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Abstract

Multi-city population-based epidemiological studies of short-term fine particulate matter (PM2.5) 

exposures and mortality have observed heterogeneity in risk estimates between cities. Factors 

affecting exposures, such as pollutant infiltration, which are not captured by central-site 

monitoring data, can differ between communities potentially explaining some of this 

heterogeneity.

This analysis evaluates exposure factors as potential determinants of the heterogeneity in 312 

Core-Based Statistical Areas (CBSA) -specific associations between PM2.5 and mortality using 

inverse variance weighted linear regression. Exposure factor variables were created based on data 

on housing characteristics, commuting patterns, heating fuel usage, and climatic factors from 

national surveys. When survey data were not available, air conditioning (AC) prevalence was 

predicted utilizing machine learning techniques.

Across all CBSAs, there was a 0.95% (Interquartile range (IQR) of 2.25) increase in non-

accidental mortality per 10 μg/m3 increase in PM2.5 and significant heterogeneity between 

CBSAs. CBSAs with larger homes, more heating degree days, a higher percentage of home 

heating with oil had significantly (p < 0.05) higher health effect estimates, while cities with more 

gas heating had significantly lower health effect estimates. While univariate models did not 

explain much of heterogeneity in health effect estimates (R2 < 1%), multivariate models began to 

explain some of the observed heterogeneity (R2 = 13%).
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Introduction

Multi-city population-based epidemiological studies of short-term fine particulate matter 

(PM2.5) exposures and mortality have provided evidence of heterogeneity in risk estimates 

between communities and cities (1, 2). This heterogeneity remains a key source of 

uncertainty in the examination of the relationship between short-term PM2.5 exposures and 

mortality. These differences in PM mortality risk estimates has often been attributed to 

exposure measurement error (3), differences in particle composition (4) , and/or city-specific 

differences such as demographics (5). PM2.5 concentrations from central-site monitors, such 

as those reported in the United States Environmental Protection Agency’s Air Quality 

System, are often used as a surrogate for exposure in epidemiological studies. Use of 

central-site monitoring data has been shown to introduce both a Berkson error component, a 

result of using aggregated instead of personal exposure data, and a classical error 

component, a result of the difference between the aggregated exposure data and the true 

ambient PM2.5 concentrations (6). Berkson error would not bias the health effect estimates, 

but would lead to an increased variance, while classical error can lead to bias (6, 7).

If the relationship between central-site monitor measurements and estimates of personal 

exposure to ambient concentrations varies by city these differences could explain 

heterogeneity in PM2.5 -mortality estimates. Studies focusing on PM10 have examined the 

contributions of exposure factors as modifiers to the association between exposure and 

mortality, with both studies observing differences in mortality effects estimates related to 

differences in indoor exposures to PM10 of outdoor origin (8, 9). While the infiltration 

characteristics differ between PM10 and PM2.5, higher air pollution risks have been reported 

for cities with higher overall air exchange rates (AERs) or pollutant infiltration efficiencies 

(10-13). A number of factors related to home characteristics can influence the infiltration of 

ambient air into the home, including age of home (14, 15) and housing type (i.e., multi- vs. 

single-family home) (16, 17). Previous studies have also observed the prevalence of central 

air conditioning as a predictor of heterogeneity in the association between PM2.5 and 

mortality (12, 18). Average outside temperatures can affect infiltration by influencing 

occupant behaviors such as air conditioning use and opening of windows (19). These factors 

may not only be related to infiltration but may also be surrogates for socio-economic factors.

Meteorology will also impact heating use and type of heating fuel. The type of heating fuel 

used can affect the composition of the PM2.5 outside of the home. For example, higher 

concentrations of nickel and vanadium have be associated with residual oil-burning (20) and 

studies have suggested that PM2.5 effects were stronger in locations with higher residual oil-

burning (21, 22). The amount of time spent in-vehicle can affect the amount and 

composition of particulate matter a person is exposed it. In-vehicle air pollution 

measurement studies have indicated that concentrations of pollutants inside cars and buses 

are considerably higher than those recorded at nearby ambient monitors (23). Exposure 
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models suggest that even a small amount of time spent in vehicles may contribute 

significantly to the average daily personal PM exposure (24).

