variable at the different measurement occasions under (a1, a2). As usual in generalized 

estimating equations, it is assumed that E Y it Zi, a1, a2, t = μ Zi, a1, a2, tβ  for a known function 

μ ⋅  and unknown parameter vector β. wi represents the weight assigned to individual i as 

described earlier in the first step. Di, a1, a2
 is a T×p matrix of derivatives whose (t,p)th entry is 

∂
∂βp

μi, a1, a2, t. Finally, Vi, a1, a2
 is a T×T matrix which serves as a working estimate of the 

covariance matrix of Yi under sequence a1, a2 , that is, of Cov Yi Zi, a1, a2
. In particular, 

Vi, a1, a2
 is treated as being equal to Mi, a1, a2

1/2 Ra1, a2
Mi, a1, a2

1/2 , with Ra1, a2
 being a working 

correlation matrix and Mi, a1, a2
 being a T×T diagonal matrix of marginal variances 

Mtt = Var Y it Za1, a2, t .
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Equation (2) is similar to the generalized estimating equation (GEE) estimator (Liang & 

Zeger 1986). As in classic GEE, the solution β obtained by solving equation (1) is unbiased 

for the true value of β regardless of the working structure for Vi, a1, a2
. To estimate the 

standard errors for β, Lu and colleagues (2016) recommend a sandwich estimator (discussed 

in detail in Appendix A) and recommend a way of adjusting the sandwich estimator in the 

presence of estimated weights.

Step four for a normally distributed outcome.—The equation in (2) applies to many 

possible outcome distributions. In the case of a normally distributed outcome with an 

identity link function, μi, a1, a2
= Zi, a1, a2

β, so that Di, a1, a2
= Zi, a1, a2

. Under the working 

assumption of homoskedasticity over measurement times and AIs, equation (2) would 

simplify to

0 =
i = 1

N

a1, a2
wici, a1, a2

Zi, a1, a2
T Ra1, a2

−1 Yi − Zi, a1, a2
β . (3)

Below, we discuss the details of how equation (2) can be applied to repeated binary outcome 

measures with logit link.

Step four for a binary outcome.—In the case of a binary outcome with a logit link 

function,

μi, a1, a2, t = μ Zi, a1, a2, tβ = logit−1 Zi, a1, a2, tβ

⬚ = exp Zi, a1, a2, tβ / 1 + exp Zi, a1, a2, tβ

After some algebra, Di, a1, a2
= Zi, a1, a2

T Mi, a1, a2
, where Mi, a1, a2

 is a diagonal matrix of the 

marginal variances μi, a1, a2, t 1 − μi, a1, a2, t . Then (2) becomes

0 =
i = 1

N

a1, a2
wici, a1, a2

Zi, a1, a2
T Mi, a1, a2

1/2 R−1Mi, a1, a2
−1/2 Yi − μi, a1, a2

. (4)

When comparing equations (3) and (4), recall that μi, a1, a2
 is defined differently in each 

because of the different link function. If working independence is being used so that R is the 

identity matrix, then (4) simplifies to
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0 =
i = 1

N

a1, a2
wici, a1, a2

Zi, a1, a2
T Yi − μi, a1, a2

. (5)

Note that the empirical analysis in this paper uses autoregressive (AR-1) structure for the R 
matrix, so the simplified form (5) does not apply. The simulation study discussed later 

compares three different working structures, including independence and AR-1.

Step Five: Choose Which Contrast to Estimate.

Various estimands can be used to compare embedded AIs with repeated outcome measures 

arising from a SMART. Four estimands that are likely to be of high clinical or theoretical 

importance and that are relatively straightforward to interpret are the following: (a) the 

expected outcome at end of study, (b) the stage-specific slopes, (c) the AUC from baseline to 

end of study, and (d) the delayed effect of stage one treatment option during stage two.

The first estimand of interest is the expected end-of-study outcome. The expected outcome 

at the end of the study under a given embedded AI (a1, a2) is simply the probability 

Ea1, a2
Y t  for the largest observed value of t, which is 6 in our example. We abbreviate this 

as π6. The contrast between two AIs (a1, a2) and (a1′ , a2′ ) in terms of end-of-study outcome is 

therefore Ea1, a2
Y6 − Ea1′ , a2′

Y6 , which we abbreviate as π6 − π6′ . Note that the prime 

symbol ′ is used here to mean “other,” not “derivative of.” The values of πt for a given AI 

(a1, a2) are obtained from ηt = logit(πt) calculated as the right-hand side of Model 1.

Even for an estimand as simple as the end-of-study outcome, the binary nature of the 

outcome means that choices have to be made. First, the researcher must decide whether the 

scale of measurement for the estimand of interest will be in terms of probability, odds, or log 

odds. That is, instead of the difference in probabilities π6 − π6′ , one could alternatively use an 

odds ratio (
π6

1 − π6
)/(

π6′
1 − π6′

), or simply ηt itself, which is the logarithm of the odds ratio. Odds 

ratios and log odds ratios can give more emphasis to rare events than probabilities do. For 

example, a difference in success proportions of .01 versus .03 represents the same effect size 

on the probability scale as a difference of .51 versus .53, but the odds ratios are not the same: 

3.06 for the first comparison and only 1.08 for the second. However, probabilities, odds or 

log odds are each valid ways to compare AIs on a binary outcome. The log odds ratio (logit) 

scale has the advantage that the estimand is a linear function of the regression coefficients. 

However, in some cases, the actual probabilities are more interpretable. Fortunately, because 

the probability, odds, and log odds are all monotonically related, the comparison between a 

pair of AIs in terms of an outcome at a given time point will always have the same sign 

regardless of the scale of measure.

Another decision involves the pre-randomization (baseline) covariates. If the probabilities or 

odds are being used as the outcome metric, then covariates will not cancel out when 
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comparing outcomes between AIs, even if they are set to the same level. This is because the 

estimand of interest is no longer a linear function of the regression coefficients. 

Mathematically, logit−1 Ziβ − logit−1 Zi′β ≠ logit−1 (Zi − Zi′)β  even though 

Ziβ − Zi′β = Zi − Zi′ β. Therefore, the size of the difference in outcomes depends on the 

value assumed for the baseline covariates, even if this value is assumed to be the same for 

both AIs. As an extreme example, if the value chosen for the baseline covariates predicts a 

very high success probability, then there may be less room left for the choice of AI to have a 

practically significant effect. Thus, if an outcome scale other than log odds is being used, it 

is necessary to choose a level at which to fix each baseline covariate for purposes of 

calculating the fitted values.

The second estimand of interest is the slope during stage 1 or during stage 2, which is 

directly related to the expected improvement or decline in the outcome of interest during that 

stage. A researcher may be interested in making an inference on a slope for a particular AI 

(e.g., whether statistically significant change is expected during a stage) or on a contrast 

between two AIs in terms of corresponding slopes (e.g., whether one intervention causes 

quicker improvement than another during the initial stage). As in the case of a comparison of 

point outcomes, a researcher can choose between estimating the slope on the probability 

scale, the odds scale, or the log odds scale. It is not clear which scale is the most 

interpretable, but the log odds scale is much easier to use. This is because differences in 

slopes on the log odds scale can be expressed as simple linear combinations of regression 

coefficients. Using the piecewise model specified by expression (1) with the logit link 

function, the first-stage slope on the log odds scale for AI (a1, a2) is βS1
+ βS1A1

a1, and the 

second-stage slope on the log odds scale for AI (a1, a2) is 

βS2
+ βS2A1

a1 + βS2A2
a2 + βS2A1A2

a1a2. Differences between interventions can be calculated 

accordingly. For example, the difference in first-stage slopes between AIs (+1, a2) and 

(−1, a2′ ) is βS1
+ βS1A1

− βS1
− βS1A1

= 2βS1A1
, again on the log-odds scale. Differences in 

second-stage slopes can be calculated similarly. For example, the difference in second-stage 

slopes between AI’s (+1, + 1) and (−1, + 1) is 

βS2
+ βS2A1

+ βS2A2
+ βS2A1A2

− βS2
− βS2A1

+ βS2A2
− βS2A1A2

= 2 βS2A1
+ βS2A1A2

, and 

the difference in second-stage slopes between AI’s (+1, + 1) and (−1, − 1) is 

βS2
+ βS2A1

+ βS2A2
+ βS2A1A2

− βS2
− βS2A1

− βS2A2
+ βS2A1A2

= 2 βS2A1
+ βS2A2

.

