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Abstract

Inhibition and genetic deletion of fatty acid-binding proteins (FABPs) 5 and 7 have been shown to 

increase the levels of the endocannabinoid anandamide as well as the related N-

acylethanolamine’s palmitoylethanolamide and oleoylethanolamide. This study examined the role 

of these FABPs on forced-swim (FS) behavior and on sucrose consumption in two experiments: 

(experiment 1) using wild-type (WT) mice treated with the FABP inhibitor SBFI26 or vehicle and 

(experiment 2) using WT and FABP5/7 deficient mice. Results from experiment 1 showed that 

acute treatment with SBFI26 did not have any effect on sucrose intake or FS behavior in mice. In 

experiment 2, male and female FABP5/7 deficient mice showed significant increases in sucrose 

consumption (25 and 21%, respectively) compared with their WT counterparts. In addition, 

immobility time during the FS was decreased by 27% in both male and female FABP5/7 knockout 

mice compared with their WT counterparts. The fact that such differences were seen between the 

acute pharmacological approach and the genetic approach (gene deletion) of FABP needs to be 

further investigated. The function of FABPs and their specific effects on endocannabinoid 

anandamide, oleoylethanolamide, and palmitoylethanolamide may play an important role in the 

development of reward and mood behaviors and could provide opportunities for potential 

therapeutic targets.
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Introduction

Endocannabinoid (eCB) signaling plays an important role in the regulation of a plethora of 

physiological functions. Dysregulation of eCB signaling has been implicated in various 

psychiatric disorders including depression (Rutkowska and Jachimczuk, 2004; Bambico et 
al., 2010; Umathe et al., 2011; Kruk-Slomka et al., 2015); drug abuse (Moreira et al., 2015; 

Parsons and Hurd, 2015), alcoholism (Basavarajappa and Hungund, 2002; Thanos et al., 
2005; Parolaro et al., 2007), obesity (Mazier et al., 2015), reward deficiency syndrome 

(Comings and Blum, 2000); anxiety (Batista et al., 2014), stress (Hill and McEwen, 2010; 

Hillard, 2014; Gray et al., 2015), and pain sensation (Hohmann and Suplita, 2006; Kaczocha 

et al., 2015). eCB signaling is primarily mediated through N-arachidonoylethanolamide 

(AEA) and 2-arachidonoylglycerol that act through the cannabinoid 1 and 2 receptors 

(CB1R and CB2R, respectively) (Hill and McEwen, 2010; Pertwee et al., 2010).

Recent work has largely focused on the role of eCB signaling in reward-related behaviors, 

and on its interaction with the neurotransmitter dopamine (DA) (or a review see Panagis et 
al., 2014). DA is intricately tied to our understanding of hedonic behavior (Wise, 2008), and 

the ability of the eCBs to impact DA signaling has many implications for addiction. CB1Rs 

are ubiquitous expressed throughout the brain, including the mesolimbic DAergic system, 

which is a key neuronal circuit in regulating motivational and emotional processing 

(Laviolette and Grace, 2006; Melis et al., 2014; Wang and Lupica, 2014). Previous research 

has shown that eCBs alter DA release in the nucleus accumbens (NAc) by influencing the 

strength of synaptic inputs onto ventral tegmental area (VTA) DA neurons (Szabo et al., 
2002; Riegel and Lupica, 2004; Lupica and Riegel, 2005; Haj-Dahmane and Shen, 2010). 

Consequently, eCB signaling within the VTA is thought to be involved in the regulation of 

reward-related behaviors.

Because of the lipophilic properties of eCBs, they require assistance from carriers to move in 

and around the cell. There are several known eCB carriers including albumin, Hsp70, and 

fatty acid-binding proteins (FABPs) (Nicolussi and Gertsch, 2015). Only recently have 

FABPs been shown to shuttle AEA through the cell and to intracellular targets (Kaczocha et 
al., 2009). There are three FABPs that are highly expressed in the central nervous system: 

FABP3, FABP5, and FABP7. A recently developed inhibitor, SBFI26, inhibits two of these 

FABPs (FABP5 and FABP7), and has been deemed an effective method of indirectly raising 

AEA and producing antinociceptive and anti-inflammatory properties (Berger et al., 2012). 