The objective of this analysis is to evaluate potential exposure factors as determinants of 

heterogeneity in city-specific associations between PM2.5 and mortality. These associations 

were developed for 312 Core Based Statistical Areas (CBSAs) and Metropolitan Divisions 

(MD) across the US from 1999–2005. Factors investigated include variables related to home 

age, type and size, commuting times and distances, prevalence of AC in the CBSA, type of 

heating fuel used, and annual heating and cooling degree days.

Methods

The association between daily PM2.5 concentrations and non-accidental mortality was 

established for 312 CBSAs and MDs across the continental United States for the years 

1999–2005 using Poisson time-series models. Exposure factor variables were created based 

on data on housing characteristics, commuting patterns, heating fuel usage, and climatic 

factors from national surveys. Survey data was not available on AC prevalence for all 

CBSAs therefore this factor was predicted utilizing machine learning techniques for CBSA 

lacking data. Meta-regression, using inverse variance weighted linear regression, was then 

applied to the log rate ratios to determine the influence of these exposure factors on the 

observed heterogeneity in PM2.5-mortality effect estimates.

Health Effect Estimates

Area-specific associations between daily counts of total non-accidental mortality and daily 

ambient concentrations of PM2.5 at lag 1 for 1999 through 2005 were calculated using time 

series methods adjusting for time/season, day of week, current temperature and dew point 

temperature, and individual lagged temperature at lags 1–3. For each CBSA/MD, an 

estimate of the area-specific association (effect estimate) and its standard error was obtained. 

All analyses were conducted with area-specific inverse-variance weights, that is, the inverse 

of the variance.

Data were spatially aggregated into all 929 Core-based Statistical Areas (CBSA) and their 

31 Metropolitan Divisions (MD) as defined by the White House Office of Management and 

Budget in February, 2013(25). The 31 MDs into which 11 CBSAs were divided were 

considered as distinct areas and will henceforth simply be described as CBSAs. These 949 

unique, multi-county areas include all urban clusters with a population of at least 10,000 and 

comprise about 94% of the U.S. population in 2010. Every attempt was made to retain each 

CBSA/MD that had at least 60 days of meteorological and air quality data, but not every 

CBSA/MD had air quality monitors or weather stations.

Detailed cause-specific mortality data for 1999–2005 with individual-level data on county of 

residence and date of death were obtained from the US National Center for Health Statistics 

and converted to daily counts of non-accidental mortality (ICD 10 excluding S, T, U, V, W, 

X, Y, Z) by county of residence and by major cause of death (http://www.cdc.gov/nchs/

about.htm). Meteorological data for 1985–2005, hourly temperature and dew point 
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temperature along with the latitude and longitude of each weather station, were obtained 

from the US National Climatic Data Center (26).

All available air quality data from population-based air quality monitors on a daily 24-hour 

mean for fine particulate matter (PM2.5) were obtained from the US Environmental 

Protection Agency’s Air Quality System (27). Air quality monitoring was available only 

from 1999 – 2005 for PM2.5 . Across monitor averages when multiple monitors sites are 

present in a city has been shown to lead to less bias in time-series studies (7). Less bias is 

also expected with pollutants such as PM2.5 that are spatially homogeneous (28). Multiple 

air quality monitors within a CBSA/MD were therefore summarized as described in Baxter 

et al. 2017 (29) where daily values were standardized using all values within a given 

CBSA/MD instead of using all values for its corresponding monitor.

