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Machine learning holds considerable promise for understanding complex biological processes such as vaccine responses. Cap-

turing interindividual variability is essential to increase the statistical power necessary for building more accurate predictive

models. However, available approaches have difficulty coping with incomplete datasets which is often the case when combining

studies. Additionally, there are hundreds of algorithms available and no simple way to find the optimal one. In this study, we

developed Sequential Iterative Modeling “OverNight” (SIMON), an automated machine learning system that compares results

from 128 different algorithms and is particularly suitable for datasets containing many missing values. We applied SIMON to data

from five clinical studies of seasonal influenza vaccination. The results reveal previously unrecognized CD4+ and CD8+ T cell

subsets strongly associated with a robust Ab response to influenza Ags. These results demonstrate that SIMON can greatly speed

up the choice of analysis modalities. Hence, it is a highly useful approach for data-driven hypothesis generation from disparate

clinical datasets. Our strategy could be used to gain biological insight from ever-expanding heterogeneous datasets that are

publicly available. The Journal of Immunology, 2019, 203: 749–759.

T
he immune system comprises multiple cell types that
work together to develop an effective response to a given
pathogen. However, which of these myriad cell types are

important in a particular response is not well understood. The

increasingly common systems immunology approach measures
gene expression and different cells and molecules in the immune
system during an infection or vaccination and uses computa-
tional methods to discern which components are most important
(1–6). These studies have the practical goal of determining what
makes one vaccine formulation better than another or how in-
dividuals vary. In addition, it may suggest a mechanistic un-
derstanding of how an effective immune response is achieved. To
accomplish this, an accurate modeling of the complex processes
that lead to a successful outcome is crucial.
Over the past few years, many systems studies of influenza vac-

cination responses in human beings have been analyzed computa-
tionally, but the results have not been consistent (2, 3, 7–10). One
reason for these inconsistent results is the relatively small sample
sizes. Another is that studies focus on only one biological aspect; for
example, molecular correlates of protection by using transcriptome
data (11). However, a more robust approach to understanding how a
vaccine works would involve analyzing multiple parameters from
many individuals across different populations to more accurately
capture biological variability. Furthermore, this would increase
the statistical power, ultimately leading to the generation of
classification and regression models with more robust perfor-
mance metrics. Although the number of studies and the amount
of data are expanding dramatically, analyzing diverse samples
across clinical studies remains challenging (12). This is par-
ticularly true for data from flow and mass cytometry, in which
the number of markers analyzed can vary tremendously (13).
In this study, we develop an approach that optimizes a ma-

chine learning workflow through a Sequential Iterative Modeling
“OverNight” (SIMON). SIMON is specifically tailored for clinical
data containing inconsistent features with many missing values.
SIMON uses multiset intersections to successfully feed such data
into an automated machine learning process with minimal sample
losses. Our approach runs hundreds of different machine learning
algorithms to find the ones that fit any given data distribution, and
this maximizes predictive accuracy and other performance mea-
surements. We used SIMON to analyze data from the Stanford
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Human Immune Monitoring Center (HIMC) collected from five
separate clinical studies of seasonal influenza vaccination, ob-
tained over 8 years, with various platforms and expanding pa-
rameters. This enabled a systems-level identification of features
that correlate with protective immunity to influenza. In the
resulting models, we identified several previously unknown im-
mune cell subsets that correlated with a successful influenza
vaccination outcome, as defined by Ab responses. The impact of
our findings is 2-fold. First, the study offers a new tool that can
increase the accuracy of predictions from heterogeneous bio-
logical datasets. Second, it provides new targets for the devel-
opment of the next generation of influenza vaccines.

Materials and Methods
Subjects, sample, and data collection

All clinical studies were approved by the Stanford Institutional Review
Board and performed in accordance with guidelines on human cell research.
Peripheral blood samples were obtained at the Clinical and Translational
Research Unit at Stanford University after written informed consent/assent
was obtained from participants. Samples were processed and cryopreserved
by the Stanford HIMC BioBank according to the standard operating pro-
tocols (14). All materials and data were analyzed anonymously.

In this study, we used data from 187 healthy donors who were enrolled in
influenza vaccine studies at the Stanford-LPCHVaccine Program from 2007
to 2014. This included the following studies: SLVP015 (NCT01827462,
accessible at http://www.clinicaltrials.gov, and National Institute of Al-
lergy and Infectious Diseases ImmPort accession number SDY212, ac-
cessible at http://www.immport.org, data analysis described in Ref. 15),
SLVP017 (NCT02133781, NCT03020498, and NCT03020537), SLVP018
(NCT01987349, NCT03022396, NCT03022422, NCT03022435, and
NCT3023176, data analysis published in Ref. 16), SLVP021 (NCT02141581),
SLVP028 (NCT03088904), and SLVP029 (NCT03028974). Individuals
were selected for this study based on the following criteria: 1) age range
from 8 to 40 y; 2) received inactivated influenza vaccine (Fluzone, i.m.);
3) only data from the first visit (some donors came in consecutive
years); 4) hemagglutination inhibition assay (HAI) titer measured; and
5) information about gender and age available. Exclusion/inclusion
criteria, samples that were acquired with timepoints, and analyses
performed are described in the study record details at Web site repos-
itory for clinical studies (http://www.ClinicalTrials.gov) using provided
identifiers (IDs). All the protocols for sample analysis such as immu-
nophenotyping and determination of signaling responses to stimulation
using flow or mass cytometry, HAI titer determination, and determi-
nation of cytokines/chemokines in samples using Luminex assay
are available online (14). Additionally, protocol for immunophenoty-
ping using mass cytometry was published in Leipold and Maecker (17).
Phosphoflow assay using flow cytometry (for studies SLVP15, SLVP18,
and SLVP21 from 2007 to 2011), was described in (15, 16) or using
mass cytometry (for study SLVP21 in 2013) in (18). Luminex assay was
described in (15, 16). The HAI assay was performed on sera from day
0 to day 28 using a well-established method (19) and was described
before (2, 15).

All data used were analyzed and processed at the HIMC, as previously
described (20), and uploaded to the Stanford Data Miner (21). Briefly,
data from both Luminex assays were normalized at the plate level to
mitigate batch and plate effects. The two median fluorescence intensity
values for each sample for each analyte were averaged and then log-base
2 transformed. The Z-scores ([value – mean]/SD) were computed, with
means and SDs computed for each analyte for each plate. Thus, units
of measurement were Zlog2 for serum Luminex. For phospho-flow data
acquired on flow cytometer, a fold change value was computed as
the stimulated readout divided by the unstimulated readout (e.g., 90th
percentile of median fluorescence intensity of CD4+ pSTAT5 IFN-a
stimulated/90th percentile of CD4+ pSTAT5 unstimulated cells), whereas
for data acquired using mass cytometry, a fold change was calculated by
subtracting the arcsinh (intensity) between stimulated and unstimulated
(arsinh stim – arcsing unstim). For immunophenotyping using mass
cytometer units of measurement were percentage of parent population.

