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Abstract

Mesenchymal stromal cells are multipotent cells that are being used to treat a variety of medical 

conditions. Over the past decade, there has been considerable excitement about using MSCs to 

treat neurodegenerative diseases, which are diseases that are typically fatal and without other 

robust therapies. In this review, we discuss the proposed MSC mechanisms of action in 

neurodegenerative diseases, which include growth factor secretion, exosome secretion, and 

attenuation of neuroinflammation. We then provide a summary of preclinical and early clinical 

work on MSC therapies in amyotrophic lateral sclerosis, multiple system atrophy, Parkinson’s 

disease, and Alzheimer’s disease. Continued rigorous and controlled studies of MSC therapies will 

be critical in order to establish efficacy and protect patients from possible untoward side effects.

Neurodegenerative diseases are a broad class of disorders characterized by progressive 

neuronal death that leads to debilitating neurological impairments. Examples of ultimately 

fatal neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease 

(PD), amyotrophic lateral sclerosis (ALS), and multiple system atrophy (MSA). While there 

have been significant advances in the symptomatic management of these diseases that 

improve quality of life and at times survival, the available medications likely only slow the 

progression of neuronal death by a few months. The idea of using cell therapy to treat 

neurodegenerative diseases has been around for decades, most notably in PD where a variety 

of cell transplant investigations have been performed with varying success.1 Mesenchymal 

stromal cells (also sometimes referred to as mesenchymal stem cells; MSCs; see recent 

commentary by Sipp et al., for discussion about the nomenclature controversy)2 are 

multipotent cells that have become increasingly studied as a therapy for a variety of 

neurological diseases. As of October 2018, there were 939 clinical studies listed at 

www.clinicaltrials.gov that report using MSCs. 218 of these clinical studies are for diseases 

of the nervous system, making them the most represented system in the body (Table 1). As 

MSCs have entered clinical trials for devastating neurodegenerative diseases, the excitement 

and interest in MSCs has become at times fevered. This, in part, has led to many for-profit 

entities that provide MSC therapies for a range of diseases, some of which make dubious 
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claims and have unclear product safety. Conversely, rigorous basic science and clinical 

research are being performed widely in this rapidly growing and exciting field. In this 

review, we aim to discuss MSC therapeutic modes of action and how these cells are being 

utilized in neurodegenerative disease preclinical models and early phase clinical trials.

MSCs secrete growth factors and modulate immune system

While MSCs are considered to be a type of stem cell, they have limited differentiation 

capacity. Unlike embryonic (or induced) pluripotent stem cells, which may differentiate into 

all cell types, MSCs are primarily limited to differentiating into cells of mesenchymal origin 

(fibroblast, osteocyte, adipocyte, chondrocyte). It is still controversial whether MSCs can be 

readily differentiated into cells of endodermal or ectodermal (including neuronal) fates. 

Therefore, it is not expected that MSCs would mediate any beneficial effect by incorporating 

into neuronal networks to replace dying neurons, which may be anticipated in other neural 

stem cell approaches.

MSCs reside within several tissues in vivo, including adipose, bone marrow, Wharton’s jelly, 

and dental pulp, and may arise from pericytes3. They are further defined by the International 

Society for Cellular Therapy as expressing CD90, CD73, CD105 and CD44 while not 

expressing CD45 and CD31. 4, 5 Within the body, it is thought that normal MSC function is 

to migrate to areas of injury and participate in the reparative process.6 Both allogeneic and 

autologous MSC therapies are in development. Unlike most other allogeneic cell therapies in 

clinical development, allogeneic MSC therapies may be used without concomitant 

immunosuppression due to their paucity of MHC Class II proteins and decreased propensity 

to trigger an immune response.7

The precise mechanism by which MSCs may exert beneficial effects in neurological disease 

is still being elucidated, but it appears that multiple different mechanisms may contribute 