Another reason why the log-odds scale is easier to interpret is that Model (1) only assumes 

that the trajectory within each stage is linear on the log-odds scale, not that it is linear on the 

odds or raw probability scale; generally it could not be linear on more than one of these 

scales, except in the special case where it is zero on all of them. We consider slopes only on 

the log-odds scale in this paper.

The third estimand, the area under the curve (AUC), is a summary which takes into 

account measurements at all time points, not only the last one (Fekedulegn et al., 2007), so it 
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is useful when the participants’ experiences over the course of the trial are of interest rather 

than only the final endpoint. One limitation is that the AUC by itself does not completely 

describe the process. Because it essentially averages the time points, it does not distinguish a 

trajectory that rises and falls from one that simply maintains flat at a medium level. Thus, 

the AUC is not a replacement for the stage-specific slope. The investigator may choose to 

estimate the AUC of probabilities, odds, or log odds as a function over time. The AUC of 

probabilities is somewhat more interpretable because it can be rescaled to yield an estimate 

of the average probability E Y A1, A2  over time. Therefore, it may be best to use the 

probability scale for comparing AUC’s for binary outcomes. However, as with time-specific 

outcomes, this requires specifying a particular level of each baseline covariate at which to 

compare the difference in estimated AUC’s.

The AUC of the probability curve is a weighted sum of fitted probabilities, with weights 

determined by the number and spacing of time points. In particular, it is supposed that the 

outcome probability π t  is a smooth function of time t, and define AUC as the integral of 

π t  over the time interval from the beginning to the end of the study. Because π t  is only 

observed at integer time points π1 = π 1 , π2 = π 2 , etc., we interpolate by assuming π t  is 

linear between time points. The resulting formula turns out to be a weighted sum of the 

probabilities πt. To see this, consider our example with six evenly spaced time points. The 

AUC between times 1 and 2 can be approximated as a trapezoid of base width 2 − 1 = 1 and 

height π1 on the left leg and π2 on the right leg; the area of this trapezoid is 1
2π1 + 1

2π2. 

Similarly, the AUC is 1
2π2 + 1

2π3 between times 2 and 3, 1
2π3 + 1

2π4 between times 3 and 4, 

1
2π4 + 1

2π5, between times 4 and 5, and 1
2π5 + 1

2π6 between times 5 and 6. The total AUC is 

the sum of AUCs of these 5 trapezoids, namely 1
2π1 + π2 + π3 + π4 + π5 + 1

2π6. Each of the πt

values can be obtained for each embedded AI as a fitted value from Model (1).

The AUC is proportional to the average of the probability function over the duration of the 

study. Let us write the estimated successful outcome probability at time t as π t  instead of πt

to emphasize that we are temporarily imagining time as continuous, interpolating between 

the observed times. Then applying the law of iterated expectation and assuming t is 

randomly selected from a uniform random distribution over the 5-unit interval from 1 to 6, 

we have E Y = E E Y t = 1
6 − 1 1

6π t dt = 1
5AUC. Although dividing by the length of the 

time interval is necessary in order to interpret the AUC as an average probability, all of the 

AIs have the same time interval length, so tests of the differences between AUCs are 

equivalent to tests of the differences between 1
5AUC. We call this rescaled AUC the “time-

averaged AUC” because of its interpretability as an estimated average probability over time.

A fourth estimand of interest when comparing the change processes expected for each AI is 

the delayed effect. The delayed effect measures the difference between a long-term and a 

short-term effect. This is actually a difference in differences, which is a kind of statistical 

interaction: in other words, it is the difference between the long-term difference and the 
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short-term difference between the expected outcomes of two AIs. The delayed effect of one 

AI (a1, a2) relative to another AI (a1′ , a2′ ) can be operationally defined as the difference 

between the contrasts in a long-term outcome (e.g., following second-stage randomization) 

and the contrasts in a short-term outcome (e.g., prior to second-stage randomization). In the 

ENGAGE example, it would be reasonable to take time 2 as the short-term outcome 

(because the re-randomization was done then) and time 6 as the long-term outcome (because 

it is the last follow-up). That is, the delayed effect in that example is (π6 − π6′ ) − (π2 − π2′ ). If 

the absolute value of the delayed effect is large, it means that the short term effect (i.e., when 

only first-stage options are introduced) of one AI compared to another is significantly 

different from its long-term effect (i.e., when subsequent intervention options are 

introduced). One could also compare two AIs at different follow-up times after the second 

randomization (e.g., times 3 versus 6 instead of 2 versus 6) depending on the scientific 

questions of interest.

Step Six: Use the Fitted Model to Estimate the Contrasts of Primary Interest.

Regardless of the estimand(s) chosen, they can all be calculated from the coefficients of 

Model (1). We work through this step for the case of a contrast in AUCs of the probabilities 

over time. As argued above, it seems more informative and interpretable to focus on the 

AUC for the expected outcome (e.g., abstinence) probabilities rather than the AUC for the 

expected log odds of the outcome. However, the contrasts in probabilities and their standard 

errors takes some extra work to compute because it is not a linear function of the model 

parameters. Recall that if estimands of interest can be expressed as a linear combination of 

regression coefficients, namely Lβ, then their standard errors can be computed using the 

identity Cov Lβ = LCov(β)LT. Thus, standard errors in this case would be the square roots of 

the diagonal entries of Cov Lβ . Such an L can be constructed for the AUC of the mean of a 

linear model, or in the AUC of the log odds of a logistic model, but not for the AUC of the 

probability in a logistic model. Because of this, some additional work is required in order to 

obtain estimates and standard errors for AUCs, or for contrasts of AUCs, in the binary case.

Using the law of iterated expectation, the value of πt for AI (a1, a2) can be calculated as

E Yt a1, a2 = P R = 0 A1 = a1 E Yt A1 = a1, A2 = a2, R = 0 +

⬚ P R = 1 A1 = a1 E Yt A1 = a1, A2 = a2, R = 1

using the fitted values for E Y t A1, A2, R  from the longitudinal analysis and using the 

empirical proportions of responders and non-responders in each first-stage treatment group 

for P R A1 . These can be used to easily compute the point estimate

AUC = 1
2π1 + π2 + π3 + π4 + π5 + 1

2π6
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for AI (a1, a2). However, it remains necessary to compute the error variance for AUC for each 

AI. Notice that the log odds ηt at time t are given by the right-hand side of Model (1) and are 

a linear combination of regression coefficients. If there are no baseline coordinates, then 

Model (1) gives η = Lβ, where L is a matrix whose tth row is

1, S1 t , S2 t , S1 t a1, S2 t a1, S2 t a2, S2 t a1a2 ,

and where β = β0, βS1, βS2, βS1A1, βS2A1, βS2A2, βS2A1A2
T. If there are baseline covariates, 

then reference values must be chosen for them. The specified AUC estimate will be the 

expected value for a hypothetical participant with those values.

Recall that for the ENGAGE dataset we set S1 = 0.5 and S2 = 0 for t = 1, and set S1 = 1.5 and 

S2 = t − 2 for t > 1, because the randomizations were assumed to have been performed at 

t = 0.5 and t = 2 instead of t = 1 and t = 2, counting the first outcome measurement time as 

t = 1. Therefore, for a given AI (a1, a2), the matrix of linear coefficients, without baseline 

covariates, is

L(a1, a2) =

1 0.5 0 0.5a1 0 0 0

1 1.5 0 1.5a1 0 0 0

1 1.5 1 1.5a1 a1 a2 a1a2
1 1.5 2 1.5a1 2a1 2a2 2a1a2
1 1.5 3 1.5a1 3a1 3a2 3a1a2
1 1.5 4 1.5a1 4a1 4a2 4a1a2

,

Note that if the first randomization had been at t = 1, as is more usual in SMART trials, the 

matrix would have been

L(a1, a2) =

1 0 0 0 0 0 0
1 1 0 a1 0 0 0

1 1 1 a1 a1 a2 a1a2
1 1 2 a1 2a1 2a2 2a1a2
1 1 3 a1 3a1 3a2 3a1a2
1 1 4 a1 4a1 4a2 4a1a2

.