For this analysis, the natural logarithm of the conditional mean daily mortality count (Y) 

was modeled as a linear function of a selected air pollutant (AP) adjusting for covariates (X) 

including a natural spline for time (Time) with seven degrees of freedom per year, a one 

degree of freedom per year interaction of time with binary indicators of age group (G), 

binary indicators for day of week (DOW), current day’s (lag 0) temperature (Temp0) and 

dew point temperature (Dew0), and separate natural spline terms with three degrees of 

freedom for each lag of temperature (Temp-m) between 1 and 3:

ln(E[Y ∣ X]) = α + βAPAP + ns(Time, 7 df ∕ year) + ∑
κ = 1

2
Gκ ∗ nsκ(Time, 1df ∕ year)

+ ∑
i = 1

6
βiDOWi + ns(Temp0,3 d f ) + ns (Dew0, 3 df )

+ ∑
m = 1

3
nsm(Temp−m, 3 df )

The time-series data were organized into three age groups: 0 to 64 years of age at death, 65–

74 years and 75 years and older. By modeling the lagged effects of temperature with 

separate smooths at each lag (1-3) the prior constraints on individual lags were relaxed. The 

effect estimates for each CBSA/MD are expressed as a percent change in nonaccidental 

mortality for a 10 μg/m3 increment in the 24-hour mean of PM2.5 at lag 1. Based on data 

completeness health effect estimates were generated for 312 CBSAs.

Exposure Factors

Exposure factors related to housing characteristics, household heating, commuting to work, 

and meteorology were constructed from 2000 U.S. Census data (30). The information was 

downloaded at the county level and aggregated to the CBSA-level using weighted averages. 

Depending on the variable the were either counts of population or housing units. 

Meteorological factors (cooling degree days, heating degree days, and average annual 

relative humidity) were constructed using AQS data (27). Each of the 312 CBSA was 

assigned a single value per exposure factor. Additional details on the construction of 

exposure factor variables can be found in supplemental material.
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The prevalence of central air conditioning is also a potential predictor of interest. However, 

of the 312 CBSAs included in the analysis, only 54 included data on air conditioning 

prevalence from the 2011 American Housing Survey (31). Therefore, machine learning 

techniques were used to predict prevalence of central AC for the 258 CBSAs where AC data 

were not available. Variables known to be predictive of central AC prevalence (3, 32) were 

chosen a priori (Table 1). Along with the previously described exposure factors, additional 

meteorological and poverty related variables were included as potential predictors of central 

AC prevalence. Construction of the annual average relative humidity and percent of families 

below poverty level variables are described in supplemental information. These factors were 

used to train and test lasso regression, support vector machine (SVM), and random forest 

models to predict prevalence of central AC by CBSA. The specific machine learning models 

used were methods amendable to smaller datasets. Previous publications have also used 

machine learning methods with similarly small sample sizes (33-35). Machine learning 

models were implemented in R (version 3.1.2) using the ‘caret’ package (http://

topepo.github.io/caret/index.html) available on CRAN (https://cran.r-project.org/web/

packages/caret/).

The models were evaluated using 4-fold external cross-validation such that the 75% data 

were used for training the models and 25% data were used for testing. Each training set was 

further evaluated using 10-fold internal cross-validation such that 90% of the data were used 

for training and 10% data were used for testing. For each model type, limits of 0 to 1 were 

set on the predicted values for AC prevalence. For the random forest models, individual 

models were tested using 100, 500, and 1000 trees. The hyper-parameters of each model 

were tuned using 10-fold CV resampling.

Meta-regression

The heterogeneity in 312 city-specific PM2.5-mortality health effect estimates were 

examined using a fixed-effects inverse variance weighted linear regression. First, univariate 

meta-regression was performed by regressing the individual exposure factors on the outcome 

measure. There was also an interest in developing multivariate models to examine several 

exposure factors together. Given the similarities between some of the exposure factors it was 

anticipated that some would be highly correlated with one another. Therefore, correlations 

between all factors were calculated. For those factors strongly correlated (greater than 0.7 or 

less than −0.7), the factor with the highest F-statistic from the univariate models was 

included as a potential predictor in the multivariate models. A final multivariate model was 

determined using backwards selection. Under this approach, the model was first fitted with 

all potential predictors. The model was run iteratively with the least significant variable 

dropped at each iteration of the model, until all covariates were significant at the chosen 

critical level (p < 0.05).