(Figure). First, MSCs have been shown to secrete neurotrophic growth factors, including 

glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor, and brain-

derived neurotrophic factor (BDNF),8, 9 which can be further enhanced under specific 

culture conditions.10 Neurotrophic growth factors have been shown to improve neuronal 

survival in a number of preclinical models of neuron injury, including ALS, PD, and MSA 

transgenic animals 11–17 and nerve injury models. 12, 18, 19 Second, MSCs strongly modulate 

the immune system and can aid wound healing, and this mechanism has been exploited in 

disorders such as graft versus host disease20 and Crohn’s disease.21 From a 

neurodegenerative perspective, it has become increasingly recognized that 

neuroinflammation plays a significant pathomechanistic role. Neuroinflammation in this 

context is defined as the negative contribution of non-neuronal cells (immune cells, glial 

cells, etc.) to neurodegenerative disease. While all of the details are not worked out, it is 

clear that activated microglia, astrocytes, and T-cells are able to interact and increase 

neuronal death due to proinflammatory and reactive oxygen species production.22,23 

Interestingly, MSCs may be either anti-inflammatory or pro-inflammatory depending on the 

milieu within which they exist. When entering an inflammatory milieu (interferon-gamma, 

tumor necrosis factor-alpha), MSCs become anti-inflammatory wherein they secrete 

transforming growth factor-beta1, indoleamine-2,3-dioxygenase, and prostaglandin E2 and 
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can convert macrophage/microglia from the pro-inflammatory M1 to the anti-inflammatory 

M2 phenotype.24 Furthermore, MSCs can induce upregulation of forkhead box P3+ 

regulatory T cells, which are thought to play a key role in ALS.25

MSCs mediate their immunomodulatory effects via direct cell-cell interactions, but also have 

strong paracrine influences via secreted cytokines and growth factors. One of the key 

methods that MSCs secrete biological factors is via extracellular vesicles (EVs), which are 

divided into either microvesicles (> 200nm diameter that are exocytosed from plasma 

membrane) or exosomes (50-200 nm diameter that arise from endosomal trafficking).26 EVs 

are packed with thousands of proteins,27 mRNA, and/or microRNA,28 many of which are 

enriched in EVs compared to MSCs, and have been demonstrated to enhance neuronal 

growth and health in model systems.29–31 Given that much of MSC paracrine actions are 

mediated via EVs, these subcellular packages are being developed as a cell-free biological 

therapeutic in their own right, which would obviate the theoretical teratogenic concerns of 

cell therapy.

Finally, an intriguing new hypothesis to explain the positive effects of MSCs is they may 

improve neuronal health by donating their mitochondria.32 This mechanism of 

mitochondrial transfer has been observed between astrocytes and neurons in stroke model,33 

as well as between MSCs and alveoli in a lung injury model.34 Through this mechanism, 

MSCs conceivably could improve neuronal health by donating healthy mitochondria to 

neurons that harbor dysfunctional mitochondria.

MSC therapy for neurodegenerative diseases

MSCs are being investigated as a therapy for a host of neurological diseases, and clinical 

trials have been performed in cerebrovascular diseases35–37 and inflammatory demyelinating 

disorders.38, 39 In this review, we will focus on data gathered in the study of 

neurodegenerative diseases, which have overlapping neuroinflammatory pathomechanisms 

that MSC therapy may impact. Table 2 lists all clinical trials for the below conditions that 

are registered with ClinicalTrials.gov and are signified as “recruiting”, “enrolling by 

invitation”, “active not recruiting”, or “not yet recruiting”.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal paralytic neurodegenerative 

disorder due to death of motor neurons in the brain and spinal cord.40 The median lifespan 

following symptom onset is 3 years. The only medications that alter the disease course are 

riluzole and edaravone. Riluzole decreases glutamate excitotoxicity, but only prolongs life 

for ~3 months and edaravone was recently approved, but is currently without demonstrated 

survival benefit data (although it is presumed). Several mechanisms have been implicated in 

the pathogenesis of ALS and insights from hereditary forms of ALS strongly implicate RNA 

processing and protein aggregation as key early steps in the disease initiation. Two primary 

mechanisms of MSC putative benefits, neurotrophic growth factor secretion and 

neuroinflammation modulation, have been targets for ALS therapy development for years.
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There is considerable evidence from animal studies that neurotrophic factors (Insulin-like 