In either case, baseline covariates can be included by appending additional columns of 

constants to L, representing the level at which each covariate is hypothetically fixed for 

obtaining the fitted values of the estimands.

Cramér’s delta method (Taylor linearization) shows that η = Lβ is asymptotically unbiased 

for η = Lβ with asymptotic covariance LCov(β)LT. Going a step further, notice that AUC can 

be rewritten as
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AUC =
+logit−1 η4 + logit−1 η5 + 1

2logit−1 η6 .

1
2logit−1 η1 + logit−1 η2 + logit−1 η3

Therefore, Cramér’s delta method shows that AUC is an asymptotically unbiased estimate of 

AUC and that this estimator has asymptotic variance ∂AUC
∂η

T
Cov η ∂AUC

∂η . Because 

∂πt
∂ηt

= πt 1 − πt , we have ∂AUC
∂ηt

= 1
2πt 1 − πt  for t = 1 or 6, and ∂AUC

∂η1
= πt 1 − πt  for 

t = 2, 3, 4, or 5. Thus, the asymptotic variance estimate of AUC is

Var AUC = dTLCov β LTd with d =

1
2π1 1 − π1
π2 1 − π2
π3 1 − π3
π4 1 − π4
π5 1 − π5
1
2π6 1 − π6

.

We are actually interested not only in AUC for one AI, but in contrasts of the AUC under 

pairs of possible embedded AIs. In particular, let AUC(a1, a2) be the AUC for AI (a1, a2). We 

are interested in estimating DIFF = AUC(a1, a2) − AUC(a1′ , a2′ ) for some pair of AI (a1, a2) and 

AI (a1′ , a2′ ). This can be written as

DIFF= AUC(a1, a2) − AUC(a1′ , a2′ )

= 1
2π1 + π2 + π3 + π4 + π5 + 1

2π6 − 1
2π1′ + π2′ + π3′ + π4′ + π5′ + 1

2π6′

= 1
2logit−1(η1) + logit−1(η2) + logit−1(η3) + logit−1(η4) + logit−1(η5) + 1

2logit−1(η6)

⬚ − 1
2logit−1(η1′ ) − logit−1(η2′ ) − logit−1(η3′ ) − logit−1(η4′ ) − logit−1(η5′ ) − 1

2logit−1(η6′ ) .

where η and η′ are the 6-vectors of ηt and ηt′ values. The estimate DIFF is obtained using the 

estimates ηt and ηt′ from Model (6), and Cramér’s delta method can be used in the same way 

as before to estimate Var(DIFF). First, 
η
η′

= L
L′ β, where L and L′ are abbreviations for 

L(a1, a2) and L(a1′ , a2′ ). Therefore, Cov( η
η′

) = L
−L′ Cov(β) L

−L′
T

= L
L′ Cov(β) L

L′
T

. Going a 

step further, the asymptotic variance of DIFF is therefore
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Var(DIFF) = d
d′

T
Cov η

η′
d
d′

⬚ = d
d′

T L
L′ Cov(β) L

L′
T d

d′ ,

where d = ∂DIFF
∂η  and d′ = ∂DIFF

∂η′ , again using ′ to represent “other,” not “derivative of.” 

Recall that by the properties of the logistic function, ∂
∂ηt

logit−1 ηt = πt 1 − πt  so that

d =

+1 2π1 1 − π1
π2 1 − π2
π3 1 − π3
π4 1 − π4
π5 1 − π5

1 2π6 1 − π6

.

The asymptotic standard error of DIFF is then obtained as Var(DIFF). The form of Var(AUC)
or Var(DIFF) as a function of Cov(β) does not depend on whether the known or estimated 

form of the weights are used, because AUC and DIFF remain the same functions of β. 

However, Lu and colleagues (2016) recommended an adjustment to Cov(β) itself if weights 

are estimated; this is summarized in Appendix A.

Another possibility for estimating standard errors, rather than using the asymptotic 

covariance matrix and Cramér’s delta method, would be to use a bootstrapping approach. 

We have not explored this possibility here. The bootstrapping procedure would have to be 

done before applying the weighting and replication procedure.

Empirical Data Analysis

The previous section outlined a six-step procedure for obtaining estimates and standard 

errors for comparisons of important estimands under particular AIs. We now present the 

results of the proposed analysis with the ENGAGE SMART data. In the ENGAGE study, 

individuals entered an IOP and their engagement with the IOP was monitored. After at least 

two weeks in the IOP, if their engagement with the IOP was suboptimal, they were 

randomized to one of the two initial engagement strategies described earlier, namely either 

MI-IOP or MI-PC, which are represented by the two levels of A1. In total, 273 individuals 

were randomized to MI-PC (n=137) and MI-IOP (n=136). Two months following IOP entry, 

participants who were classified as non-responders were re-randomized to levels of A2, 

namely MI-PC (n=57) and NFC (n=53), as described earlier. Weekly timeline followback 

(TLFB) assessments over a 6 month period were summarized to obtain monthly 

measurements of whether (=1) or not (=0) the individual was abstinent one, two, three, four, 

five and six months after the beginning of the IOP. The monthly measurements of the 
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abstinence binary outcome are denoted Y1, Y2, Y3, Y4, Y5, and Y6, respectively. In sum, an 

approximate representative time course would be as follows: A1 was assigned at least half a 

month after IOP entry, Y1 was assessed one month after IOP entry, Y2 was assessed two 

months after IOP entry, A2 was assigned among non-responders two months after IOP entry, 

and Y3, Y4, Y5 and Y6 were assessed 3, 4, 5 and 6 months following IOP entry, respectively.

As mentioned earlier, there was no measurement of monthly abstinence at the exact time of 

the first randomization; rather, a baseline measure of alcohol/cocaine use in the month prior 

to IOP entry (i.e., t = 0) was obtained. Including abstinence at t = 0 as a repeated measure 

would have required an assumption of a linear trajectory between abstinence at program 

entry and abstinence at the end of month 1. This would not be realistic because the 

assignment of A1 in the middle of this interval could cause a change in trajectory. Hence, the 

baseline measure of alcohol or cocaine use prior to IOP entry was treated as a covariate 

rather than a repeated measure.

Our analysis focuses on the comparison between two of the four embedded AIs, choice 

throughout (1, 1) and later choice (−1, 1), using two binary outcomes, which were analyzed 

separately. The first is cocaine abstinence in a given month, coded 1 if the individual 

reported no cocaine use days during the month and 0 if the individual reported one or more 

cocaine use days during the month. The second is alcohol abstinence over a month, coded 1 

if the individual reported no drinking days during the month and 0 if the individual reported 

one or more drinking days during the month. In both models, we included gender (effect-

coded as 1 for male and −1 for female) as a covariate. Additionally, the number of cocaine 

use days at baseline (i.e., in the month prior to IOP entry) was included as a covariate in the 

model for cocaine abstinence, and the number of alcohol use days at baseline was included 

as a covariate in the model for alcohol abstinence. The resulting model for each substance 

was

ηt = logit πt = β0 + φ1X1 + φ2X2 + βS1 + βA1S1A1 S1 t + βS2 + βS2A1A1
+βS2A2A2 + βS2A1A2A1A2 S2 t ,

(7)

where X1 and X2 represent gender and baseline use days for that substance.

There were some missing data due to study dropout (n=68) or skipping a study assessment 

(n=22). For illustrative purposes, we present here the analyses with complete cases (n =183). 

The data was weighted and replicated as described earlier. Estimated (rather than true) 

weights were used in the analysis. Specifically, the following covariates were used to predict 

first-stage treatment assignment: baseline diagnosis with alcohol dependence, cocaine 

dependence, or both (three-level categorical variable coded into two dummy-coded variables 

where “both” is the reference category), gender, age, and the baseline number of substance 

use days (cocaine use days when the outcome is cocaine abstinence; alcohol use days when 

outcome is alcohol abstinence). The following covariates were used to predict second-stage 

treatment assignment: baseline diagnosis with alcohol dependence, cocaine dependence, or 

Dziak et al. Page 19

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both; gender; age; baseline number of substance use days; and month 1 abstinence. An 

autoregressive (AR-1) working correlation matrix was assumed.