Aggregation of data and generation of feature subsets

The data from Stanford influenza datasets were obtained from HIMC
Stanford Data Miner (21). Downloaded csv files were automatically im-
ported to the MySQL database to facilitate further analysis, as described

(A. Tomic, I. Tomic, C.L. Dekker, H.T. Maecker, and M.M. Davis, man-
uscript posted on bioRxiv). Briefly, datasets were merged using shared
variables, such as donor ID, study ID, gender, age, race, donor visit ID,
visit year, experimental data (connected to donor visit ID), assay, name,
and value of the measured analyte. The vaccine outcome was calculated
using Ab titers evaluated by HAI. High responders were determined as
individuals who have HAI Ab titer for all vaccine strains $40 and geo-
metric mean (GeoMean) HAI fold change $4. The fold change is calcu-
lated as follows: (GeoMean HAI Ab titer for all vaccine strains on day
28)/(GeoMean HAI Ab titer for all vaccine strains on day 0). To facilitate
analysis, vaccine outcome was expressed as a binary value: high re-
sponders were given a value of 1, whereas low responders a value of 0.

To deal with missing values, in the first step of SIMON, we implemented
a novel algorithm, mulset, that allows for faster generation of datasets with
all possible combinations of features and donors across initial dataset. To
efficiently compute shared features and quickly find similarities between
donors, mulset algorithm generated a unique feature ID for each donor.
Then, intersection between the IDs was used to identify shared variables.
The identified, shared variables are then converted to unique shared fea-
tures IDs using hash function. Finally, data were exported from the data-
base according to the shared features. In total, mulset generated 45
different datasets. To generate reasonable number of datasets, we removed
datasets with low numbers of donors and features (,5 features and ,15
donors). However, this threshold is arbitrary and can be set higher, with
maximum threshold of 40 donors per dataset. Datasets with ,40 donors
will be removed in the next step of the SIMON analysis (all datasets with
,10 donors in the test set are removed). After applying that restriction, 11
datasets were deleted, and final analysis was performed on 34 datasets.

Overview of SIMON

To identify baseline immune predictors that can discriminate between high
and low responders following influenza vaccination, we applied SIMON.
SIMON allows for dataset generation, feature subset selection, classifica-
tion, evaluation of the classification performance, and determination of
feature importance in the selected models. The SIMONwas implemented in
R programming language (22). First in SIMON, we automated the pro-
cess of dataset generation using mulset algorithm as described above. Next,
each dataset was partitioned into 75% training and 25% test set, with
balanced class distribution of high and low responders using the function
createDataPartition from the Caret package (23). Briefly, the dataset is
split into groups based on percentiles, and sampling is done randomly
within these subgroups in an attempt to balance the class distributions (23).
To prevent evaluation of small test sets that would lead to misleading
performance parameters, datasets with ,10 donors in test sets were dis-
carded. The threshold was determined based on the evaluation of the
performance measures of the models built, where smaller size of test sets
gave misleading higher performance of the models. Next, the model
training using 128 machine learning algorithms suitable for classification
training (Supplemental Table I) was initiated for each train dataset. Test
sets were held out for evaluation of model performance on unseen datasets.
This step was crucial to prevent overfitting. All algorithms were processed
in an automated way through the Caret library (23). Each model was
evaluated using 10-fold cross-validation (24) repeated three times. Addi-
tionally, performance of each model was evaluated on the test set that was
held out before model training by calculating performance from a confu-
sion matrix using available R package (25). Furthermore, contribution of
each feature to the trained model was evaluated and variable importance
score is calculated as described (23). All prediction metrics and perfor-
mance variables are stored in the MySQL database for the final exploratory
analysis. Detailed description of the overall processes is as follows.

Model training and performance evaluation. Each model was evaluated by
calculating performance measures using the confusion matrix. Confusion
matrix, or contingency table, is used to evaluate the performance of a
classification model on a set of data for which the true values are known.
The confusion matrix has four categories (Table I). True positives
(TP) are cases in which the classification model predicted them to be
high responders, and indeed, those cases were high responders, whereas
true negatives (TN) correspond to cases correctly labeled as low re-
sponders. Finally, false negatives (FN) and false positives (FP) refer to
low responders or high responders that were incorrectly labeled. From a
confusion matrix, to evaluate classification models, we calculated fol-
lowing performance measures. Accuracy, a measure of how often the
classifier is correct, was calculated as (TP + TN)/(total number of ob-
servations). Specificity, the proportion of actual negative cases (low re-
sponders) that were correctly identified was calculated as TN/(FP + TN),
whereas sensitivity (also known as recall or TP rate), the proportion of
actual positive cases (high responders) correctly labeled, was calculated
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as TP/(TP + FN). To summarize the performance of classification models
over all possible thresholds, we generated the receiver operating char-
acteristic curve by plotting the sensitivity (y-axis) and the FP rate (the
proportion of low responders misclassified as high responders), which
was calculated as 1 2 specificity (x-axis). Finally, we calculated the area
under the receiver operating characteristic curve (AUROC) using an R
package (25) and used this measure to summarize the performance of the
models. AUROC has values between 0 and 1, and higher values indicate
better performance. A value of 0.5 indicates a random classifier, and
this was used as a cutoff to remove classifiers that could not distinguish
between high and low responders better than by random chance. In
this study, 10-fold cross-validation was applied three times, the AUROC
was calculated for each repeated iteration, and the average AUROC
(and other measures) are reported as an overall quantitative estimate of
classification performance. Additionally, before model training, the same
seed for random number generator was applied (set.seed 1234). This
resulted in the uniformity in which, for each model, same resamples were
used for performance evaluation. From this, we compared models and
evaluated which model was performing better in terms of AUROC values
by comparing performance of the resampling distributions using func-
tions described in the Caret (23).

Independent evaluation of the trained model. The performance of each
model was additionally evaluated on the test set that was held out before
training the model (25% of the dataset). The performance on the test set was
evaluated exactly as described for the train set above. A confusion matrix
was built and all the performance measures, including the AUROC, were
computed as for the train set. Test AUROC was used to select models, in
addition to train AUROC.