Growth Factor-1, BDNF, GDNF, etc.) may slow neurodegeneration.11, 13, 14, 18, 41–45 

Unfortunately, subsequent human studies have not confirmed a benefit for patients.46–48 The 

reason for this lack of concurrence between the results of animal model studies and 

subsequent human trials may be because the animals do not faithfully model the human 

disease, because therapeutic agents are handled differently in animal systems compared with 

humans, or because clinical trials have been too short or inadequately sensitive to detect the 

degree of change detectable in animal models.49 The role of the blood brain barrier may also 

be relevant, and notably some of the most compelling animal studies have used direct 

delivery of growth factors into the CNS.14 This mode of delivery has not been thoroughly 

investigated in human trials.50–52

The role of neuroinflammation in ALS has been hypothesized since the 1970’s, but recent 

data has increased the recognition of this mechanism.53 Microglia and inflammatory 

leukocytes are thought to be key players in this process and there are alterations of these 

cells in autopsies of patients with ALS.54, 55 While it is not clear whether 

neuroinflammation causes ALS, it is theorized that it greatly determines the rate of disease 

progression. For example, in transgenic Superoxide dismutase-1 (SOD-1) rodent models of 

ALS, it has been shown that mutant SOD-1 in motor neurons primarily determines disease 

onset, whereas mutant SOD-1 in astrocytes and the immune system primarily determines the 

rate of progression.56–59 Human studies have also demonstrated abnormalities in the 

peripheral immune system in ALS patients.60–68 More data supporting the role of the 

immune system in ALS has arisen from studies of leukocyte microRNA, where specific 

upregulation of distinct microRNA has been reported in people with ALS,69–71 and 

treatment of these leukocytes in animal models ameliorates the disease.69, 72

Animal studies of MSCs in ALS have been promising. MSCs can be safely infused into the 

intrathecal space of animals and survive for up to 6 months after injection.73–77 Animal 

models of ALS have revealed MSC therapeutic potential, with efficacy data in several 

preclinical studies in ALS,78–89 including MSC conditioned-media81 and exosomes.79

Early phase human clinical trials have been completed using MSC treatment in ALS and 

demonstrate a favorable safety profile. Our group recently studied the effect of intrathecal 

therapy with autologous adipose-derived MSCs in a Phase I, dose-escalation study. Overall, 

the safety was acceptable, with some temporary back/leg pain at the highest tested doses.90 

Other groups have found similar safety profiles using naïve bone marrow-derived 

MSCs91–93 and bone marrow-derived MSCs cultured to enhance neurotrophic factor 

secretion.94 While none of these studies were designed to study efficacy, there did not 

appear to be any worsening of ALS progression rates, and there were some signs that 

suggested benefit.90–95 These studies have now progressed to ongoing Phase M/MI clinical 

trials.

Alzheimer’s Disease

Dementia is a progressive neurodegenerative disorder of the brain that alters normal 

cognition to such a degree that an individual is no longer able to function independently in 

society. Alzheimer’s disease (AD) is the most common cause of dementia. The typical 
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clinical dementia syndrome associated with AD is that of a slowly progressive decline in 

memory appearing early in the clinical phase of the disease.96 As the disease progresses, 

other cognitive domains become involved. Atypical clinical presentations of AD occur with 

initial prominent symptoms in visual-spatial, motor, language, or executive functioning.97 

AD is a progressive degenerative disorder with associated clinical symptoms during life, but 

the definitive diagnosis can only be made on the post-mortem examination of the brain. The 

classic neuropathological features are neuritic plaques and neurofibrillary tangles.98 