Following intraperitoneal injection, plasma and brain SBFI26 levels have been shown to 

peak within 1 h, with an approximate half-life of 3 h (Kaczocha et al., 2014). In addition to 

AEA, it has also been shown that both SBFI26-treated mice and mice with genetic ablation 

of FABP5 and FABP7 genes display elevations in related N-acylethanolamine’s 

palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) (Kaczocha et al., 2015; Peng 

et al., 2017). Furthermore, SBFI26 shows therapeutic potential for pain management, 

without the risk of abuse (Thanos et al., 2016). The effects of FABP inhibition on sucrose 

intake and its effects on forced-swim (FS) behavior are poorly characterized in the literature. 

Therefore, the current study sought to expand on the potential regulatory actions of FABPs 

on sucrose intake and FS behavior, which has been widely used in screening for 
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antidepressant-like behavior in animal models (Cryan et al., 2005; Pollak et al., 2010; 

Bogdanova et al., 2013).

Methods

Subjects

Male and female C57BL/6J wild-type (WT) and FABP5/7 knockout (KO) mice (22–30 g, 

20–25 weeks old) were used as previously described (Matsumata et al., 2012). The animals 

were single housed at room temperature (22°C) and in controlled humidity conditions and 

kept on a 12 h inverted light cycle beginning at 0900 h with free access to water and food. 

The animals were habituated to the experimental room for 1 week before testing. The 

procedures for this study conform to the National Institutes of Health Guidelines for the 

Care and Use of Laboratory Animals and the protocol was approved by the University 

Institutional Animal Care and Use Committee at the University of Buffalo (Buffalo, New 

York, USA).

Sucrose preference

The sucrose preference test procedure was adopted from the Brown Institute for Brain 

Science – Rodent Neurodevelopmental Behavioral Testing Facility (Providence, Rhode, 

USA) and performed as previously described with minor modifications (Bitanihirwe et al., 
2010). Briefly, mice were given 3 days to acclimate to the setup with access to bottles, 

containing water and 2% sucrose (Sigma Aldrich, St. Louis, Missouri, USA). This was 

followed by 4 days during which consumption was recorded by measuring the weight of the 

water and sucrose bottles every 24 h, at15.00 h. Mice in the SBFI26 experiment were 

injected with their respective dose of SBFI26 4 h into their dark cycle each day during the 

last 4 days of the experiment. The position of the two bottles (right or left side) was switched 

daily throughout the duration of the procedure. A ‘dummy’ cage containing the same bottles 

given to each mouse was also measured. Dummy bottles were flipped along with all others 

to measure accidental disturbance of the cage rack or other variables.

Forced-swim test

The forced-swim test (FST) was conducted as previously described (Delis et al., 2013). For 

the SBFI26 experiment, mice were injected with drug 90 min before testing. Mice were 

placed in a 25 cm glass cylinder (14 cm in diameter) with 20 cm of water at 24± 2°C for a 

total of 6 min. The first 2 min were counted as habituation, whereas the last 4 min were 

counted as the testing period. A mounted camera (Canon Inc., New York, USA) (~2–3 feet 

above) was used to capture the runs; the video footage was subsequently saved for future 

analysis using the TopScan program (Clever Sys Inc., Reston, Virginia, USA), which 

characterized behavior by the amount of movement exerted.

Open-field test

Mice were habituated to the room 30 min before testing. Then, mice were run in an open-

field arena (16′ × 16′) photo beam activity monitoring system (Coulbourn Instruments, 

Allentown, Pennsylvania, USA) for a period of 60 min. Distance traveled was examined to 

identify changes in overall locomotor activity.
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Drug

The FABP inhibitor SBFI26 was synthesized as described by Berger et al. (2012). The drug 

was dissolved in DMSO : cremophor-EL : 0.9% saline (4% DMSO : 10% Cremophor-EL). 

Mice received intraperitoneal injections at a volume of 10 μl/g body weight.

Statistical analysis

All data are represented as group mean + standard error of the mean. For the sucrose testing, 

the last 4 days of sucrose and water consumption were averaged into 1 value for each 

animal. All follow-up post-hoc interactions were assessed using Tukey’s honest significant 

difference test. Statistical significance was set at α of 0.05. All statistics and graphing were 

performed using SigmaPlot 11.0 (Systat Software Inc., San Jose, California, USA).