Variable importance score. Contribution of each feature to the model
(i.e., variable importance score) was calculated using the Caret library (23).
Briefly, evaluation of the variable importance was calculated directly from
the model specific metrics, and the variable importance scores were scaled
to have a maximum value of 100. Because in SIMON we used many
different algorithms, the contribution of each feature to the model was
estimated using the methods appropriate for each algorithm, as described
in R packages (see reference list for the Supplemental Table I).

Feature selection using Boruta algorithm

To evaluate the all-relevant features for the selected top-performing models
built on datasets 13 and 36, we used an R package Boruta (26). Boruta
algorithm performs as a wrapper algorithm around Random Forest (26). The
method is suitable for selection of all-relevant features, and this is accom-
plished by comparing original features’ importance with importance achievable
at random (estimated using permuted copies of the original features, called
shadow features). In each iteration, Boruta removes irrelevant features and
evaluates the performance of the model. Finally, analysis is finished either
when all features are confirmed or rejected or when Boruta reaches a specified
limit of runs. Boruta was performed using the following parameters: maximal
number of importance source runs, maxRuns at 1000, and pValue confidence
level 0.05; also, a multiple comparisons adjustment using Bonferroni method
was applied (mcAdj set to TRUE), feature importance was obtained using
Random Ferns (function getImpFerns), and, to ensure reproducibility of the
results, we set the seed for the random number generator (set.seed 1337).
Tentative features were also included returned in the Boruta results (with-
Tentative argument was set to TRUE).

Peptide stimulation and intracellular cytokine staining using
mass cytometry

Thawed PBMC were rested in X-VIVO 15 medium (Lonza) supplemented
with 10% FCS and human serum AB (Sigma-Aldrich) for 2 d at 107 cells/ml
in a 24-well plate following “RESTORE” protocol (27, 28). For stimu-
lation assay, 5 3 106 PBMC were seeded in 96-well V-bottom plates
(106 PBMC per well) and stimulated overnight (12–16 h) with the influenza
overlapping peptide pool. Influenza peptide pool contained 483 pep-
tides (20 mers with 11 aa overlap; Sigma-Aldrich) spanning the entire
influenza proteome from the influenza strain A/California/07/2009
(dissolved in DMSO at 20 mg/ml, working concentration 0.2 mg/ml
per peptide) and 24 peptides with HLA-A*0201 specificity (9–10 mers;
Sigma-Aldrich) generated against influenza proteins (hemagglutinin, nucleo-
capsid protein, matrix protein 1, nonstructural protein 1 and 2) from the in-
fluenza strain A/California/07/2009 using prediction software NetCTL-1.2 (29)
(dissolved in water or PBS/DMSO at 20 mg/ml, working concentration 2 mg/
ml/peptide) (Supplemental Table II). In both assays, an unstimulated sample
was prepared in which only medium without peptides containing 0.5% DMSO
was added. Protein transport inhibitor mixture (eBioscience/Thermo Fisher
Scientific) and Ab against CD107a were added at the beginning of the assay.

After peptide stimulations, PBMC were washed with the CyFACS buffer (PBS
supplemented with 2% BSA, 2 mM EDTA, and 0.1% sodium azide) and
stained with surface Ab mixture (Supplemental Table III), then filtered through
0.1-mm spin filter with 20 ml/sample of Fc block (Thermo Fisher Scientific) for
30 min at 4˚C. After washing with CyFACS buffer, cells were incubated for
5 min at room temperature (RT) in 1 3 PBS (Lonza) with 1:1000 diluted
cisplatin (Fluidigm). Cells were then incubated for 1 h at RT (or left at 4˚C
overnight) in the iridium-intercalator solution in fixation and permeabilization
buffer (BD Cytofix/Cytoperm; BD Biosciences). After washing with 13 per-
meabilization buffer (BD Perm/Wash; BD Biosciences), cells were stained for
30 min at RT with intracellular Ab mixture diluted in 13 permeabilization
buffer (Supplemental Table III). Cells were fixed with BD Cytofix/Cytoperm
and left overnight until analysis or immediately used for mass cytometry.
Immediately before starting the analysis, cells were washed in CyFACS buffer,
then PBS, and finally with Milli-Q water. Prior to data acquisition, cells were
resuspended in Milli-Q water containing 1:10 diluted normalization beads (EQ
Four Element Calibration Beads; Fluidigm) to the concentration of ,8 3 105

cells/ml to achieve an acquisition rate of 400 events per s on the CyTOF Helios
mass cytometer (Fluidigm). In each sample, 1–1.5 million cells were acquired.
After acquisition, data were normalized with the reference EQ passport
P13H2302 (30), and further data analysis was performed using FlowJo v10.

Statistical analysis

All the statistical parameters (sample size, statistical tests, and statistical
significance) are reported in the figures and figure legends. Significance of
differences in frequencies of the immune cell subsets between high and low
responders in the datasets was calculated using the significance analysis of
microarrays (SAM) (31) at false discovery rate (FDR) ,1%. Mass
cytometry data between two groups after peptide stimulation were ana-
lyzed using the one-way ANOVA Kruskal–Wallis test followed by Dunn
multiple comparison test, whereas paired samples within groups were
compared with two-tailed Wilcoxon matched-pairs signed rank test. Ad-
ditionally, pairwise t test with the Benjamini–Hochberg (B-H) correction
for multiple testing adjustment with 0.95 confidence level was used to
evaluate changes in the cell frequencies after vaccination within groups.
Pearson correlation coefficient was used to evaluate the correlations be-
tween features from the top-performing models. The Corrplot package in R
was used to calculate correlation coefficients, statistics, and visualization
of the correlation matrix (32). The p values were adjusted for multiple
comparisons by using the B-H correction (33). Statistical analyses were
performed with GraphPad PRISM 7.04 (Graph Pad Software) or in R, and
p . 0.05 was considered nonsignificant.

Code and data availability

The source code of the mulset algorithm is available from https://github.
com/LogIN-/mulset. The mulset is available as an R package in CRAN, a
repository of open-source software. The source code, installation instruc-
tions, and data from the SIMON analysis are available from https://github.
com/LogIN-/simon-manuscript. Raw data from the initial dataset used
in SIMON analysis are available from a research data repository Zenodo
(https://zenodo.org/record/2578166#.XHWDibh7lPY) (34). All models
generated by SIMON are available at the Zenodo (https://zenodo.org/
record/2580416#.XHiItLh7lPY) (35). Mass cytometry fcs files related to
Fig. 4 are also available at the Zenodo (https://zenodo.org/record/1328286)
(36). The results from SIMON exploratory analysis are available online at
http://www.fluprint.com.