Biomarkers, such as amyloid positron emission tomography, have been shown to predict AD 

pathology99 allowing for the characterization of these processes in vivo during life. The 

pathologic changes that are characteristic of AD are known to occur decades before clinical 

symptoms are present leading to a long preclinical prodromal disease phase100 before 

progressing to mild cognitive impairment101 and then dementia.102 Recent biomarker 

criteria for diagnosing the AD continuum during life for research purpose have recently been 

proposed.103 These research criteria will be important for future clinical trials, especially in 

preclinical phases of AD where therapeutics are hoped to be most effective before cognitive 

symptoms and pathologic changes become irreversible. Once MSCs trials have progressed to 

large clinical trials in humans, the entire AD continuum (preclinical, mild cognitive 

impairment, and dementia) and the heterogeneity in clinical symptoms should be carefully 

considered during trial design.

It has long been known that the pathologic hallmarks of AD (i.e., plaques and neurofibrillary 

tangles) are composed of beta-amyloid and tau protein aggregates. However, the pathogenic 

mechanisms that drive the association between these protein aggregates and the clinical 

symptoms are not known. A wide-array of global, molecular, and cellular processes have 

been hypothesized to play a role in AD pathogenies including network failure104, pathologic 

plasticity,105 mitochondrial dysfunction,106 innate immunity,107 inflammation,108 

autophagy109, and toxicity of protein aggregates and oligomers like amyloid.110 The ability 

of MSCs to secrete neurotrophic factors may improve the cellular milieu and limit cell loss 

in the setting of this complex AD pathophysiology. In addition, MSCs’ known 

immunomodulatory effects may limit the damage effects of activated glial cell related 

synaptic pruning and inflammation in general. MSCs also have the potential to deliver a 

healthy supply of mitochondria to the CNS thereby mitigating the impact of age and AD-

related mitochondrial dysfunction.

In amyloid precursor protein/presenilin 1 mouse models of AD, bone marrow-derived MSCs 

have been shown to reduce microglia cell counts, but not to alter the number of amyloid 

plaques.111 However, others have seen a decrease in amyloid deposits with bone marrow-

derived MSCs112 consistent with what has been reported using human umbilical cord 

derived MSCs to rescue memory deficits and reduce amyloid-beta deposition in an amyloid 

precursor protein/presenilin 1 transgenic mouse.113 The effect of MSCs on mouse models of 

AD pathology and cognition may be mediated through modulatory effects on 

neuroinflammation.114 This same group also postulated that inhibition of apoptosis115 may 

also be playing a role. Others have reported enhanced neurogenesis via the Wnt signaling 

pathway in the hippocampus is playing an important role in the effect of MSC on mouse 

models of AD.116 There has not been a detailed study of the effects of MSC on 
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mitochondrial function in mouse models of AD. Human trials in AD are under development.
117

Multiple System Atrophy

MSA is a rare sporadic and fatal multi-system progressive disorder characterized by 

progressive autonomic failure (including orthostatic hypotension, neurogenic bladder, and 

erectile dysfunction), cerebellar ataxia, corticospinal dysfunction, and parkinsonism that is 

often poorly responsive to levodopa therapy (unlike PD)118. The disease is relentlessly 

progressive with a median survival from diagnosis to death of approximately 3 years.119–121 

MSA represents one of the motor synucleinopathies which also include PD and diffuse 

Lewy body disease. Neuropathologically, these conditions are linked by positivity of 

inclusions to α-synuclein with reduced solubility.122 But in contrast to neuronal α-synuclein 

(Lewy bodies), MSA is characterized by glial cytoplasmic inclusions of abnormally 

aggregated α-synuclein, primarily found in the striatum, cerebellum, brainstem, cortex, and 

spinal cord, regions also associated with the most pronounced neuronal loss.123–125 Many 

lines of evidence highlight the pathological importance of α-synuclein aggregation, and 

disease progression is thought to be directly linked to accumulation and aggregation of 

conformationally changed α-synuclein.126–129 Although the precise mechanisms by which 