Results

Sucrose consumption

FABP5/7 KO mice—A two-way analysis of variance (ANOVA) revealed significant main 

effects on sucrose consumption of genotype [F(1,48) =12.12; P < 0.001] and sex [F(1,48) = 

54.88; P < 0.001], but not the genotype×sex interaction [F(1,48) = 0.19; NS], suggesting that 

the increased sucrose consumption seen in FABP5/7 KOs was independent of sex (Fig. 1). 

Follow-up comparisons showed that FABP5/7 KO females consumed 21% more than their 

WT counterparts (P < 0.05) and 52% more than the FABP5/7 KO males (P < 0.001); 

FABP5/7 KO males consumed 25% more than their WT counterparts (P < 0.05); WT 

females consumed 58% more than the WT males (P < 0.001). A separate two-way ANOVA 

for water consumption revealed no significant effect of genotype [F(1,48) = 0.81; NS] or sex 

[F(1,48) = 1.56; NS]. However, nonsignificant increases in water consumption were seen in 

the FABP5/7 KO mice. Regarding sucrose preference, a two-way ANOVA revealed a 

significant main effect of sex [F(1,48) = 4.53; P < 0.05], but not of genotype [F(1,48) =0.67; 

NS]. Female WTs were shown to have a higher preference compared with male WT (P 
<0.05). It is likely that the small increase in water consumption in the FABP5/7 KO mice 

was responsible for the lack of difference in sucrose preference between genotypes.

SBFI26-treated mice—A two-way ANOVA found a significant effect of sex [F(1,71) = 

74.24; P < 0.001], but no significant main effect of SBFI26 treatment [F(3,71) = 0.48; NS] 

on sucrose consumption (Fig. 2). A separate two-way ANOVA for water consumption 

revealed no significant effect on consumption of treatment [F(3,71) = 2.26; NS] or sex 

[F(1,71) = 0.97; NS]. Finally, a two-way ANOVA showed no significant differences in 

preference for sucrose for SBFI26 treatment [F(3,71) = 2.08; NS] or sex [F(1,71) = 1.41; 

NS].

Forced swim

FABP5/7 KO mice—Immobility time in the FS was analyzed using a two-way ANOVA 

with the factors of genotype (FABP5/7 KO, WT) and sex (male and female) (Fig. 3). There 

was a significant main effect of genotype [F(1,47) = 10.33; P < 0.01]. Additional post-hoc 

tests used Tukey’s honest significant difference: FABP5/7 KO males showed a 27.0% 
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decrease in immobility time compared with WT males (P < 0.05). Female FABP5/7 KOs 

showed a 26.7% decrease in immobility compared with WT females (P < 0.05).

SBFI26-treated mice—A two-way ANOVA was conducted with the factors of treatment 

(vehicle, 5, 20, and 40 SBFI26) and sex (male and female) (Fig. 4). No effect of treatment 

on immobility time was observed [F(3,68) = 0.57; NS], but there was a small effect of sex 

[F(1,68) = 6.33; P < 0.05], with females overall showing less immobility time.

Distance traveled in the open field

A two-way ANOVA did not show any significant effect of genotype [F(1,37) = 3.41; P = 
0.073], but did show an overall effect of sex [F(1,37) = 5.14; P < 0.05], where females were 

more active than males (Fig. 5).

Discussion

The recent demonstration that FABPs act as intracellular carriers of AEA has introduced 

new research questions pertaining to the processing of pain and reward signals (Kaczocha et 
al., 2014; Thanos et al., 2016). Here, we show that both male and female mice lacking the 

genes for FABP5 and FABP7 consume more sucrose (25 and 21%, respectively) and display 

reduced immobility time (27% for both) compared with their WT counterparts. In contrast, 

pharmacological inhibition of FABP5 and FABP7 using the novel inhibitor, SBFI26, did not 

change sucrose consumption or immobility time. There are several possible mechanisms for 

the effects of FABP inhibition/deletion.