Results
Preprocessing of data collected across different clinical studies

To test robustness of our approach, we used data from the Stanford
HIMC. This data included 187 nominally healthy individuals be-
tween 8 and 40 y of age undergoing an annual influenza vaccination
recruited over eight consecutive seasons, from 2007 to 2014, and
five clinical studies (Fig. 1A). Blood samples were acquired before
vaccination and on day 28 after vaccination. Over 3800 parameters
were measured at baseline. This included 102 blood-derived im-
mune cell subsets analyzed by mass cytometry (Supplemental
Fig. 1, Supplemental Table IV). It also included the signaling ca-
pacity of over 30 immune cells subsets stimulated with seven
conditions, which were evaluated by measuring the phosphoryla-
tion of nine proteins (Supplemental Table V). Additionally, up to
50 serum analytes were evaluated using Luminex bead arrays
(Supplemental Table VI). On day 28 after vaccination, the serum
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titer of hemagglutinin-specific Abs against all vaccine strains was
determined using the HAI, which is the best-defined correlate
of influenza immunity induced by this vaccine (37). The HAI Ab
titers were calculated as the fold change between the HAI titer
at day 28 relative to the baseline titer. High and low responders
were determined using metrics defined by the US Centers for
Disease Control and Prevention to evaluate influenza vaccine
efficacy: seroconversion and seroprotection (38). Individuals
were considered to be high responders if they had a protective
HAI Ab titer to all vaccine strains (HAI Ab titer $40) and if they
seroconverted (GeoMean HAI titer $4).
Out of 187 analyzed donors, 64 were identified as high responders

and 123 as low responders (Fig. 1B). Overall, there were no major
differences in the age, gender, or study year between the high
and low responders (Supplemental Fig. 2). The only exception was
that a higher proportion of adolescents were high responders, which
is in line with published data (39) (Supplemental Fig. 2B).

Dealing with missing values using intersection function

A major problem when using data across clinical studies and years
is the lack of overlap between the features measured. Indeed, even
though the data comes from a single facility, in many years there
was an increase in the number of parameters measured, especially
in the transition from FACS analysis (12–14 parameters) to mass
cytometry (25–34 parameters). Because all assays were not per-
formed across all studies and years (Supplemental Fig. 3), the
percentage of missing values in the initial dataset was 93.2%
(Supplemental Fig. 4). Such high data sparsity, which is com-
monly encountered in the clinical data, does not allow for
straightforward statistical analysis. Therefore, we had to reduce
the number of missing values. Researchers and data scientists deal
with missing values either by deletion or by imputation of missing

data (40). However, analysis of the missing data distribution
revealed that when all studies were combined, the dataset had
missing values in every column and every row, and many of the
columns and rows had sparsity of 90% (Supplemental Table VII).
Therefore, if we deleted either rows or columns, this would result
in data with zero subjects. This approach was unsuitable. Addition-
ally, effective imputation was strongly limited by the small number of
cases that could be used as prior knowledge. Overall, we concluded
that the high number of columns and rows with missing values made
it impossible to use the whole dataset for further analysis.
Because this could be a very useful dataset for predictive

modeling of influenza vaccine responses, we explored alternative
ways to reduce the number of missing values. To ensure that in-
terpretation of the initial dataset was preserved and so as not to
introduce bias, we selected feature subsets from the original
dataset without transformation by identification of the overlap
(i.e., intersection) between multiple donors. We hypothesized that
by using intersection, we could identify features shared across
donors. Such a process could generate feature subsets that span
an entire initial dataset. Additionally, it was expected that re-
ducing the number of features would improve the performance
of the model, such as was shown for random initial subset se-
lection (41).
In the first step of SIMON, we implemented an algorithm,

mulset, to identify features shared across donors and generate
datasets containing all possible combinations of features and do-
nors across the entire initial dataset. The proof-of-principle how
mulset algorithm works and dataset generated are shown in the
Fig. 2. The mulset was inspired by an approach commonly used in
computer science to accelerate detection of duplicated records
across large databases (42). By using the intersect function, we
identified shared features between donors. These were converted
to a unique shared feature ID using the hash function. This
process allowed the rapid identification of donors with shared
features and the generation of datasets that can be used in further
analysis (Fig. 2A, 2B). The mulset algorithm calculated over-
lapping features between all donors, resulting in 34 datasets with
different numbers of donors and features (Fig. 2C, Supplemental
Table VIII). After applying the mulset algorithm, the dimen-
sionality of the data were significantly reduced, because all
generated datasets had a maximum of 300 shared features. This
step was essential to avoid dealing with the datasets that suffer
from “the curse of dimensionality” (43), that is, with increasing
dimensionality (the number of features analyzed) we would need

FIGURE 1. Study design. (A) One hundred eighty-

seven healthy donors (average age 22 y, range 8–40 y

of age) were recruited across eight consecutive influ-

enza seasons. Data acquired at the baseline (day 0)

included phenotypical and functional state (phosphor-

ylated proteins) of immune cells analyzed using flow or

mass cytometry and serum analysis using Luminex

assay. Individuals were labeled as high or low re-

sponders, depending on the HAI Ab titers determined

on day 28 after vaccination. (B) HAI Ab responses to

influenza vaccine strains in high (H, red) and low

(L, gray) responders across years. Numbers below x-axis

indicate the number of donors in each group. HAI re-

sponses are shown as GeoMean titer (GMT) calculated

as a fold change between day 0 and day 28 after vac-

cination for all vaccine strains. Violin plots show dis-

tribution of individuals. The line shows the median.

Seroconversion is defined as 4-fold increase in HAI titer

for all vaccine strains (denoted by a gray line).

Table I. An example confusion matrix for a binary classifier

Actual

Positive
(high responder)

Negative
(low responder)

Predicted Positive
(high responder)

TP FN

Negative
(low responder)

FP TN
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more donors to achieve significance. Eleven of the generated
datasets had a higher number of donors than features, with a
maximum number of 143 donors that shared 49 features (Fig.
2C, Supplemental Table VIII, dataset 8). Such datasets have a
higher statistical power for building more accurate machine
learning models.
Overall, the first step in the SIMON produced more restricted

datasets with higher data quality and reduced the number of fea-
tures, making it possible to continue the data analysis.