The method described above was implemented using the R software package (R Core Team, 

2017). R code is available in the online supplementary Appendix B. Tables 2 (for cocaine 

abstinence) and 3 (for alcohol abstinence) present the estimated regression coefficients for 

model (7), as well as estimated linear combinations of these coefficients that are of scientific 

interest; these include the estimated differences between choice throughout (1,1) and later 

choice (−1, 1) AIs in terms of time-specific outcomes, stage-specific slopes, AUCs, and 

delayed effects.

Figures 2 and 3 present the estimated probability of abstinence over time under each of the 

embedded AIs in ENGAGE based on Model (7). Note that the relatively higher expected 

rates of cocaine abstinence (Figure 2) compared to alcohol abstinence (Figure 3) might be in 

part due to the slightly higher percentage of alcohol dependent individuals in the sample.

For cocaine abstinence, the results in Table 2 indicate that the coefficient for 

S1(βS1
= − .45, SE = .17, p ≤ .01), the coefficient for S2(βS2

= .10, SE = .05, p < .05), and the 

interaction between A1 and S2(βS2A1
= − .13, SE = .05, p ≤ .01) are significantly different 

from zero. Other coefficients of interest (i.e., βS1A1
, βS2A2

, and βS1A1A2
) are not significantly 

different from zero. This means that on average, the probability of cocaine abstinence 

decreases during stage 1 (because βS1
 is negative and significantly different from zero) and 

increases during stage 2 (because βS2
 is positive and significantly different from zero). 

Moreover, stage 2 slope varies by first-stage intervention options (because βS2A1
 is 

significantly different from zero).

The difference between the choice-throughout (1,1) and the later-choice (−1, 1) AIs depends 

on time, as can be seen in Table 2. While both embedded AIs produce similar abstinence 

probabilities at months 1 to 5 (e.g., estimated probabilities at month 5: .78 and .86, 

respectively, difference=−.08, SE = .05, ns), choice throughout produces lower probability of 

abstinence compared to later choice at month 6 (estimated probabilities .78 and .89, 

respectively, difference = −.11, SE = .06, p < .10). Further, the process by which outcomes 

unfold over time differs substantially between these two AIs. Specifically, there is evidence 

of a delayed effect based on time-specific outcomes (estimate = −.20, SE = .08, p ≤ .01). The 

nature of this delayed effect is illustrated in Figure 2.

During the first stage, the later-choice AI is significantly associated with decreases in the 

probability of abstinence (stage 1 slope = −.60, SE = .21, p < .01) relative to the choice-

throughout AI. However, this trend is reversed after the second-stage intervention options 

are introduced. Specifically, during stage 2, the later choice AI is associated with increased 

probability of abstinence (stage 2 slope = .30, SE = .09, p < .01). On the other hand, choice 

throughout is not associated with significant changes in abstinence during stage 1 (estimated 

stage 1 slope = −.29, SE = .20, ns), or stage 2 (estimated stage 2 slope= −.03, SE = .08, ns). 
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In other words, the later-choice AI leads to decrease in abstinence during the first stage, 

followed by increase in abstinence during the second stage, whereas the choice-throughout 

AI does not produce significant changes in abstinence.

For alcohol abstinence, none of the model coefficients of interest, considered individually, 

were significantly different from zero. However, as in the case of cocaine abstinence, the 

results indicate that the difference between the choice-throughout AI (1, 1) and the later 

choice AI (−1, 1) depends on time. As can be seen in Table 3, compared to the choice-

throughout AI, the later-choice AI is associated with significantly higher abstinence 

probability at month 3 (estimated difference = −.13, SE = 0.05, p ≤ .01) and month 6 

(estimated difference = −.20, SE = .07, p < .01). However, the two AIs are marginally 

different at month 1 (estimated difference = −.03, SE = .02, p < .10) and month 2 (estimated 

difference = −.11, SE = .06, p < .10). In other words, the advantage of later choice over 

choice-throughout in promoting alcohol abstinence increases in magnitude over time. In 

terms of overall time-averaged AUC, later choice (estimated average AUC = .57, SE = .05, p 
< .01) was significantly more successful (estimated difference = −.17, SE = .06, p < .01) 

than choice throughout (estimated average AUC = .40, SE = .05, p < .01). However, there is 

also evidence of a delayed effect in terms of AUC (estimate = −.55, SE = .18, p < .01). The 

nature of this delayed effect is illustrated in Figure 3.

Estimates of stage 1 and stage 2 slopes in Table 3 show that the later choice AI is not 

associated with significant changes in abstinence (none of the estimated slopes in stages 1 or 

2 are significantly different from zero), whereas the choice-throughout AI is associated with 

near-significant reduction in abstinence in stage 1 (estimate = −.30, SE = .17, p < .10) but 

not in stage 2 (estimate = .01, SE = .07, ns). Further, in terms of stage-specific AUCs, the 

difference in stage 1 AUC between choice throughout and later choice is near-significant 

(estimated difference = −.07, SE = .04, p < .10), while the difference in stage 2 AUC in favor 

of later choice is larger in magnitude and significantly different from zero (estimated 

difference = −.62, SE = .20, p < .01). In other words, the advantage of later choice over the 

choice throughout in terms of alcohol abstinence unfolds over time and is more pronounced 

after second-stage intervention options are introduced.

This empirical analysis shows that interesting results can be obtained by analyzing 

longitudinal binary from a SMART trial. The formulas proposed and used here for 

estimating contrasts and standard errors for binary data are applications of Cramér’s delta 

method (Taylor linearization; see Ferguson, 1996) and therefore are expected to perform 

well asymptotically, but it is important to use simulations to investigate their performance 

with datasets of realistic sample size and realistic features. In simulations, the true parameter 

values are known, so the accuracy of the technique under different scenarios can be 

measured.

Simulation Study

Lu and colleagues (2016) conducted simulation studies to study the performance of the 

weight and replicate strategy for longitudinal SMART data but only considered the case of 

normally distributed outcomes. The simulation presented in this section achieves two 

important advances over existing simulations. First, this simulation uses a logistic model 

Dziak et al. Page 21

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with binary outcome instead of a linear model. The amount of efficiency gained by correctly 

specifying the working correlation structure and/or by using estimated (rather than known) 

weights is unknown in such a setting. Second, the response indicator R in the simulations 

conducted by Lu and colleagues (2016) was generated independently of the outcome 

variable Y, which is somewhat unrealistic and might have implications on the performance 

of the proposed method. In the current simulation, R is allowed to be correlated with Y. In 

the next subsection we specify the questions motivating the simulation study.

Motivating Questions—We conducted a factorial simulation study to address four 

questions concerning the performance of the proposed method in estimating contrasts of 

AUCs for the expected value of a binary outcome variable between a pair of embedded AIs 

in a prototypical SMART design as described above. The five questions are as follows. First, 

are the estimates for contrasts unbiased? Second, are confidence intervals for contrasts valid 

in the sense of having nominal coverage? That is, assuming the parameter estimates are 

unbiased for the true parameters, are the standard errors also unbiased for the true standard 

errors? Third, how greatly are the standard errors and the statistical power affected by the 

true correlation structure, the working correlation structure, and the form of weighting 

(known or estimated weights)? Fourth, are the estimates for the marginal correlation 

parameters accurate? Finally, does sample size impact the answers to the previous four 

questions?

Data-Generating Model—For the main simulation experiment, we assume that each 

dataset comes from a SMART study similar to the ENGAGE example presented earlier, with 

six equally spaced measurement occasions. Each simulated dataset in the main simulation 

study consists of 250 individuals; however, a follow-up study was done allowing 100, 150, 

or 400 individuals for some conditions. For each of the 24 scenarios described below, 2000 

simulated datasets were generated and analyzed using R software (R Core Team, 2015).

Each of four true correlation structures was used for the correlation of Y t within individuals. 