α-synuclein aggregation leads to neuronal loss are not completely understood, there are a 

number of downstream effects contributing to neuronal pathology. A central mechanism 

appears to be that of glial dysfunction with resulting deficiency of growth factors, especially 

BDNF and GDNF, which are critical for neuronal survival.130 Another important 

mechanism appears to be neuroinflammation as microglial activation can be demonstrated in 

certain, stages of the pathophysiologic cascade.131, 132 Lastly, although glial cytoplasmic 

inclusions are the primary neuropathological hallmark of MSA, neuronal cytoplasmic and 

nuclear inclusions of α-synuclein have also been reported.125, 133 Furthermore, recent work 

with transgenic models suggests that neuronal/oligodendroglial propagation of α-synuclein 

may partake in the pathophysiology of MSA.128

The ability of MSCs to produce and secrete neurotrophic factors known to be deficient in 

MSA, and MSCs’ known immunomodulatory effects therefore provide a compelling 

rationale for the pursuit of delivering MSCs with therapeutic intent. Such an approach is 

further supported by animal studies demonstrating that human MSCs have a protective effect 

against progressive dopaminergic and striatal neuronal loss.15, 16 Recently, the 

neuroprotective and immunomodulatory effects of MSCs were confirmed in a transgenic 

mouse model of MSA.17

When applied to humans, the blood brain barrier comprises a potential hurdle in cell 

delivery to the central nervous system. Although it has been shown that this barrier is less 

tight in MSA, it remains a major hurdle for MSC access.134 Since growth factors also do not 

generally cross the blood-brain barrier, the desired effects may not reach target neurons in 

the relevant areas of brain if delivered systemically.135, 136 In order to reach those areas of 

interest, strategies have to be pursued to efficiently and safely overcome that barrier.

In a first human study utilizing MSC delivery to patients with MSA, a Korean group pursued 

an open-label study of 29 patients with MSA, of which 11 received bone marrow-derived 
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MSCs while 18 did not.137 A total of 4×107 MSCs were administered as infusions into both 

internal carotid arteries and the dominant vertebral artery. Additionally, patients received 3 

subsequent intravenous MSC injections. The investigators compared the clinical course 

between MSC-treated and control patients and reported significantly less progression based 

on clinical assessments using the unified MSA rating scale in MSC-treated patients 

compared to control patients at all visits throughout the 12-month study period. Serial 

positron emission tomography scans in the MSC-treated group showed increased 

fluorodeoxyglucose uptake from baseline in cerebellum and frontal white matter while 

fluorodeoxyglucose uptake in the follow-up scan of the control group decreased significantly 

in the cerebellum and brainstem. No serious adverse effects related to MSC therapy 

occurred, although transient ischemic changes, evident on MRI, without clinical correlate, 

were seen with the intra-arterial infusions.137 The same group published the results of a 

double-blind placebo controlled single-center study on 33 subjects in 2012.138 Although the 

effect was less dramatic than what was observed in the open-label study, this trial confirmed 

a significantly smaller increase in total and unified MSA rating scale scores (part II) 

compared with the placebo group. Concordantly, cerebral glucose metabolism and gray 

matter density showed less decrease in the cerebellum and the cerebral cortical areas in the 

MSC compared to the placebo group. Again seen were small ischemic lesions on magnetic 

resonance imaging as a result of intra-arterial infusions which were asymptomatic except for 

one patient who developed basal ganglia infarcts with transient dystonia.138

We have since pursued a phase I/II dose-escalation trial utilizing a different approach to 

overcoming the blood-brain barrier and allowing for more widespread CNS delivery: the 

intrathecal route. 24 patients with probable MSA based on clinical consensus criteria and 

autonomic testing were enrolled and received escalating doses of adipose-derived MSCs 

ranging from one injection of 1 × 107 to two injections (one month apart) of 1 × 108 cells 

each. The primary aim of this study was to determine the safety and tolerability of this 

approach, and secondary aims relate to exploring signals of potential efficacy using clinical, 

autonomic, and imaging markers. This study has recently been completed and the 

manuscript is currently under review. Findings were sufficiently intriguing to pursue an 

ongoing compassionate extension study.