Results

Health Effect Estimates

Overall there was a 0.95% (Interquartile range (IQR) of 2.25) increase in non-accidental 

mortality per 10 μg/m3 increase in PM2.5. The CBSA/MD-specific health effect estimates 
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are shown on the map in Figure 1. The geographic variation shows a clustering of positive 

associations along the northeastern corridor between Baltimore, MD and Augusta, ME with 

a scattering of additional areas with strong positive associations. Significant heterogeneity 

was observed among the CBSA-specific estimates with a Q-statistic p-value < 0.0001

Summary Statistics of Exposure Factor Variables

The medians, interquartile ranges, and coefficients of variation (CV) across CBSAs, except 

for central air conditioning, are presented in (Table 1). The variables are grouped into 5 

different categories: housing characteristics, commuting, household heating, metrological 

factors, and poverty measures.

Predictions of central AC prevalence

Supplemental Table 1 presents the exposure factors selected as potential predictors of air 

conditioning prevalence. These include median home age, median number of rooms in the 

residence, cooling degree days (CDD), average annual relative humidity, and percentage of 

families below poverty level.

Mean and range for root mean squared error (RMSE) and R2 values across the four mutually 

exclusive external cross-validation testing groups of CBSAs with known AC are given in 

Supplemental Table 2. Mean RMSE for both internal and external cross-validation across 

models ranged from 0.11–0.12, a margin of error consistent with known error introduced 

when collecting data on prevalence of AC through a survey. Mean R2 across the three 

methods tested (lasso, linear SVM, random forest) from 0.82–0.84 and 0.75–0.78 for 

internal and external cross-validation, respectively. Results of 10-fold internal cross-

validation for random forest models with 100, 500, and 1000 trees showed no difference 

(results not shown), thus a random forest model with n=100 trees were used for subsequent 

analysis. As no one model outperformed the others, a consensus model was chosen which 

averaged prediction results from the lasso, linear SVM, and random forest (100 trees) 

models.

The final tuning parameters used in the models run on the full data set, which are used to 

obtain the consensus model predictions are: fraction = 0.9 (lasso), cost = 1 and gamma = 2 

(SVM linear), mtry = 3 (random forest – 100 trees; mtry represents the number of variables 

randomly sampled as candidates at each split). Further details are provided in Supplemental 

Information and in Supplemental Table 3. Predictions of central AC prevalence from the 

consensus method were used in subsequent meta-regressions as predictors of heterogeneity 

in the association between PM2.5 and mortality.

Comparison of the range and distribution of values for predictors between the CBSAs with 

known central AC prevalence and those with unknown central AC prevalence are shown in 

Table 2. The median percentage of central AC in the empirical dataset (known from the 

survey data) was higher than the predicted dataset. The difference can be attributed to the 

greater number of cooling degree days in the empirical dataset compared to the predicted 

dataset (Table S1). The geographical patterns of the prevalence of central AC for the 

empirical dataset are similar to AC predictions (Figure 2) with a higher prevalence of AC in 

the southeast and southwest compared to other regions of the country.
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Correlations between exposure factors

The correlations between the exposure factors are presented in Figure 3 and in Supplemental 