The first three were independence, exchangeable correlation (equicorrelation), and 

autoregressive of order one (AR-1) (see, e.g., Liang & Zeger, 1986). A value of ρ = 0.50 was 

used as the true data-generating value of the correlation parameter (the highest off-diagonal 

correlation coefficient) for all non-independent correlation structures. Specifically, under 

independence working correlation, the correlation matrix is the diagonal matrix (all off-

diagonal elements are zero) so the ρ parameter is not used. For exchangeable working 

correlation, all observations are equally correlated regardless of time order:

Corr

Y1
Y2
Y3
Y4
Y5
Y6

=

1 ρ ρ ρ ρ ρ
ρ 1 ρ ρ ρ ρ
ρ ρ 1 ρ ρ ρ
ρ ρ ρ 1 ρ ρ
ρ ρ ρ ρ 1 ρ
ρ ρ ρ ρ ρ 1

.
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For AR-1 working correlation, observations which are closer in time are more highly 

correlated:

Corr

Y1
Y2
Y3
Y4
Y5
Y6

=

1 ρ ρ2 ρ3 ρ4 ρ5

ρ 1 ρ ρ2 ρ3 ρ4

ρ2 ρ 1 ρ ρ2 ρ3

ρ3 ρ2 ρ 1 ρ ρ2

ρ4 ρ3 ρ2 ρ 1 ρ

ρ5 ρ4 ρ3 ρ2 ρ 1

.

Recall that generally ρ2 ≤ ρ, as 0 ≤ ρ ≤ 1. Additionally, to try to assess robustness to 

unexpected correlation structures, an intentionally strange and unrealistic data-generating 

structure was also implemented, which we call a “checkerboard” pattern:

Corr

Y1
Y2
Y3
Y4
Y5
Y6

=

1 0 ρ 0 ρ 0
0 1 0 ρ 0 ρ
ρ 0 1 0 ρ 0
0 ρ 0 1 0 ρ
ρ 0 ρ 0 1 0
0 ρ 0 ρ 0 1

.

Each of three working correlation structures was used for the fitted analysis model: 

independence, exchangeable, or AR-1. A working checkerboard structure was not used, as it 

would not be used in practice. Lastly, weights were either treated as known or were 

estimated using the data. This defines 4 × 3 × 2 scenarios.

The data-generating model was intended to be similar to Model (7). However, it is 

impossible to simulate data from Model (7) directly because Model (7) is a marginal model, 

both in the sense of not requiring a model of the exact structure of the within-subject 

correlation and also of not requiring a model of the relationship of Y to R. This use of a 

marginal model was deliberate, because it corresponded directly to the scientific question. 

That is, it was of interest to determine which AI has the best performance in general, without 

knowing in advance what a particular participant’s response status or outcome history would 

be. However, the relationships which Model (7) did not specify for purposes of analyzing 

data, must still be specified in some way in order to simulate data. That is, the data-

generating model must be richer than the data-analytic model in that it should specify a 

precise correlation structure and a realistic scenario for the connection between the response 

status R and the outcome Y. It would be possible to set R to relate to Y t only for t > 2, that is, 

set response status to impact the outcome only after R is known. However, we decided to 

also allow R to relate to Y1 and Y2 because R is not randomized and is presumably dependent 

on various latent or observed characteristics which were partly set prior to observing R.
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To generate the data, the values of two hypothetical baseline covariates were first randomly 

generated for each participant. These covariates were effect-coded gender X1 simulated as 

equally likely to be −1 or +1, and baseline use days X2, simulated as 1 plus a Poisson 

distribution with mean 7.7. The value of A1 for each participant was then randomly 

generated, equally likely to be −1 or +1, independent of the baseline covariates. R was then 

generated depending on A1, such that P(R = 1|A1 = + 1) = 0.71 and P(R = 1|A1 = − 1) = 0.65. 

For individuals with R = 0 (i.e., non-responders), a value of A2 was generated, again equally 

likely to be −1 or +1. The values for the Y t were generated to have probabilities given by and 

marginal correlations given by a prespecified true correlation structure. This was done using

logit−1 P(Y t = 1) = 0.687 + 0.041X1 − 0.052X2 + 0.236R +
⬚ −0.490 − 0.068A1 + 0.555R − 0.201A1R S1 t +
⬚ 0.163 − 0.140A1 − 0.120R + 0.040A2 + 0.058A1A2 + 0.141A1R S2 t ,

(8)

the R package bindata (Leisch, Weingessel & Hornik, 2012). Lu and co-workers (2016) 

simulated Y t from a model similar to (8), except that their simulation used a normally 

distributed Y t and did not allow Y1 to be directly associated with R The regression 

coefficients values and other numerical constants for this model were set using an initial data 

analysis on the alcohol data from the ENGAGE study. They are not the same as the 

estimated coefficients for the marginal model because of the different model and 

parameterization being used.

Performance Measures

Because there are four embedded AIs, there are a total of 
4
2 = 6 unique pairwise contrasts 

between their AUC values. For each simulated dataset within each scenario and for each of 

the six pairwise contrasts between the AUC values listed in the lower part of Table 3, an 

estimate was calculated using the method described earlier in this paper and was compared 

to the true value. A standard error for the contrast was also calculated. These were used to 

create the following four performance measures.

Absolute bias.—The absolute bias for the contrast in AUCs for AIs a1, a2  and a1′ , a2′

was calculated as the absolute value of the average difference between the true and estimated 

values, that is,

1
2000 S = 1

2000
(AUCa1, a2, S − AUCa1′ , a2′ , S) − (AUCa1, a2

− AUCa1′ , a2′
) ,

Dziak et al. Page 24

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where AUCa1, a2, S represents the estimate in simulation s for the area under the curve of AI 

a1, a2 , and AUCa1, a2
 represents the corresponding true value. Note that it is often more 

informative to report signed bias, rather than absolute bias, because signed bias indicates 

direction. However, because we averaged the performance across the contrasts of interests in 

our analysis before making conclusions about overall estimation performance, we used 

absolute bias in order to avoid the risk of cancelling out errors in opposite directions for 

different contrasts.

Root mean squared error (RMSE).—Similarly to the above, the RMSE for each 

contrast was calculated as the square root of the average of the squared values of the 

difference between the true and estimated values; that is,

1
2000 S = 1

2000
(AUCa1, a2, s − AUCa1′ , a2′ , s) − (AUCa1, a2

− AUCa1′ , a2′
)

2
.

The average estimated standard error was also calculated for comparison; it should be 

approximately the same as the RMSE if it is an unbiased estimate of sampling variability.

Confidence interval coverage.—The coverage for each contrast was calculated as the 

proportion of simulations in which a nominally 95% confidence interval using the estimate 

and standard error obtained included the true value of the contrast.

Statistical power.—The statistical power for a contrast was calculated as the proportion of 

simulations in which a z-test at α = .05, based on the estimate and standard error for each 

contrast, excluded zero. Unlike the other measures, this was computed only for the four 

contrasts that had true absolute values above 0.1. This is because it is not expected, and 

perhaps not desirable, to have high power for a contrast whose true value is practically zero.

Each performance measure was calculated for each of the six contrasts separately (or over 

the four nonnegligible contrasts in the case of statistical power) and then averaged across all 

six contrasts to achieve a single aggregate measure.

Results

Performance measures for estimated weights were extremely similar to those for known 

weights, so only the results for known weights are described here. Findings for the four 

questions described earlier are given below. With respect to the first motivating question, 

which concerned, bias, we found estimates of the pairwise contrasts in time-averaged AUCs 

for AIs to be essentially unbiased. The simulated absolute bias was less than .005 in all 

scenarios. This was the case regardless of true and working correlation structure. With 

respect to the second motivating question, which concerned coverage, we found the 

simulated coverage for the pairwise contrasts to be approximately 95% for nominal 95% 

confidence intervals, suggesting that the confidence intervals were working well. This was 

the case regardless of true and working correlation structure. The third question concerned 

the effect of the correlation structure. The results in Table 4 show that in situations where the 
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true structure was non-independent, the estimates tended to be more accurate and power 

tended to be higher when a non-independent working structure was used in the analysis.