Parkinson’s disease

PD is the most common synucleinopathy and the second most common neurodegenerative 

disease after AD, with a prevalence of approximately 1% in people over 60 years of age in 

industrialized countries.139 PD is clinically characterized by a combination of tremor, 

bradykinesia, and rigidity, but a number of non-motor symptoms and findings commonly 

associated with PD, including cognitive dysfunction, mood disorders, sleep disturbances, 

autonomic dysfunction, go beyond the classification of PD as a movement disorder.140–144 

The pathologic hallmark of PD are Lewy bodies - intracytoplasmic neuronal alpha-synuclein 

inclusions - and neuronal loss in selected areas within the brain, including substantia nigra, 

locus ceruleus, dorsal vagal nucleus, and cerebral cortex; however, Lewy pathology is also 

found in spinal cord, sympathetic ganglia, as well as the cardiac and myenteric plexus.
145–149 Cardiac sympathetic noradrenergic denervation is also a common finding.150 The 

precise mechanisms leading to neuronal loss in PD are incompletely understood, but appear 
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to be multifactorial and include genetic factors, oxidative stress, glial dysfunction and lack 

of trophic factors, excitotoxicity, inflammation, and mitochondrial dysfunction.151–154

Considering the ability of MSCs to secrete neurotrophic factors, modulate inflammation, and 

possibly even act as mitochondria “donor”, it comes as no surprise that there is a lot of 

interest in the use of MSCs in the treatment of PD, and a multitude of animal studies has 

shown promise. Direct striatal administration of bone marrow-derived MSCs with or without 

prior use of neuronal differentiation medium resulted in improvement of motor function, 

protection of the nigrostriatal system, and improved striatal dopamine release in several 

studies using toxic lesion rodent models of PD 155–162 as well as a proteasome model of PD 
16. Similar effects were reported with adipose-derived and umbilical cord-derived MSCs 

with or without prior differentiation.163–170 For example, in a study using autologous 

transplantation into the substantia nigra, McCoy and colleagues reported improvement of 

motor function, reduced microglial activation, and decreased loss of TH immunoreactivity, 

associated with local production of trophic factors.165 Intrastriatal administration was 

furthermore shown to enhance neurogenesis in the subventricular zone and to induce 

neuroblast migration to the striatum.167,171

Similar findings were reported with venous administration of MSCs in some studies, but 

concerns have been expressed about the non-selectivity of this administration route, limited 

crossing of the blood-brain barrier, and lack of long-term survival. 16, 172–177 A study on 

intracarotid infusion of MSCs in the brain of rats bearing a 6-hydroxydopamine-induced 

lesion of the nigrostriatal tract showed that the infused cells did not efficiently cross the 

blood-brain barrier without using a permeabilizing agent.178 MSCs were detected in various 

brain regions, but there was no convincing modification of the progression of motor 

impairment. A study using intranasal administration showed neuroprotective and anti-

inflammatory effects with localization of MSCs documented in the olfactory bulb, cortex, 

hippocampus, striatum, cerebellum, brainstem, amygdala, hippocampus and spinal cord; 

MSCs were still found in these regions 4.5 months after injection.179

Several rodent studies utilized engineered MSCs expressing tyrosine hydroxylase gene, 

vascular endothelial growth factor, or transduced to produce increased GDNF or cerebral 

dopamine neurotrophic factor showed mixed but overall positive results. 180–187 In a Rhesus 

monkey model of PD, vector-engineered umbilical cord-derived MSCs which showed 

neuronal differentiation were transplanted into the striatum resulting in recovery of behavior 

and neuroprotective effects.188 Combined adipose-derived MSC delivery along with gene 

therapy delivering tyrosine hydroxylase and neurturin to the striatum in that monkey model 

showed better neuroprotective effects than gene therapy alone.189

In a rat nigrostriatal lesion model of PD the effects of human amniotic fluid stem cells and 

bone marrow derived mesenchymal stromal cells injected into the lesion site were assessed 

with a focus on bladder dysfunction. There was a temporary improvement of cystometry 

assessed bladder function in both stem cells groups compared to sham-treated rats.190