Table 4S (Abbreviation Key in Supplemental Information). Several of the exposure factors 

were strongly correlated with one another (∣r∣> 0.7). These included median number rooms 

total and owner occupied; all single family homes and detached single family homes; homes 

with more than 2 units and homes with more than 5 units; median number of rooms (renter 

occupied) and homes with more than 5 units; commuting alone and using public 

transportation; using electric heat and gas heat; heating degree days and homes with electric 

heat; and prevalence of air conditioning and cooling degree days. For each pair listed, the 

factors with the higher F-statistic from the univariate models (Table 4) was included as a 

potential predictor in the multivariate regression, with one exception. The homes with more 

than 5 units (‘Homes-5+’) variable was strongly correlated with both the multi-family homes 

variable and the median number of rooms in renter occupied homes variable. In the former 

instance the Homes-5+ variable had the lower F statistic, in the latter instance, the 

Homes-5+ variable has the higher F statistic. Because in the latter instance the F statistics 

for the two correlated variables were close in magnitude, the decision was made to drop the 

Homes-5+ variable which took care of the high correlation for both pairs.

Meta-regression results

A second stage analysis (meta-regression) was conducted in which the individual exposure 

factors were regressed against the outcome measure for each individual CBSA weighted by 

their corresponding inverse variances. The assumption of linearity was examined using 

spline models and no substantial departure of linearity was observed (data not shown). Table 

3 presents the coefficients, 95% confidence interval, F-statistic, and p-values of the 

univariate regressions. Significant predictors (p < 0.05) for the variability in health effect 

estimates include median number of rooms in residences that were owner occupied, 

percentage of duplex homes, median number of rooms in residence, percentage of multi-

family homes, percentage of homes using oil heating, percentage of homes using gas 

heating, and heating degree days. Larger homes were associated with larger health effect 

estimates. For example, an increase in the IQR number of rooms (0.5 rooms) was associated 

with a 0.258% increase in mortality per 10μg/m3 increase in PM2.5. A 37% (the IQR) 

increase in the percentage of homes with gas heating was associated with a 0.412% decrease 

in mortality while a 7 % (the IQR) increases in the percentage of homes with oil heating was 

associated with a 0.148% increase in mortality. Finally, a 0.319% increase in mortality was 

observed with an increase in heating degree days (IQR = 3477 days). However, the R2 for all 

univariate models were less than 1% (results not shown) suggesting that a single variable did 

not explain much of the heterogeneity. Therefore, multivariate models were developed.

The results of the multivariate regression analysis using the backward selection approach are 

shown on Table 4. The F-statistics between cooling degree days and prevalence of AC were 

not very different; therefore, 2 sets of potential predictors were considered, one with cooling 

degree days (Model 1) and one with central AC (Model 2), and run through the backward 

selection process. The final models resulting from the backward selection approach using 

either central AC or cooling degree days both include fraction of duplex homes, fraction of 

homes with gas heating and median number of rooms in a renter occupied home. The 
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coefficients for cooling degree days (−0.228%), heating degree days (0.448%), and homes 

heating with gas (−0.471% in Model 1 and −0.427%) were similar to the univariate results. 

However, the association of median number of rooms, renter occupied was negative in 

Model 1 with a 0.123% (per IQR in median number of rooms) decrease in mortality per 10 

μg/m3 increase in PM2.5 and positive in Model 2 with a 0.215% increase in mortality. In 

addition to the aforementioned variables, Model 1 also included median home age and 

heating degree days.

Discussion

The association between PM2.5 and mortality were estimated for 312 CBSAs, with a pooled 

estimate of 0.95% (Interquartile range (IQR) of 2.25) increase in non-accidental mortality 

per 10 μg/m3 increase in PM2.5. Significant heterogeneity was observed across the health 

effect estimates. A meta-regression was performed to examine the potential for a variety of 

exposure factors to explain the heterogeneity in the effect estimates. In the univariate meta-

regression analyses, various exposure factors related to housing size, heating fuel type, and 

meteorology were significant but did not explain a large portion of the variability. The final 

multivariate models from the meta-regression analyses included gas heating use, heating 

degree days, cooling degree days, and variables for home size and age. These models 

explained 11–13% of the variability in the health effect estimates.