Automating the machine learning process and feature selection

The next step, following data preprocessing, was to apply machine
learning algorithms to extract patterns and knowledge from each
of the 34 datasets. To select relevant features, we based our
approach on the method for feature selection proposed by Kohavi
and John (44). In the original approach, termed wrapper, feature
subsets were selected using two families of algorithms: the de-
cision trees and the naive Bayes (44). In this study, we build
upon this approach by adding ensemble algorithms [of which
Random Forest was previously shown to be suitable for feature
selection (26)] and other dimensionality-reduction algorithms,
such as discriminant analysis. It is widely recognized that a best
algorithm for all datasets does not exist (45). Currently, choosing
an appropriate algorithm is done through a trial-and-error ap-
proach, with only a few algorithms tested. To identify optimal
algorithms more quickly and efficiently across a broad spectrum
of possibilities, we implemented an automated machine learning
process in SIMON.
SIMON is described briefly in Fig. 3. The feature subset se-

lection was performed by testing multiple algorithms without any
prior knowledge and user-defined parameters on each of the 34
datasets in a sequential and iterative manner. First, each dataset

was split into 75% training and 25% test sets, preserving balanced
distribution of high and low responders, using the Caret package
(23, 46) as described in the Materials and Methods. The training
set was used for model training and feature selection. The accu-
racy of the feature selection was determined using a10-fold cross-
validation, which was shown to out-perform other resampling
techniques for model selection (24). The test set was used for
evaluating model performance on independent data not used in the
model training. In general, it is most efficient to train the model on
the entire dataset. However, in our case, it was important to have
an independent test set to evaluate and then compare performance
of the many models we expected to obtain. Additionally, evalu-
ating model performance using only cross-validation is not suffi-
cient to conclude that model can be applied to other datasets.
There could be a problem with overfitting, such as when a model
does not generalize well to unseen data. Second, a fully automated
process of model training using 128 machine learning algorithms
was done initially on the training set and repeated for each dataset.
Supplemental Table I provides a list of all machine learning
classification algorithms used. Each model was evaluated by cal-
culating the performance parameters using the confusion matrix
on the training and test sets. A confusion matrix calculates FP and
FN, as well as TP and TN. This allows for more detailed analysis
than accuracy, which only gives information about the proportion
of correct classifications, and therefore can lead to misleading
results (47). In SIMON, for each model, we calculated the pro-
portion of actual positive cases that were correctly identified
(i.e., sensitivity) and the proportion of correctly identified actual
negative cases (i.e., specificity). All performance parameters were
saved in the MySQL database. Finally, to compare the models and
discover which performed best, we calculated an AUROC. This is
a widely used measure of quality for the classification of models,

FIGURE 2. Automated feature subset generation using multiset intersect function. (A) Proof-of-principle showing how a multiset intersect function

works on a hypothetical dataset with only four features and four donors. Missing values are indicated by white circles. Missing values are present is such a

way that removal of either donors or features would result in no data for analysis. Using a multiset intersect function, the mulset algorithm, identified shared

feature sets between donors. First, for each donor, the algorithm determined the unique feature ID. Second, using the intersect function, it identified shared

features, which were then converted to shared features ID using hash functions. Finally, the mulset algorithm searched the database and identified donors

with shared feature sets. (B) In this hypothetical example, the mulset would generate 10 distinct datasets with distinct feature and donor numbers, as

indicated. (C) The mulset algorithm generated 34 datasets from the initial dataset with indicated distribution of donors (black bars) and features (red bars).
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especially in biology (48). A random classifier that cannot dis-
tinguish between two groups has AUROC of 0.5, whereas
AUROC for a perfect classifier that separates two groups without
any overlap = 1.0 (49). Therefore, the training and test AUROC
are reported throughout the text, and models are compared using
that metric of performance.
To test the feasibility of SIMON, we ran more than 2400

machine learning analyses on 34 datasets. SIMON built models
for 19 datasets, with an average of 54 models built per data-
set (Supplemental Table IX). None of the 128 machine learn-
ing algorithms tested were able to build a model for 15 of the
datasets. This indicates that those have poor data quality and
distributions. Therefore, they were discarded from further anal-
ysis. With the remaining 19 datasets, models were built with the
training AUROC values ranging from a minimum of 0.08 to a
maximum of 0.92 (Supplemental Table IX). Overall, the auto-
mated machine learning process improved the performance of
the models in all 19 datasets, with a gain of performance ranging
from 30 to 91% (Supplemental Table IX). This indicates that
SIMON facilitates the identification of optimal algorithms,
which ultimately increases the performance of models.

Performance estimation and model selection

Before model comparison, other performance parameters were
calculated, in addition to AUROC, and were used to filter out
poorly performing models with the goal of facilitating further
exploratory analysis. To remove random classifiers, all models
with AUROC #0.5 on both training and test sets were discarded.
Furthermore, all models in which specificity and sensitivity of
both training and test sets were ,0.5 (i.e., models with higher
proportion of FP and FN values) were also removed. This re-
striction discarded models in which the classifier achieved high
performance, as indicated by a high AUROC, at the cost of a
high FP or FN rate (50, 51). After applying these filters, many
models were removed, decreasing the average number of models
per dataset to three (Supplemental Table X). Additionally, eight
datasets were discarded. This filtering step was essential to
remove models which would otherwise be falsely evaluated as
high performing, such as those built using dataset 205, for which

a high AUROC of 0.92 was obtained at the expense of low
specificity (0.06) (Supplemental Table IX).
To compare models within one dataset and discover which

performs best, the random number seed was set before training with
each algorithm. This ensured that each algorithm trained the model
on the same data partitions and repeats. Further, it allowed for
comparison of models using AUROC. In general, AUROC values
between 0.9 and 1 are considered excellent, values 0.8–0.9 are
considered good, 0.7–0.8 are considered fair, and values between
0.6 and 0.7 are considered as having poor discriminative ability
(52). In SIMON, models trained on six datasets were built with
fair discriminative ability (max. train AUROC between 0.7 and
0.8) (Supplemental Table X). To avoid overfitting, we additionally
evaluated the performance of each model on the test set, which
was not used for building the model. In this case, models trained
on the three datasets were built with a fair discriminative ability
(Supplemental Table XI, datasets 5, 13, and 171). One dataset
(Supplemental Table XI, dataset 36) was built with a good dis-
criminative ability (max. test AUROC 0.86), which could be
generalized to an independent set. It should be noted that maxi-
mum AUROC values did not necessarily come from the same
model (e.g., maximum train AUROC might come from model 1,
whereas maximum test AUROC from model 2). To account for
that, we add another filter to remove all models with poor dis-
criminative ability, that is, all models in which the train and test
AUROC were ,0.7. By applying this restriction, we were left
with only two datasets (datasets 13 and 36). These were used for
further analysis and feature selection. The model built on dataset
36, with the shrinkage discriminant analysis, out-performed the
other four models as evaluated by comparison of train AUROC
(Supplemental Fig. 5A, Supplemental Table XII). A model was
built with train AUROC of 0.78, and it performed well on an
independent test set (test AUROC 0.86). The model built on
dataset 13 with the Naive Bayes performed better than the other
model built for the same dataset (train AUROC 0.75, test AUROC
0.7) (Supplemental Fig. 5B, Supplemental Table XIII).
Overall, SIMON facilitated exploratory analysis and discovery

of models with good discriminative performance by integrating the
filtering steps and evaluating comprehensive model performance.