One potential explanation of these results is through the activation of the CB1 receptor. The 

role of eCB signaling on reward and FS behavior is known to be mediated through the 

effects of AEA, 2-arachidonoylglycerol and CB1 receptors. Wang et al. (2015) have shown 

that eCB signaling is a regulator of DA activity within the VTA, primarily through CB1 

activation on GABAergic neurons. Enhancement of eCB signaling has been shown to drive 

positive reinforcement, whereas attenuating eCB signaling blunts it (Lupica et al., 2004; 

Fattore et al., 2010). CB1 KO mice have been shown to consume less sucrose than their WT 

counterparts in a two choice paradigm (Sanchis-Segura et al., 2004). Pharmacologically 

blocking CB1 receptors also diminishes sucrose feeding and drinking behavior (Arnone et 
al., 1997; Freedland et al., 2001; Poncelet et al., 2003). In contrast, pharmacological 

compounds that raise EC levels through inhibition of fatty acid amide hydrolase (FAAH) 

also impact sucrose consumption. Specifically, treatment with URB597 (FAAH inhibitor) 

potentiated sucrose intake (Vinod et al., 2012). Enhancing eCB signaling in the NAc through 

anandamide microinjections was shown to amplify the hedonic impact of natural reward 

(Mahler et al., 2007). Also, CB1 receptor activation through the administration of Δ9-

tetrahydrocannabinol was found to increase the hedonic response to sucrose ingestion. 

Increases in DA have been observed in the shell of the NAc as a result of Δ9-

tetrahydrocannabinol and WIN55212–2 administration (Tanda et al., 1997; De Luca et al., 
2012). One possible mechanism for the CB1-induced increases of DA seen within the NAc 

is thought to be disinhibition of GABA projections (through CB1 activation) to VTA DA 

neurons from local and outside sources (Szabo et al., 2002; Riegel and Lupica, 2004; Lupica 

and Riegel, 2005).
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Our results also demonstrate that mice with FABP5/7 deletion show reduced FS immobility 

time, which may be indicative of antidepressant-like behavior. This difference in immobility 

time is unlikely to be a result of differences in motor activity, given the lack of difference 

seen in the open-field test (Fig. 5). Differences in immobility time are thought to be 

associated with differences in a depressive-like phenotype, given the fact that antidepressants 

have known to decrease immobility time in the FST (Pollak et al., 2010; Bogdanova et al., 
2013). However, it needs to be stated that the FSTs were carried out in mice that had not 

undergone any procedure designed to elicit a depressive-like phenotype. Instead, these 

results offer a potential screening of depressive-related behavior that needs to be further 

explored in depression models. The finding of reduced immobility time in mice with 

pharmacologically or genetically induced increases in eCB signaling has been previously 

reported. Enhanced AEA signaling has been shown to decrease FS immobility time (Gobbi 

et al., 2005; Hill and Gorzalka, 2005). It has also been reported that exogenous CB1 agonists 

also significantly reduces immobility time (Kruk-Slomka et al., 2015). Treatment with other 

CB1 agonist or AEA-raising compounds have also shown reduced immobility time in the 

FST (Rutkowska and Jachimczuk, 2004; Umathe et al., 2011). In addition, Bambico et al. 
(2010) have shown that FAAH KO mice display reduced immobility time, which was 

normalized by a CB1 blocker (Bambico et al., 2010). In addition, chronic administration of 

the CB1 blocker, rimonabant, increased immobility time (Hillard, 2014). Thus, the 

differences in sucrose consumption and FS behavior between WT and FABP5/7 mice may 

be the result of enhanced CB1 activation.

We recently reported that SBFI26 decreases ethanol consumption in mice (Figueiredo et al., 
2017). As decreases in ethanol consumption are known to occur following blockade of the 

CB1 receptor, this observation indicates that SBFI26 may interfere with the ability of AEA 

to bind to CB1. Similarly, Seillier and Giuffrida (2018) have demonstrated that 

administration of OMDM-2, which has been shown to target transporter proteins, including 

FABP5 (Kaczocha et al., 2012), impairs social interaction in male Wistar rats and is 

consistent with reduced activation of CB1 receptors. Given these findings, it is suprising that 

SBFI26 did not change sucrose consumption. It might have to do with the fact that SBFI26’s 

effects on ethanol consumption were observed in a 6-h paradigm and our sucrose 

consumption was measured over 24 h.