The exposure factors were available from national surveys for all 312 CBSAs, except for 

prevalence of air conditioning. The prevalence of central AC was only available from the 

AHS for a limited number of CBSAs (n=54). Machine learning techniques were utilized to 

predict the prevalence of central AC for CBSAs where data were missing. A consensus 

model was chosen with an R2 of 0.78 indicating a strong relationship between the training 

set (central AC information from the AHS) and the predicted AC variable. This is one of the 

first studies to employ machine learning techniques in this context and would serve as a 

baseline for newer improved studies. Previous studies have either used data from the AHS 

(2, 10), questionnaire (36, 37) to determine the prevalence of air conditioning in a limited 

number of cities/communities, or extrapolated from known areas with similar housing 

characteristics and weather to estimate AC prevalence (38). The high R2 of the model 

suggests that this approach produced good estimates of AC prevalence.

In the univariate meta-regression analysis, CBSAs with larger homes have higher health 

effect estimates than CBSAs with smaller homes. Air exchange rates have been found to be 

higher in larger homes resulting in higher exposures to outdoor PM (39) and associations 

higher in magnitude. Other significant factors were related to heating in the form of heating 

fuel type and the number of heating degree days. The greater number of heating degree days 

and homes heated by oil were associated with higher health effect estimates. Conversely, 

CBSAs with a higher percentage of homes heated with utility gas had lower health effect 

estimates. The choice of home heating fuel can alter the composition of the PM2.5 with 

higher usage of oil leading to higher levels of nickel, vanadium, and elemental carbon. 

Previous studies have observed stronger PM2.5 health effects in locations with higher 

residual oil-burning-related pollution (21, 22). A larger number of cooling degree days were 

also associated with lower health effect estimates. As seen in the correlations CDD the high 
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correlation (0.87) with AC. Increased prevalence and use of central AC will result in lower 

infiltration of outdoor air indoors (38) leading to lower health effect estimates (29).

The R2s for the univariate models were less than 1% suggesting that a single variable was 

not responsible for the heterogeneity in the health effect estimates. A combination of 

variables was therefore examined using multivariate modeling. While these models 

explained 11%(Model 1) and 13% (Model 2) of the variability some of the results were not 

as expected. Median number of rooms in renter occupied homes was significant in both 

models; however, the direction of the associations was different. Larger houses typically 

have higher infiltration compared to smaller houses, since they contain a greater surface area 

for leaks to develop (15). Similarly, older homes tend to be leakier allowing for more 

outdoor air to penetrate indoors (15, 40). This increase in exposure to outdoor air was 

hypothesized to lead to an increase in health effects however the opposite was observed. 

Housing characteristics are surrogates rather than direct measurements of infiltration and 

may also be associated with other characteristics such as socioeconomic status. 

Socioeconomic factors have been shown to have their own relationships with both exposures 

to air pollution and health effects (5). Finally, while reductions in infiltration will reduce 

exposures to PM2.5 of ambient origin it will also increase exposures to PM2.5 generated from 

indoor sources. This indoor PM2.5 may be independently associated with adverse health 

effects.

Breathing polluted air has been associated with increased mortality and hospitalizations but 

the magnitude of these effects can be different in different cities and/or regions. Many 

factors have been suggested to cause differences in concentration-response relationships of 

ambient particulate matter. These may include differences in the chemical composition of 

the particles; differences in the populations (i.e. sociodemographic factors); and differences 

in exposures caused by the ways buildings are ventilated and people’s activity patterns. This 

study examined the role of exposure differences in the heterogeneity of PM2.5 mortality 

effect estimates across the U.S., finding that factors related to infiltration and home heating 

fuel were significant effect modifiers to the PM2.5-mortality relationship and explained some 

of the observed heterogeneity. Areas with housing characteristics linked to increased 

infiltration rates or where particular kind of fuel use may be exposed to higher levels of 

outdoor pollutants and therefore be more vulnerable. National standards may not protect 

everyone equally, with some populations affected more than others. Determining potential 

factors that can cause increases in adverse PM2.5 -health effects may help identify at-risk 

populations and develop actions that can reduce risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Area-specific associations of total non-accidental mortality and fine particulate matter 