Our fourth motivating question concerned the accuracy of estimating the correlation 

parameter. Table 5 shows the average estimated values for the correlation parameter; note 

that the true value is ρ = 0.5. This table shows that when the working correlation structure 

was correctly specified, the method-of-moments estimate of the correlation parameter 

averages very close to 0.50 and thus had little or no bias. Of course, when the structure is 

incorrectly specified, there is no reason to expect the correlation estimate to converge to any 

particular meaningful value (Crowder, 1995), and in fact estimates tended to be much 

smaller than 0.50.

Finally, with respect to sample size, the simulation results reported so far were based on 

sample sizes of n=250, approximately that of the ENGAGE SMART experiment. Repeating 

a few scenarios (AR-1 true correlation with working AR-1 or working independence 

correlation) using sample sizes of 150 or 400 instead of 250 showed (see Table 6) 

improvement in power and RMSE as n increased. Still, power was found to be reasonably 

good even for the smaller value of n. Coverage for nominal 95% confidence intervals was 

quite close to 95% regardless of n.

Discussion

This manuscript provides practical guidelines and extensions to enable behavioral scientists 

to use repeated binary outcome data arising from a SMART to compare AIs. Although the 

method proposed by Lu and colleagues (2016) for analyzing repeated outcome data from 

SMART studies is general enough to be applicable to many kinds of outcome variables, it 

was originally illustrated and evaluated mainly for use with linear models for normally 

distributed outcomes. In this manuscript we have addressed several important questions that 

arise concerning the performance and utility of applying this method when the repeated 

outcome of interest is binary. Following a comprehensive review of this method, we 

provided guidelines for implementation in a binary outcome setting and highlighted the 

extensions required to enable the comparison of AIs in terms of various summaries of 

repeated binary outcome measures, including average outcome (AUC), stage-specific slopes, 

and delayed effects. An empirical example from a SMART study to develop an AI for 

engaging alcohol- and cocaine- dependent patients in treatment is used to illustrate the 

proposed method and highlight its scientific yield.

The empirical data analysis used to illustrate the methodology highlights the scientific gains 

associated with comparing AIs in terms of repeated binary outcome measures, as opposed to 

focusing on end-of-study outcome. Focusing on two embedded AIs of primary scientific 

interest, namely later choice and choice throughout, we found that the process by which 

outcomes unfold over time differs substantially between these two AIs. For example, in 

terms of cocaine abstinence, the AI that consisted of no choice early with choice later for 

non-responders (i.e., later choice) led to substantial decreases in the probability of 

abstinence (during the first stage), before leading to substantial increases in the probability 

of abstinence (during the second stage). On the other hand, choice throughout produced 
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consistent abstinence probabilities during both stage 1 and stage 2. Simply comparing the 

two AIs in terms of the outcome at month 6 would lead to the conclusion that later choice 

should be selected, given that it is associated with higher probability of abstinence at the end 

of the study. While the current analysis still suggests that later choice is likely to be better or 

at least no worse than choice throughout, the longitudinal analysis provides additional 

insight into the likely course of change under each AI. In particular, an analysis focusing 

only on the final outcome would ignore the substantial decrease in the probability of 

abstinence during the first stage of later choice. Such reduction may have practical and 

clinical significance, especially because it suggests that further improvements to the later-

choice AI should be considered in order to prevent such decline. For example, the researcher 

might introduce another phone contact between months 1 and 2. Moreover, in some clinical 

settings and other chronic disorders, consistent response, albeit modest, is sometimes better 

than sharp fluctuations. The course of improvement induced by the sequence of intervention 

options is important in selecting an AI, as it would allow clinicians and patients to weight 

short-term and long-term treatment goals when selecting an AI, rather than focusing on 

long-term improvement alone.

The results of Monte Carlo simulations were also presented to address questions concerning 

the performance of the proposed technique for analyzing repeated binary outcome measures 

arising from a SMART. The simulations employed a logistic model with binary repeated 

outcome measurements, as well as more realistic scenarios than those used by Lu and 

colleagues (2016), the proposed method performed well. Specifically, the method produces 

unbiased estimates as well as valid confidence intervals for the contrasts of interest. 

Statistical efficiency was higher (i.e., RMSE was lower and power was higher) when the 

correlation structure was correctly specified.

Limitations and Directions for Future Research

Contrary to hypothesis, the current simulation did not find any performance advantage for 

estimated weights. This was also contrary to findings from preliminary simulations (not 

shown) with three instead of six measurement waves. In these simulations, although 

estimated weights did not improve the performance over known weights when the 

correlation structure was misspecified, they prevented the efficiency loss that would 

otherwise have occurred from misspecified correlation. It is not clear why the current 

simulation did not find a similar result, and it is not clear whether or how the difference in 

performance is related to the number of waves. Additional research is required to 

systematically address these questions. In the future, there are some possible ways in which 

further methodological research might expand the usefulness of estimated weights in the 

context of the weighting and replication method. First, in the context of reducing bias in 

observational studies, estimating the weights using machine learning methods is sometimes 

preferable to using logistic regression (Lee, Lessler, and Stuart, 2010). Second, although 

developed in the context of reducing bias in observational studies, methods for ensuring 

double robustness (see Davidian, Tsiatis & Leon, 2005; Jonsson Funk et al., 2010) can also 

be used to improve efficiency in the comparison of AIs with data arising from a SMART 

(see Ertefaie et al., 2015).
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The example repeated measures model described in this tutorial article, namely Model (1), is 

only one of various ways to model the mean trajectory for the AIs embedded in a SMART 

like ENGAGE. Other longitudinal models are also possible, which can accommodate (or 

approximately accommodate) the features of SMARTs like ENGAGE. For example, the 

marginal mean trajectories need not be linear functions of time (e.g., they could be quadratic 

or otherwise curvilinear if there are enough measurements per stage). Methods for selecting 

the best model for longitudinal data arising from a SMART is one area of future research.

In the illustrative analysis presented here, we used a complete-case approach, removing 

missing data. However, it would often be better in practice to use multiple imputation (see 

Schafer, 1999; Lang & Little, 2018). Shortreed and co-authors (2014) described an approach 

to multiple imputation for longitudinal data arising from a SMART. Future methodological 

research may focus on better understanding alternatives to handling missing data in the 

context of different types of SMART designs and analyses. In the context of the weighting 

and replication method, it would be appropriate to impute the missing data before weighting 

and replicating, rather than after.

Model (1) is design-specific in that it is constructed for SMART studies, such as ENGAGE, 

in which all individuals are randomized to two initial intervention options, and only non-

responders are re-randomized to two other options. In such a design, as described earlier, 

there are four embedded AIs. Many SMART studies are of this type (e.g., Gunlicks-Stoessel 

et al., 2016; Naar-King et al., 2016; Pelham et al., 2016), but other types of SMARTs also 

exist (e.g., Lei, Nahum-Shani, Lynch, Oslin & Murphy, 2012). For some of these different 

designs, a different repeated measures model would be needed. For example, in some 

designs everyone is re-randomized, including responders, and the randomization options 

available to responders differ from those available for non-responders. In such a design, 

there would be eight embedded AIs rather than four, and the model would have to be 

adapted for this. Another form of adjustment would be appropriate if there were large 

differences between participants in either the spacing of randomizations (i.e., the length of 

stage 1 or of stage 2), or in the spacing of measurements within stage. For example, a 

second-stage intervention might take place at one of a range of different time points 

depending on when the individual shows signs of early non-response. In this case, it might 

be beneficial to use a model that accounts for the time at which the individual transitioned to 

the second stage of the intervention. Several SMART design scenarios of increasing 

complexity are discussed by Lu and colleagues (Lu et al., 2016), along with suggested ways 

to model repeated outcome measurements from such trials. If measurement timing is indeed 

subject-specific, then it may be necessary to define some of the estimands of interest more 

carefully and use a different approach to computing them. For example, the formula for the 

AUC would depend on the time spacing, so perhaps in that situation the AUC should be 

treated as different for each subject, and an overall average could be calculated.