It has been previously shown that both SBFI26 administation and FABP5/7 gene deletion 

raise OEA and PEA levels (Kaczocha et al., 2015; Peng et al., 2017). It is also possible that 

both FABP gene deletion and pharmacological inhibition prevent the activation of the CB1 

receptor and the effects have more to do with the actions of OEA and PEA, which activate 

the nuclear peroxisome proliferator-activated receptor-α. Peng et al. (2017) suggested that 

the effects of FABP5/7 KO on nociception are mediated through the transient receptor 

potential vanilloid 1 and peroxisome proliferator-activated receptor-α, rather than by CB1 

(Peng et al., 2017). Elevation of OEA/PEA may be responsible for the increased sucrose 

consumption and decreased immobility time seen in the FABP5/7 KOs. This is supported by 

the fact that both OEA and PEA administration can reduce immobility time in the FST as 

well as the tail suspension test (Yu et al., 2011, 2015). Moreover, chronic treatment of OEA 

(1.5, 3, and 6 mg/kg) has been shown to increase sucrose preference following chronic 

unpredictable mild stress (Jin et al., 2015). Finally, it cannot be ruled out that SBFI26 or 
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FABP5/7 gene deletion alters the functioning or expression of other known eCB carriers, 

such as Hsp70 or albumin (Nicolussi and Gertsch, 2015). More information is needed to 

shed light on why differences in behavior are observed between pharmacological inhibition 

and genetic deletion of FABPs.

Our findings suggest that genetic deletion, but not pharmacological inhibiton, of FABP5 and 

FABP7, affects sucrose intake and antidepressant-related behaviors. Further investigation 

will be needed to identify the precise mechanism behind these behavioral changes induced 

by genetic FABP5/7 deletion. One limitation to this study was the concentation of sucrose 

used. Because of the fact that WT mice show a high preference for the 2% sucrose solution, 

it would be difficult to detect increases in preferences within the FABP5/7 KO mice, if any 

exist. Further work will be needed to examine how FABPs regulate sucrose intake and 

preference at different sucrose concentrations.
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Fig. 1. 
Sucrose consumption (mean daily intake over 4 days). #Difference within sex, between 

genotype; $Difference within genotype, between sex. FABP5/7 knockout (KO) females (n = 
7) consumed 21% more than their wild type (WT) (n = 15) counterparts (P < 0.001) and 

52% more than the FABP5/7 KO males (P < 0.001). FABP5/7 KO males (n = 16) consumed 

25% more than their WT counterparts (n = 14; P < 0.01). WT females consumed 58% more 

than the WT males (P < 0.001).
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Fig. 2. 
Effects of SBFI26 administration on sucrose consumption in male and female mice. No 

differences were found between the doses given in either males or females (n = 10 and 9 for 

vehicle, n = 10 and 9 for 5 mg/kg, n = 10 and 9 for 20 mg/kg, n = 10 for 40 mg/kg, 

respectively for males and females). An overall sex effect was found where females 

consumed more than males; ***P < 0.001.
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Fig. 3. 
Forced-swim behavior in wild type (WT) and FABP5/7 deficient mice. #A significant effect 

of genotype, within sex differences. Male (n = 16) and female (n = 6) FABP5/7 KOs showed 

a 27% (P < 0.05) and 27% (P < 0.05) decrease in immobility compared with WT 

counterparts (n = 14 and 15, respectively). FST, forced-swim test.
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Fig. 4. 
Immobility time in the FS of male and female mice following 90 min pretreatment of 

SBFI26 (vehicle, 5, 20, and 40 mg/kg). No treatment effect was seen on immobility time, 

though a small effect was of sex seen (*P < 0.05) (n = 10 for vehicle, n = 10 for 5 mg/kg, n = 
10 for 20 mg/kg, n = 9 for 40 mg/kg for both male and female). FS, forced swim.
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Fig. 5. 
Distance traveled in the open-field test. There was no significant effect of genotype. Overall, 

females were more active than males (*P < 0.05) (male WT: n = 12, female WT: n = 12, 

male FABP5/7 KO: n = 12, female FABP5/7 KO: n = 7). KO, knockout; WT, wild type.
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