FIGURE 3. Automated feature selection and machine learning process integrated in SIMON. Before building a model, raw data were processed (cleaned,

corrected, normalized, etc.) using extract-transform-load (ETL) operations, and the database was built. In the second step, new features were created from

the existing data, GeoMean titer of the HAI response was calculated, and individuals were labeled as high or low responders. Third, datasets were generated

using multiset intersection function. Each dataset was then used for model training in a fully automated machine learning process, implemented in SIMON.

Briefly, before training started, each dataset was partitioned into training and test sets, which were excluded from the model-building phase. Finally, in the

exploratory analysis, each model was evaluated based on its performance, and features were selected based on the importance score.
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Identification of all-relevant cellular predictors using SIMON

After selection of the best-performing models, we focused on
feature selection. Our goal was to use SIMON to identify all-

relevant features to deepen our knowledge about the process
that drives Ab generation in response to influenza vaccination. To

solve this problem, classifiers were used in SIMON to rank features

based on their contribution to the model. Features were ranked

depending on the variable importance score calculated for each

model (23). The score ranges from 0 to 100. Features with variable

importance score of 0 are not important for the classification

model and can be removed from training the model.
First, we focused on the model built on dataset 13. In the dataset

13, 61 individuals were analyzed and 76 parameters were mea-
sured. Raw data from the dataset 13 are available as Supplemental
Table XIV. Out of 61 donors, 17 were identified as high re-
sponders and 44 as low responders. Overall, there were no ma-
jor differences in age distribution and gender (Supplemental
Table XV). Out of 76 features, 64 had measurable variable im-
portance score, and 15 features had variable importance score

above 50 (Fig. 4A, Supplemental Table XVI). The top-ranked

feature that highly contributed to this model was CD4+ T cells

with the CD1272CD25hi phenotype [described as regulatory

T cells (Tregs) (53)] that expressed CD161 and CD45RA
markers (Supplemental Table XVI, rank 1). The frequency of

Tregs with CD1612CD45RA+ phenotype was shown to be sig-

nificantly greater among the high responders (Fig. 4B, FDR

,0.01). To further explain features that contributed to this

model, we performed correlation analysis. Correlation analysis

revealed that Tregs with CD1612CD45RA+ phenotype had a significant

positive correlation with the top-ranked feature, CD161+CD45RA+

Tregs (Pearson r = 0.54, p , 0.0001 after multiple comparison
adjustment using the B-H correction) (Supplemental Fig. 6).

Additionally, CD161+CD45RA+ Tregs had a weak, but signifi-

cant, positive correlation with CD161+ CD4+ T cells (Pearson

r = 0.08, p = 0.001 after multiple comparison adjustment using

the B-H correction), which had high variable importance score

(Supplemental Table XVI, rank 9). Such correlation indicated

that these subsets might describe similar family of CD4+ T cells

contributing to the generation of Ab responses after influenza
vaccination. Indeed, a recent study suggests that expression of

CD161 marks a distinct family of human T cells with a distinct

lineage and with innate-like capabilities (54).
To experimentally validate results from this model, we an-

alyzed the phenotype and functionality of immune cells before

and after vaccination in the independent samples from 14 in-

dividuals (7 high and 7 low responders). Individuals were age-
and sex-matched (Supplemental Table XVII). We found that

after stimulation with the influenza peptides, CD161+ CD4+

T cells from high, but not low, responders produced TNF-a in

the samples prior to vaccination (Fig. 4C). This indicated that

CD161+ CD4+ T cells from high responders had a pool of pre-

existing influenza-specific T cells. Additionally, after vacci-

nation, the frequency of CD161+ CD4+ T cells with a CCR6+

CXCR32 (Th17) phenotype in high responders increased sig-
nificantly (Fig. 4D).
The second most important feature in this model was CXCR5+

CD8+ T cells (also known as follicular cytotoxic T cells) (55–57)

with a CCR6+ CXCR32 (Tc17) phenotype (Supplemental Table

XVI, rank 2). Frequencies of CXCR5+ CD8+ T cells with Tc17

were significantly increased among the high responders (Fig. 4B,

FDR ,0.01). Additionally, frequencies of CXCR5+ CD8+ T cells
with a CCR62CXCR32 (Tc2) phenotype were also increased in the

same group (Fig. 4B, FDR,0.01). CXCR5+ CD8+ T cells with Tc2

phenotype were also identified as important in this model
(Supplemental Table XVI, rank 7) and had a significant positive
correlation with Tc17 CXCR5+ CD8+ T cells (Pearson r = 0.66,
p , 0.0001 after multiple comparison adjustment using the B-H
correction) (Supplemental Fig. 6). However, analysis of the ex-
perimental data showed no significant participation of CXCR5+

CD8+ T cells in vaccine-induced responses, even though in a few
of the high responders there was an increase of CXCR5+ CD8+

T cells with a Tc2 and Tc17 phenotype (Fig. 4D).
The results obtained in this model were confirmed using an R

package, Boruta, that implements a novel feature selection al-
gorithm for identifying all relevant features (26). CD1272CD25hi

CD4+ T cells with the CD161 expression and CXCR5+ CD8+

T cells with Tc2 or Tc17 phenotype were identified as impor-
tant (p , 0.05, after multiple comparison adjustment using the
Bonferroni method), confirming findings obtained by SIMON
(Supplemental Fig. 7A).
Second, we explored the features selected in the better per-

forming model built on dataset 36. The raw data from the 40
donors and 103 features analyzed in the dataset 36 are provided as
the Supplemental Table XVIII. In total, dataset 36 was composed
of 40 donors, of which 12 were high responders and 28 low
responders. No major differences were observed in the charac-
teristics of the donors in both groups (Supplemental Table XIX).
Out of 103 features, 88 had measurable variable importance
scores ranging from 5 to 100 (Supplemental Table XX). Of
those, 17 features had a variable importance score above 50
(Fig. 4E), indicating a strong contribution for this classification
model. Interestingly, the effector memory (EM) CD4+ T cells,
previously reported to correlate with Ab responses to influenza
vaccine (58), were ranked in fifth place in our model. Moreover,
B cells with memory phenotype, including a subset of IgD+