The development of mixed-effects models for use with binary data from a prototypical 

SMART (e.g., ENGAGE) represents another important direction for future research. Mixed-

effects models are common in the analysis of repeated outcome measures arising from 

conventional randomized trials. Such models are often used because the variability of 

person-specific trends over time is of interest, rather than simply the mean trend (Bauer, 
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Preacher, & Gil, 2006; Singer, 1998; Singer & Willett, 2003). Subject-specific effects can be 

included in models with binary and other non-normal outcomes in addition to normal 

outcomes.

The repeated outcome measure of interest in the current manuscript was binary, simply 

reflecting abstinence versus any nonzero level of use. However, in many areas of behavioral 

research, particularly addictions (e.g., drug-use, alcohol-use), the outcomes of interest are 

counts, such as the number of drug-use occasions per week or month. An important outcome 

in the context of the ENGAGE SMART could be the monthly number of cocaine use days. 

Although this outcome is a count, it might not be sufficiently well modeled by simply 

approximating it as a Poisson distribution, namely by using Model (1) with the log link 

function and the Poisson variance function. This is because, as compared to a Poisson 

distribution, the distribution of a count outcome is likely to have a larger number of zeroes 

(e.g., many person-months with no days of cocaine use). This occurs commonly in count 

data on substance use and other behavioral health variables. The analysis of longitudinal 

zero-inflated count outcomes arising from a SMART is associated with additional 

challenges, as the outcome at any given month for a person is considered to be a result of 

two distinct processes. The first process concerns person-months that have no cocaine-use 

days because the person has either quit or has never begun using cocaine. The second 

process concerns person-months in which cocaine may or may not be used; these person-

months may result in cocaine use (i.e., 1 or more days of cocaine use) or not (i.e., no cocaine 

use days). In contrast to the single model used for the binary repeated outcome measures 

(Model 1), a mixture-model approach is typically recommended for zero-inflated data in 

order to model both processes (see, e.g., Buu, Li, Tan, & Zucker, 2012, Hu, Pavlicova, & 

Nunes, 2011, Olsen & Schafer, 2001; Yau, Wang & Lee, 2003). Extending the proposed 

method to enable the comparison of adaptive interventions in terms of zero-inflated outcome 

data arising from a SMART represents an important direction for future research.

In this paper we have considered only a relatively small number of repeated measurements. 

In many settings there may be advantages to using many repeated measurements (i.e., 

intensive longitudinal data; Walls & Schafer, 2006). We conjecture that the methods used in 

this paper would also be valid in such settings, although further simulation studies are 

necessary in order to explore this further. However, to make full use of intensive longitudinal 

data, somewhat more complicated models are likely to be beneficial. In particular, if there 

are many observations per stage, it would not make sense to simply assume that the 

trajectory of change within the stage must have a simple shape such as linearity. Also, if the 

number of observations per participant is large and the number of participants is small, then 

misspecification of the correlation structure may have a larger impact than it had in this 

paper (see Crowder, 1995). For relatively simple estimands such as end-of-study outcome, 

previous work with clustered data suggests that it is likely to be much more beneficial to 

increase the number of participants than to increase the number of observations per 

participant (see, e.g., Dziak, Nahum-Shani, and Collins, 2012). However, if short-term 

changes are of interest, then it is necessary to measure the outcome intensively (see Collins 

et al., 2002).
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Conclusion

The goal of this manuscript was to provide practical guidelines and extensions to enable the 

use of repeated binary outcome measures arising from a SMART to compare AIs. Various 

estimands that summarize the repeated binary outcome measures in different ways, 

including AUC, slopes, and delayed effects, have been discussed to operationalize the 

difference between the AIs. For illustrative purposes, we used longitudinal binary data from 

a single SMART study (ENGAGE) to demonstrate how these various summaries can be 

obtained and estimated. This does not imply that all summaries should be tested; an 

investigator should select the appropriate summaries a priori based on the primary scientific 

questions motivating the SMART study. The method of Lu and colleagues (2016) for 

analyzing repeated outcome measures from a SMART was shown to perform well in the 

setting of binary outcome measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A:: Standard Error Estimator

As usual, standard errors for the parameters in Model (1) can be obtained as the square roots 

of the diagonal entries on a covariance matrix of the estimated regression parameters. Let

Ui(β) =
a1, a2

wici, a1, a2
Di, a1, a2

T Vi, a1, a2
−1 Yi − μi, a1, a2

be the score function for β (the vector that is set to 0 to solve the estimating equation), so 

that i = 1
N Ui is the right-hand side of (1).

Let gi γ  be the combined score function for the logistic regression equations predicting the 

treatment assignment probabilities, where γ are the estimated logistic regression parameters 

for the model predicting these probabilities. Then Lu and colleagues (2016; online appendix 

page 5) recommend the following sandwich estimator for the covariance of the estimated 

regression parameters:
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Cov β = J−1IJ−1, (7)

where

J = 1
N

i = 1

N

a1, a2
wici, a1, a2

Di, a1, a2
T Vi, a1, a2

−1 Di, a1, a2

is the naive model-based information matrix, and

I = 1
N i = 1

N
UiUi

T − 1
N i = 1

N Uigi
T 1

N i = 1
N gigi

T −1 1
N i = 1

N Uigi
T

is the empirical covariance matrix of Ui after adjusting for the use of estimated weights. The 

second term attempts to estimate the reduction in error caused by using estimated weights; 

for a more conservative estimate of variance, the second term of the expression for I could 

be ignored. Also, if known weights are used, the usual GEE sandwich estimator could be 

used, which is similar to (7) but uses simply I = 1
N i = 1

N UiUi
T.

The logistic regression score function gi does not depend on the distribution of Y because it 

predicts the treatment assignments, rather than predicting Y. The “bread” of the sandwich, 

J−1, which is also the naive model-based covariance estimator, does depend on the link 

function, in the way that is usual for GEE. For a continuous outcome,

J = 1
N

i = 1

N

a1, a2
wici, a1, a2

σa1, a2
−2 Zi, a1, a2

T Ra1, a2
−1 Zi, a1, a2

.

For a binary outcome,

J = 1
N

i = 1

N

a1, a2
ci, a1, a2

wiZi, a1, a2
T Ma1, a2

1/2 Ra1, a2
−1 Ma1, a2

1/2 Zi, a1, a2
,

where Ma1, a2
 is a diagonal matrix with entries μa1, a2, t 1 − μa1, a2, t .

Appendix B provides sample code for fitting models in R (R Core Team, 2015) and SAS 

(SAS Institute, 2008) and is available as an online supplement.
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Figure 1. 
Randomization structure of ENGAGE SMART study.
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Figure 2. 
Estimated Probabilities of Cocaine Abstinence for each of the 4 Adaptive Interventions 

Embedded in the ENGAGE SMART.
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Figure 3. 
Estimated Probabilities of Alcohol Abstinence for each of the 4 Adaptive Interventions 

Embedded in the ENGAGE SMART. The “later choice” and “no choice” trajectories are 

almost identical and therefore overlap in the figure.
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Table 1

Adaptive Interventions in the ENGAGE SMART

Adaptive Intervention Cells (Fig. 1)Stage 1 Response Status Stage 2

Later Choice
(A1=−1, A2=1) MI-IOP

Responder NFC
A, B

Non-responder MI-PC

No Choice
(A1=−1, A2=−1) MI-IOP

Responder NFC
A, C

Non-responder NFC

Choice Throughout
(A1=1, A2=1) MI-PC

Responder NFC
D, E

Non-responder MI-PC

Initial Choice
(A1=1, A2=−1) MI-PC

Responder NFC
D, F

Non-responder NFC
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Table 2:

Results for Cocaine Abstinence (Binary outcome 1=abstinence, 0=non-abstinence).