Only preliminary data are available on the use of MSCs in human PD. In an open-label study 

in 2010 and Indian researchers administered 106 autologous bone marrow-derived MSCs per 
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kilogram body weight unilaterally into the sublateral ventricular zone via stereotactic 

surgery in 7 patients with PD.191 The procedure was well tolerated. 3 out of 7 patients were 

reported to have lasting improvement in the unified Parkinson’s disease rating scale and 

other rating scales compared to baseline. The same group reported another open-label study 

in 2012 during which 8 PD and 8 “PD plus” patients received 2×106 allogeneic bone-

marrow derived MSCs per kilogram body weight into the bilateral sublateral ventricular 

zone. 192 Improvement in unified Parkinson’s disease rating scale and other measures was 

seen on follow-up, which was persistent in those with PD and transient in those with PD 

plus.

Future Directions in MSC Studies

Despite promising preclinical and early clinical findings, there continue to be many 

unanswered questions regarding the use of MSCs as a therapeutic approach in 

neurodegenerative disorders. Ultimately, the most important question is: do MSCs provide 

benefit to patients with neurodegenerative diseases? This efficacy question must be 

answered with well-designed clinical trials, which is a challenging task in neurodegenerative 

diseases. Within these clinical trials; however, we argue that it is equally important that 

biomarkers are investigated that can answer questions about MSC biology and their effects 

in the nervous system. Biomarker investigations into the immune system, 

neuroinflammation, growth factors, microRNA, EVs are examples of what need to be 

studied in human MSC clinical trials. Once we begin to more clearly understand why MSCs 

are beneficial in neurodegenerative diseases, we can rationally design future trials to 

optimize these therapies. As an example, if it is discovered that MSC efficacy correlates 

primarily with a specific effect on biomarker studies of neuroinflammation, the next set of 

experiments can be designed to maximize that effect. Variables that may be explored to 

optimize therapy should include dose, frequency, route of delivery, or autologous versus 

allogeneic therapy (some of which may be able to be answered in preclinical models). 

Furthermore, next-generation MSCs manipulated by gene therapy or specific culturing 

condition can then be developed specifically to alter that aspect of neuroinflammation. In 

this way, these novel MSC therapies not only can be properly validated, but also may reveal 

new mechanisms of MSC therapeutics that lead to further targeted drug development, which 

will be essential to move the field forward.

ABBREVIATIONS:

AD Alzheimer’s disease

ALS Amyotrophic lateral sclerosis

BDNF Brain-derived neurotrophic factor

EV Extracellular vesicles

GDNF Glial cell-derived neurotrophic factor

MSA multiple system atrophy
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MSC mesenchymal stromal cell

PD Parkinson’s disease

SOD-1 superoxide dismutatse-1
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Figure. 
Putative MSC mechanisms of action to treat neurodegenerative diseases: 1) growth factor 

secretion, 2) neuroinflammation attenuation, and 3) exosome and miRNA secretion.

GDNF = glial cell-derived neurotrophic factor, IDO = Indoleamine-2,3-dioxygenase, 

miRNA = microRNA, PGE = prostaglandin, TGFB1 = transforming growth factor beta 1, 

Treg = Regulatory T cell, VEGF = vascular endothelial growth factor.
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Table 1:

MSC-related studies listed at http://www.clinicaltrials.gov sorted by disease systems as of October 2018.

Disease Type Number of Studies

Nervous System 218

Musculoskeletal 179

Immune System 177

Cardiovascular 140

Wounds/Injuries 133

Gastrointestinal 102

Genetic/Congenital 92

Endocrine 77

Urogenital 67

Respiratory Tract 57

Skin 53

Graft-versus-Host 45

Hematological 29

Infection 22
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