CD27+ memory B cells identified in previous studies (3, 8, 59),
contributed to our model (Fig. 4E). Obtaining results supported
by other studies gave us confidence in further analysis of our
classification model. Importantly, the top four features identified
have not previously been implicated as playing a major role in
Ab responses to influenza vaccination, or indeed any Ab re-
sponse. These included CD8+ T cells with expression of CD27 or
CD85j markers and CD8+ T cells with varying degree of ex-
pression of CCR7 and CD45RA markers, described as naive,
effector or terminally differentiated effector (TEMRA), and
memory subsets (60). Analysis of the data particularly indicated
that effector/TEMRA CD8+ T cells increased significantly
among high responders (Fig. 4F, FDR , 0.01). In contrast, low
responders had significantly higher frequency of early CD27+/
CD28+ CD8+ T cells and naive CD8+ T cells (Fig. 4F, FDR, 0.01).
Moreover, the effector/TEMRA CD8+ T cells were confirmed to
contribute to this model by Boruta (p , 0.05, after multiple com-
parison adjustment using the Bonferroni method) (Supplemental
Fig. 7B).
The top four features that contributed themost to this model were

CD8+ T cells in early or late effector or memory states, indicating
they might all be contributing to the influenza response through
the same underlying mechanism. Indeed, correlation analysis
showed that the top-ranked subset, CD27+ CD8+ T cells, had a
significant correlation coefficient with other subsets (naive CD8+

T cells r = 0.80, CD28+ CD8+ T cells r = 0.85, CD85j+ CD8+

T cells r = 20.69, effector/TEMRA CD8+ T cells r = 20.61, and
EM CD8+ T cells r = 20.71, p , 0.0001 after multiple compar-
ison adjustment using the B-H correction) (Supplemental Fig. 8).
Additionally, a specific subset of CD8+ T cells expressing NK
cell–related receptor CD85j was identified as the TEMRA subset
(61), whereas the expression of CD27 or CD28 was indicative of
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FIGURE 4. SIMON identifies cellular signature associated with the successful generation of influenza immunity after vaccination. (A) Features with

variable importance score above 50 from the model built on dataset 13 are shown. (B) Raw data confirmed by SAM analysis to be significantly changed in

the donors from dataset 13 (n = 61 from which high responders = 17 and low responders = 44), indicating frequency of cells (as a percentage of the parent

population). (C) Representative plot showing TNF-a intracellular staining of CD161+ CD4+ T cells in the unstimulated (2) or influenza peptide pool (+)–

stimulated PBMC from high responder obtained before vaccination. Graph on the right shows the frequency of TNF-a+ CD161+ CD4+ T cells from high

responders (red circles, n = 7) and low responders (gray circles, n = 7) in the samples before vaccination. Individual donors are connected with lines. (D)

Violin plots show distribution of frequency of CD161+ CD4+ T cells and CXCR5+ CD8+ T with Tc2 and Tc17 phenotype in the PBMC samples derived

from high (red, n = 7) and low responders (gray, n = 7) analyzed before vaccination (2) and on day 28 after vaccination (+). (E) Variable importance score

of features selected in the model built on dataset 36 with score above 50. (F) Significant immune cell subsets selected by SAM analysis shown as raw data

corresponding to donors from dataset 36 (n = 40 from which high responders = 12 and low responders = 28), indicating frequency of cells (as percentage of

parent population). (G) Representative plot showing IL-17A intracellular staining of EM CD8+ T cells in the unstimulated (2) (Figure legend continues)
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the subsets of T cells with a naive or early differentiation phe-
notype (62).
In the analysis of the independent samples, EM CD8+ T cells

from high responders produced IL-17A after influenza pep-
tide stimulation, demonstrating that this population contained
influenza-specific T cells (Fig. 4G). Furthermore, the frequency
of EM CD8+ T cells with a Tc17 phenotype was significantly
increased only in high responders after vaccination (Fig. 4H).
Additionally, the frequency of EM CD4+ T cells with Th17
phenotype was also increased in the same group of high re-
sponders after vaccination (Fig. 4H).
In summary, SIMON allowed us to identify both known and

novel immune cell subsets that correlate with a robust Ab re-
sponse to seasonal influenza vaccines. Particularly surprising was
the number of different CD8+ T cell subsets, which are not
typically thought of as playing any role in promoting robust Ab
responses. We confirmed that IL-17A–producing EM CD8+

T cells, which contained a pool of pre-existing influenza T cells,
were elevated in the high versus low responders with indepen-
dent samples.

Discussion
In this study, we developed a novel computational approach, SI-
MON, for the analysis of heterogenous data collected across years
and from heterogenous datasets. SIMON increases the overall
accuracy of predictive models by using an automated machine
learning process and feature selection. Using the results obtained
by SIMON, we identified previously unrecognized CD4+ and CD8+

T cell subsets associated with robust Ab responses to seasonal
influenza vaccines.
The accuracy of the machine learning models presented in this

work was improved in two stages. First, to interrogate the entire
dataset across different clinical studies, we integrated into SIMON
an algorithm, mulset, which generates datasets using multiset in-
tersections. This is particularly suitable for data with many missing
values. In our case, because of the high sparsity of initial dataset,
this step was essential for the further analysis. In general, clinical
datasets are often faced with the same problem, namely, that many
features are measured on a small number of donors. Because of the
rapid advance of immune monitoring technology, many more pa-
rameters in our studies were measured in the later years than earlier.
The same situation might arise when combining data collected in
different facilities. An alternative approach might be the imputation
of the missing values, but this would likely introduce bias. More-
over, the major limitation of effective imputation is the number of
cases that could be used as prior knowledge. The sparsity of our
initial dataset was too high for effective imputation. By using in-
tersections, SIMON selects feature subsets by preserving the in-
terpretation of the initial dataset and without introduction of a bias.
Overall, an automated feature intersection process increases
statistical power by accounting for variability among differ-
ent individuals. Potentially, it could be applied across clinical
studies. Additionally, by reducing the number of features, this
process avoids working with dataset that might suffer from the

curse of dimensionality, which ultimately improves the perfor-
mance of models. This will be particularly important for the
application of SIMON on larger publicly available datasets such
as those stored in Gene Expression Omnibus repository (63) or
ImmPort (64).
Second, finding the machine learning algorithmmost suitable for