Estimate SE
95% CI

LL UL

Intercept 1.94** 0.30 1.36 2.52

Gender (male=1;female=−1) −0.02 0.17 −0.36 0.31

Number of cocaine use days over 28 days preceding baseline −0.11** 0.02 −0.14 −0.08

S1 −0.45** 0.17 −0.79 −0.10

S2 0.10* 0.05 0.00 0.20

S1*A1 0.16 0.10 −0.04 0.36

S2*A1 −0.13** 0.05 −0.23 −0.03

S2*A2 0.03 0.02 −0.01 0.08

S2*A1*A2 −0.04 0.03 −0.10 0.02

Time-Specific Outcomes

Month 1 Choice Throughout (1, 1) 0.84 0.03 0.79 0.90

Later Choice (−1, 1) 0.82 0.03 0.76 0.88

Difference (1, 1) vs. (−1,1) 0.02 0.01 −0.01 0.05

Month 2 Choice Throughout (1, 1) 0.80 0.04 0.72 0.88

Later Choice (−1, 1) 0.71 0.05 0.62 0.80

Difference (1, 1) vs. (−1,1) 0.09 0.06 −0.02 0.20

Month 3 Choice Throughout (1, 1) 0.79 0.04 0.72 0.86

Later Choice (−1, 1) 0.77 0.04 0.70 0.84

Difference (1, 1) vs. (−1,1) 0.02 0.05 −0.07 0.12

Month 4 Choice Throughout (1, 1) 0.79 0.04 0.72 0.86

Later Choice (−1, 1) 0.82 0.03 0.75 0.89

Difference (1, 1) vs. (−1,1) −0.03 0.05 −0.12 0.06

Month 5 Choice Throughout (1, 1) 0.78 0.04 0.70 0.86

Later Choice (−1, 1) 0.86 0.03 0.79 0.93

Difference (1, 1) vs. (−1,1) −0.08 0.05 −0.18 0.03

Month 6 Choice Throughout (1, 1) 0.78 0.05 0.68 0.88

Later Choice (−1, 1) 0.89 0.03 0.83 0.96

Difference (1, 1) vs. (−1,1) −0.11† 0.06 −0.23 0.00

Slopes (Log-odds scale)

Stage 1 Choice Throughout (1, 1) −0.29 0.20 −0.68 0.10

Later Choice (−1, 1) −0.60** 0.21 −1.01 −0.20

Difference (1, 1) vs. (−1,1) 0.31 0.21 −0.09 0.72

Stage 2 Choice Throughout (1, 1) −0.03 0.08 −0.20 0.13

Later Choice (−1, 1) 0.30** 0.09 0.13 0.47
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Estimate SE
95% CI

LL UL

Difference (1, 1) vs. (−1,1) −0.33** 0.13 −0.58 −0.09

Areas Under the Curve (AUC)

Time-averaged AUC Choice Throughout (1, 1) 0.79 0.03 0.73 0.86

Later Choice (−1, 1) 0.80 0.03 0.74 0.87

Difference (1,1) vs. (−1, 1) −0.01 0.04 −0.09 0.07

Delayed Effects

Delayed Effect In terms of Time-Specific Outcomes:
(1,1) vs.(−1, 1) −0.20** 0.08 −0.35 −0.05

In terms of AUC:
(1, 1) vs. (−1, 1) −0.15 0.16 −0.46 0.16

Notes:

†
p≤0.10

*
p≤0.05

**
p≤0.01. CI=95% Confidence Interval; LL=Lower Limit UL=Upper Limit SE=Standard Error
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Table 3

Results for Alcohol Abstinence (Binary outcome 1=abstinence, 0=non-abstinence).

Estimate SE
95% CI

LL UL

Intercept 0.47* 0.23 0.03 0.91

Gender (male=1; female=−1) 0.06 0.15 −0.23 0.35

Number of alcohol use days over 28 days preceding baseline −0.52** 0.11 −0.73 −0.32

S1 −0.14 0.15 −0.44 0.16

S2 0.06 0.05 −0.04 0.16

S1*A1 −0.16† 0.09 −0.35 0.02

S2*A1 −0.09† 0.05 −0.19 0.01

S2*A2 0.02 0.02 −0.03 0.07

S2*A1*A2 0.02 0.03 −0.03 0.07

Time-specific Outcomes

Month 1 Choice throughout (1, 1) 0.46 0.05 0.37 0.56

Later choice (−1, 1) 0.50 0.05 0.40 0.61

Difference (1, 1) vs. (−1,1) −0.03† 0.02 −0.07 0.00

Month 2 Choice throughout (1, 1) 0.39 0.05 0.29 0.49

Later choice (−1, 1) 0.51 0.06 0.39 0.64

Difference (1, 1) vs. (−1,1) −0.11† 0.06 −0.23 0.01

Month 3 Choice throughout (1, 1) 0.39 0.05 0.30 0.48

Later choice (−1, 1) 0.55 0.06 0.44 0.66

Difference (1, 1) vs. (−1,1) −0.13** 0.05 −0.23 −0.03

Month 4 Choice throughout (1, 1) 0.39 0.05 0.30 0.49

Later choice (−1, 1) 0.58 0.06 0.47 0.70

Difference (1, 1) vs. (−1,1) −0.16** 0.05 −0.26 −0.06

Month 5 Choice throughout (1, 1) 0.40 0.05 0.29 0.50

Later choice (−1, 1) 0.62 0.07 0.49 0.75

Difference (1, 1) vs. (−1,1) −0.18** 0.06 −0.30 −0.06

Month 6 Choice throughout (1, 1) 0.40 0.07 0.27 0.53

Later choice (−1, 1) 0.65 0.08 0.50 0.80

Difference (1, 1) vs. (−1,1) −0.20** 0.07 −0.34 −0.05

Slopes (Log-odds scale)

Stage 1 Choice throughout (1, 1) −0.30† 0.17 −0.64 0.04

Later choice (−1, 1) 0.03 0.19 −0.34 0.39

Difference (1, 1) vs. (−1,1) −0.33† 0.19 −0.70 0.04

Stage 2 Choice throughout (1, 1) 0.01 0.07 −0.14 0.15

Later choice (−1, 1) 0.15 0.09 −0.03 0.32
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Estimate SE
95% CI

LL UL

Difference (1, 1) vs. (−1,1) −0.14 0.12 −0.37 0.10

Areas under the curve (AUC)

Time-averaged average AUC Choice throughout ( 1 , 1 ) 0.40 0.05 0.31 0.49

Later choice (−1, 1) 0.57 0.05 0.46 0.67

Difference (1,1) vs. (−1, 1) −0.17** 0.06 −0.28 −0.06

Delayed Effects

Delayed effect
In terms of time-specific outcomes:
( 1 , 1 ) vs.( −1, 1 ) −0.09 0.09 −0.27 0.09

In terms of AUC’s:
(1, 1) vs. (−1, 1) −0.55** 0.18 −0.90 −0.20

Notes:

†
p≤0.10

*
p≤0.05

**
p≤0.01. CI=95% Confidence Interval; LL=Lower Limit UL=Upper Limit SE=Standard Error
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Table 4

Effects of True and Working Correlation Structure on Accuracy and Power of Pairwise AUC Comparisons

Average Root Mean Squared Error

Fitted Structure

True Structure Indep. Exch. AR-1

Independence 0.0239 0.0239 0.0239

Exchangeable 0.0393 0.0334 0.0362

AR-1 0.0340 0.0337 0.0326

Checkerboard 0.0304 0.0290 0.0304

Power for Nonnegligible Contrasts

Fitted Structure

True Structure Indep. Exch. AR-1

Independence 0.9990 0.9990 0.9989

Exchangeable 0.8241 0.9275 0.8789

AR-1 0.9225 0.9293 0.9426

Checkerboard 0.9650 0.9756 0.9659
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Table 5

Average Estimated Correlation Parameters

Known Weights

Fitted Structure

True Structure Indep. Exch. AR-1

Independence 0.000 0.027 0.031

Exchangeable 0.000 0.508 0.511

AR-1 0.000 0.285 0.512

Checkerboard 0.000 0.219 0.029
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Table 6

Effect of Sample Size on Accuracy, Coverage and Power of Pairwise AUC Comparisons with AR-1 True 

Structure

Sample Working
Bias RMSE Coverage Power

Size Structure

100 Independence 0.001 0.055 0.949 0.517

AR-1 0.001 0.053 0.949 0.571

150 Independence 0.001 0.043 0.956 0.729

AR-1 0.001 0.041 0.953 0.781

250 Independence 0.000 0.034 0.954 0.923

AR-1 0.000 0.033 0.953 0.943

400 Independence −0.001 0.028 0.947 0.990

AR-1 −0.001 0.027 0.946 0.994
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