(PM2.5) at lag 1: 312 US Core-Based Statistical Areas and Metropolitan divisions
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Figure 2: 
Prevalence of predicted air conditioning by CBSA (black dots designate CBSAs from 

training set)
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Figure 3: 
Correlation of exposure factorsi across CBSAs (n=312). Area of circles corresponds to 

absolute value of correlation coefficient, ordering of exposure factors in correlation matrix 

corresponds to ordering of variables in Table 4. “AC” variable refers to the full set of 

predicted and empirical values for prevalence of central A/C in the CBSA. See Supplemental 

Table 2 for numeric correlation coefficients.
i- abbreviation key: Median rooms, owner = Median number of rooms in residence, owner 

occupied home; Duplex = duplex homes; Median rooms = Median number of rooms in 

residence; Multi-family home = Multi-family homes (≥2 units in structure); 3-4 unit home = 

Homes with 3-4 units in structure; Single family home = Single family homes; Detached 

home = Detached single-family homes; Median home age = Median home age; ≥ 5 unit 

home = Homes with ≥5 units in structure; Median rooms, renter = Median number of rooms 

in residence, renter occupied; Attached home = Attached single-family homes; Commute, 
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public = Commuting on public transportation; Commute, alone = Commuting alone; 

Commuting time = Mean commute time in minutes; Heat with oil = Heating with oil; Heat 

with gas = Heating with utility gas; Heat with tank = Heating with tank gas; Electric heat = 

Heating with electricity; HDD = Heating degree days (annual sum of heating degree days 

(degrees below 65°F)); CDD = Cooling degree days (annual sum of heating degree days 

(degrees above 65°F)); AC = Prevalence of central air conditioning (predicted and empirical)
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Table 1:

Exposure factors analyzed across CBSAs (n=312). All values used were average for the CBSA. The 2000 U.S. 

Census was the source of data for all variables, with the exception of the meteorological factors which were 

constructed using AQS data.

Exposure factors Median (IQR)
across CBSAs

CV
across
CBSAs

Housing characteristics *, +Median home age
28 years (11) 28

*Detached single-family homes 65% (10) 13

*Attached single-family homes 3% (3) 104

*Single family homes 69% (8) 10

*Duplex homes 3% (2) 66

*Homes with 3-4 units in structure 4% (2) 42

*Homes with ≥ 5 units in structure 12% (8) 48

*Multi-family homes (≥ 2 units in structure) 21% (9) 37

*, +Median rooms in residence
5.4 (0.4) 6

*Median rooms in residence, owner occupied 6.0 (0.5) 7

*Median rooms in residence, renter occupied 4.2 (0.3) 6

Commuting *Commuting alone 80% (5) 6

*Commuting on public transportation 1% (1) 165

*Mean commute time 22 min. (4) 15

Household heating *Utility gas 52% (37) 48

*Tank gas 6% (6) 73

*Electricity 27% (35) 71

*Oil 1% (7) 191

Meteorological factors 1, *, +Cooling degree days
3213 degree-days (1517) 31

2, *Heating degree days
6815 degree-days (3477) 33

+
Average annual relative humidity

69% (6) 11

Poverty +
Families below poverty level (of total families)

8% (5) 44

1
Annual sum of cooling degree days (degrees above 65°F); n=311 for CDD

2
Annual sum of heating degree days (degrees below 65°F)

*
Analyzed as a predictor of heterogeneity in the association between PM2.5 and mortality
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+
Included in machine learning analysis to predict prevalence of central air conditioning in CBSAs where data was missing
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Table 2:

Central air conditioning prevalence across CBSAs. Prevalence used was the mean for each CBSA.