specific data distribution allows for a better understanding of the
data and provides much higher accuracy. The current state-of-the-
art in building predictive models is to test several machine learning
algorithms to find the optimal one. However, a single algorithm that
fits all datasets does not exist. If an algorithm performs well on a
certain dataset, it does not necessarily translate well to another
dataset (even if it pertains to a closely related problem) (45). The
overall accuracy of the predictive models depends on rigorous
algorithm selection. With so many machine learning algorithms
available, choosing the optimal one is a time-consuming task,
often performed in a limited way (only dozens of algorithms are
tested). Recent work has shown that automated machine learning
can identify optimal algorithms more quickly and efficiently
(65–67). Open competitions and crowdsourcing (e.g., http://www.
kaggle.com), in which many groups contribute machine learning
algorithms to build models for the same datasets, increase the
accuracy and predictive performance of the models (68). By de-
veloping an automated machine learning process in SIMON, we
can quickly identify the most appropriate machine learning al-
gorithm (of the 128 tested) for any given dataset. Additionally,
SIMON offers an alternative perspective on the application of
algorithms that might never be used because of lack of expertise or
knowledge necessary for their implementation. These features of
SIMON also allow biologists with domain knowledge but who are
not computationally adept to find the most effective tools with
which to analyze their data.
In this study, we demonstrate the utility of SIMON and its

automated machine learning processes to discover the principal
features that correlate with high versus low influenza vaccine re-
sponders. We found it to be essential for identifying the best-
performing models and extracting the most important features
that contribute to those models. Performance of each model built in
SIMON was automatically evaluated on both training and left-out
test sets using well-known measures, such as AUROC, specificity,
and sensitivity. This ensured that the model was not overfitted and
that it could generalize to unseen data. Automating the entire
process for model selection will be essential for future application
of SIMON to bigger clinical datasets in which we would expect
even greater number of models built. To optimize such high-
throughput analysis application of strict filtering steps is neces-
sary to avoid “cherry-picking” of the models. Here, both models
were selected by stringent restrictions in the exploratory analysis
and were built with AUROC scores between 0.7 and 0.9. Other
models were discarded because exploration and characterization
of features in those models would lead to identification of mis-
leading results (FP and FN values). Because the goal of the study
was to identify features that discriminate between high and low
responders in a high-throughput manner, these models were built

or influenza peptide pool–stimulated (+) PBMC from high responders, obtained after vaccination. The graph on the right shows the frequency of IL-17A+

EM CD8+ T cells from high (red circles, n = 7) and low (gray circles, n = 7) responders in the samples after vaccination. (H) Violin plots show distribution

of frequency of CD4+ and CD8+ T cells, with indicated phenotypes analyzed in the PBMC samples derived from high (red, n = 7) and low responders (gray,

n = 7) before (2) and on day 28 after (+) vaccination. Graphs shown in (C), (D), (G), and (H) represent combined data from seven independent experiments.

Violin plots show distribution of individuals. These are represented by red circles for high responders and gray circles for low responders. The line indicates

the median. Statistical analysis between high and low responders was performed with one-way ANOVA Kruskal–Wallis test followed by Dunn multiple

comparison test. Analysis within groups before and after vaccination was calculated using two-tailed Wilcoxon matched-pairs signed rank test. Significance

in SAM analysis was considered at FDR ,0.01. *p , 0.05, **p , 0.01. ns, nonsignificant.
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using the algorithms without any user-defined parameters.
Therefore, each model could be fine-tuned, and its predictive
performance might be increased. This could be of interest for
researchers interested in building predictive models to identify
features for use in diagnostic tests. In the future, we plan to im-
prove SIMON by implementing an automated tuning process for
each model.
This study demonstrated the advantage of SIMON over the

conventional approach, in which one machine learning program is
chosen by successfully identifying the immune signature driving
influenza immunity. Some of our findings, such as the importance
of EM CD4+ T cells and subsets of memory B cells, had been
identified in previous studies (2, 8, 9), serving to validate our
approach. Additionally, SIMON has identified previously unap-
preciated T cell subsets that discriminate between high and low
responders. It is well known that T cells, in contrast to Abs pro-
duced by cells of B lineage, have the ability to provide durable and
cross-protective immunity by targeting internal conserved viral
epitopes (69, 70). Therefore, the CD4+ and CD8+ T cell subsets
identified in this study could be useful targets for the development
of broadly protective influenza vaccines. Influenza-specific CD4+

T cells have already been shown to be important for the generation
of influenza immunity (71, 72). This was confirmed in the current
study by showing that high responders had a pre-existing pool of
influenza-specific CD4+ T cells expressing CD161. Additionally,
we found that CD8+ T cells with an effector/TEMRA, EM and
Tc17 phenotype and CXCR5 expression correlated with improved
vaccine responses. These subsets are particularly interesting can-
didates and it will be of considerable interest to understand how
they contribute to more robust Ab responses. CXCR5+ CD8+

T cells are enriched in the B cell follicles of germinal centers (56,
73), and they can promote B cell survival and Ab generation (57).
CD8+ T cells with a Tc17 phenotype have been detected in the
lungs of mice challenged with influenza A virus (74). Using in-
dependent samples from donors who were not included in the
building and testing of our model, we found that CD8+ T cells
from high responders contained influenza-specific cells with the
ability to produce IL-17A in response to peptide stimulation. In a
mouse model, IL-17A has been shown to be important for the
generation of the Ab responses necessary to clear an influenza
virus infection (75). This apparent role of IL-17A in the modu-
lation of Ab responses and proper functioning of germinal centers
has only recently been described (76). Interestingly, CD161+

CD45RA+ Tregs, the other subset we identified, have also been
described as memory cells with the ability to produce IL-17A
(77). Therefore, both cell types may provide IL-17A. To facili-
tate further exploration of immune cell subsets identified in the
SIMON, we have created a Web site with freely available analysis
summary (http://www.fluprint.com). Our Web site offers a valu-
able resource for other researchers to get insight about immune
cell subsets and their participation in the generation of influenza
immunity.
In this article, we demonstrate that a combination of systems

biology tools, advances in the field of machine learning, and ex-
perimental investigation provides a new and more efficient way
to gain biological insight from complex datasets, despite high
sparsity.

Acknowledgments
We thank all individuals who participated in the research studies. Special

acknowledgment goes to Dr. Purvesh Khatri for critical reading of the man-

uscript. We appreciate helpful discussions and support from all members of

the Davis and Y. Chien laboratories, specifically Elsa Sola, Allison Nau,

Lisa Wagar, and Asbjorn Christophersen for help with mass cytometry

and input from Paula Romer. We also thank all staff members from the

HIMC (Michael D. Leipold) for data analysis, management, and helpful

discussions and HIMC Biobank (Rohit Gupta and Janine Bodea Sung)

for sample processing and storage, Stanford-LPCH Vaccine Program

(Alison Holzer) for management of clinical studies, and the Stanford FACS

facility for all the support.

Disclosures
The authors have no financial conflicts of interest.

References
1. Mooney, M., S. McWeeney, G. Canderan, and R. P. Sékaly. 2013. A systems
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