Median (IQR) across CBSAs CV across CBSAs n

Observed data
1 Central A/C 81% (39) 35 54

Predicted data
2 Central A/C 72% (28) 23 257

All (Observed + Predicted data) Central A/C 73% (29) 26
311

3

1
Data from national surveys

2
Data predicted from machine learning approach

3
Data could not be predicted for 1 CBSA due to a missing CDD value
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Table 3:

Results of univariate regression of exposure factors as a predictor of heterogeneity in the association between a 

10 μg/m3 increase in PM2.5 and percent change in mortality, per IQR change in exposure factor (n=311)
1

Exposure factors Beta (5th; 95th %tile) F-statistic p-value

Housing characteristics Median number of rooms in residence, owner 
occupied

0.258 (0.120; 0.396) 13.41 <0.001

Duplex homes 0.133 (0.061; 0.204) 13.29 <0.001

Median number of rooms in residence 0.102 (0.018; 0.186) 5.616 0.018

Multi-family homes (≥ 2 units in structure) 0.087 (0.009; 0.164) 4.837 0.029

Homes with 3-4 units in structure 0.107 (0.011; 0.203) 4.773 0.030

Single family homes −0.081 (−0.165; 0.003) 3.605 0.059

Detached single-family homes −0.081 (−0.167; 0.006) 3.329 0.069

Median home age 0.08538 (−0.046; 0.217) 1.625 0.203

Homes with ≥ 5 units in structure 0.052 (−0.039; 0.143) 1.263 0.262

Median number of rooms in residence, renter 
occupied

0.034 (−0.053; 0.120) 0.574 0.449

Attached single-family homes 0.009 (−0.035; 0.053) 0.152 0.697

Commuting Commuting on public transportation 0.017 (−0.002; 0.035) 3.172 0.076

Commuting alone −0.014 (−0.074; 0.045) 0.222 0.638

Mean commute time −0.010 (−0.127; 0.108) 0.026 0.872

Household heating Oil 0.148 (0.094; 0.202) 28.93 <0.001

Utility gas −0.412 (−0.619; −0.205) 15.23 <0.001

Tank gas −0.107 (−0.391; 0.178) 0.540 0.463

Electricity 0.073 (−0.143; 0.290) 0.444 0.506

Meteorological factors 1
Heating degree days

0.319 (0.144; 0.494) 12.77 <0.001

2
Cooling degree days

−0.188 (−0.367; −0.010) 4.264 0.040

Complete A/C (predicted + 
empirical) (n=297)

Central A/C −0.136 (−0.291; 0.018) 2.992 0.085

1
Data could not be predicted for 1 CBSA due to a missing CDD value

2
Annual sum of heating degree days (degrees below 65°F)

3
Annual sum of cooling degree days (degrees above 65°F)
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Table 4:

Results of multivariate regression of exposure factors as a predictor of heterogeneity in the association 

between a 10 μg/m3 increase in PM2.5 and percent change in mortality, per IQR change in exposure factor. 

Kitchen sink method was used to drop one covariate at a time based on highest p-value, until all covariates 

included were significant.

Exposure factors Beta (5th; 95th %tile) p-value

1Model 1

Median home age −0.288 (−0.516; −0.059) 0.014

Duplex homes 0.135 (0.021; 0.249) 0.021

Median number of rooms, renter occupied −0.123 (−0.243; −0.002) 0.047

Utility gas −0.471 (−0.684; −0.257) <0.001

Heating degree days 0.448 (0.162; 0.733) 0.002

Cooling degree days −0.228 (−0.432; −0.023) 0.030

2Model 2

Duplex homes 0.128 (0.059; 0.198) <0.001

Median number of rooms, renter occupied 0.215 (0.081; 0.348) 0.002

Utility gas −0.427 (−0.627; −0.227) <0.001

1
Adjusted R-squared: 0.126; F-statistic: 8.47

2
Adjusted R-squared: 0.1144; F-statistic: 14.35
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