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ABSTRACT: Simple procedures to estimate Hansen sol-
ubility parameter (HSP) components from structural formulas
are investigated. The best results are obtained using a simple
relationship with molar volume and refractivity for the
dispersion component, and using additivity models based on
tailored fragments specifically designed for the polar and
hydrogen bonding components. Despite large errors for some
classes of chemicals, including small inorganic molecules, ionic
liquids, and high halogen compounds, these models yield
average absolute deviations from reference on par with state-
of-the-art models and lower than reported using molecular dynamics simulations or nonlinear quantitative structure−property
relationship models based on a limited set of quantum chemical descriptors. In contrast to group contribution methods that are
either more restricted in scope or heavily parameterized, they are thoroughly validated and very easy to apply. Furthermore, the
errors observed are easy to rationalize and may usually be anticipated. This work sheds light on some limitations inherent to
pure additivity approaches for HSP prediction and provides a first step toward better models. A Python script implementing the
procedure and the fully detailed results are provided as the Supporting Information.

1. INTRODUCTION

Hansen solubility parameters (HSPs) have a long history.1,2

Initially developed as a practical guide for the selection of
solvents in coating systems,3,4 they are presently used in
diverse fields such as pharmaceutical chemistry,5,6 dentistry,7

molecular biology,8 civil engineering,9 vapor sensing10 and
optical sensing,11 food science,12 or waste treatment.13

Although new needs for such parameters arise from growing
environmental concerns,6 many present applications regarding
processes in microelectronics14 and nanotechnology,15,16 as
well as systems presently focusing much attention such as
organogels17 or ionic liquids.18 Beyond solvent selection,19

HSPs now find widespread applications for a growing number
of related problems involving mixing or diffusion phenomena,
including swelling behavior,20,21 intestinal drug absorption
properties,22 studies of the morphology of polymer films,23

prediction of environmental stress cracking in plastics,24

optimization of polymer additives, including stabilizers,
antistatic agents, fire retardants,25,26 or plasticizers aimed at
improving the performance of binders for explosives or
propellants.27

The HSP approach relies on the partition of the total
cohesive energy E into dispersive, polar, and hydrogen bonding
contributions, according to E = Ed + Ep + Eh. The three HSP
components δd, δp, and δh are defined in terms of these three
energetic contributions as δk = (Ek/Vm)

1/2, where Vm is the
molar volume. The total solubility parameter δ = (E/Vm)

1/2 is
related to the individual components through δ2 = δd

2 + δp
2 + δh

2.
Unfortunately, although E (and thus δ) may be derived from
thermodynamic studies, this is not the case for the individual
components δk which are not measurable quantities. Therefore,

the experimental derivation of HSP data is especially tedious,
requiring extensive measurements associated with the concept
of a solubility sphere.2 In this context, predictive models are of
much interest. Many procedures have been put forward to
derive HSP data without experiments.28−40 However, they all
exhibit limitations.
Some of them, including the Hoy additivity scheme34 or

procedures based on molecular simulations,28 yield values that
are not consistent with the original HSP reference data.41 The
derivation of HSP components from simulations based on
analytical intermolecular potentials might appear especially
attractive as most force fields rely on similar decomposition of
E into dispersive, polar, and hydrogen bonding contributions.
Unfortunately, this approach is not consistent with the
standard HSP data. For instance, it predicts that δh is zero
for any aprotic solvent, due to the lack of labile protons to form
hydrogen bonds in the pure fluid. Actually, such solvents may
exhibit significant values of δh as they can play the role of a
proton acceptor and form hydrogen bonds when mixed with
another fluid. For example, a value as high as 15.4 MPa1/2 is
reported for formaldehyde.2 This discrepancy between HSP
predictions based on empirical force fields and accepted
experimental values stems from the fact that A−B interactions
between two different species A and B are not well represented
in this case as an average of A−A and B−B interactions. On the
other hand, HSPs being primarily a tool for engineers and
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experimental researchers, resorting to molecular simulations to
estimate their values is not practical.
In fact, current approaches consist either of heavily

parameterized group contribution (GC) or quantitative
structure−property relationship (QSPR) methods, including
models based on state-of-the-art machine learning (ML)
techniques.42 A physically consistent GC method should
decompose each cohesive energy component Ek into additive
contributions associated with specific moieties G (either atoms
or groups of atoms) on the molecule

∑=E N E G( )k
G

kG
(1)

where NG is the number of occurrences of group G in the
compound. Unfortunately, available models based on this
approach are restricted to the most common chemical moieties
owing to the limited amount of data considered for their
parameterization.29−33

In recent years, more general relationships have been put
forward to estimate HSPs using group contribution (GC)
methods.35−38 Stefanis and Panayiotou (SP) introduced a
specially popular method,36 implemented in a commercial
software named HSPiP.43 Notwithstanding their parameter-
ization against extensive data including many different
chemical groups, the SP relationships exhibit distinctive
features compared with earlier methods. First, they rely on
first and second order group contributions denoted as Ck

i and
Dk

j , respectively. The former are in fact UNIFAC groups,
whereas the latter are defined according to the ABC
framework44 in an attempt to capture nonlocal effects
associated with conjugation.45 Secondly, every HSP compo-
nent δk is directly expressed as a linear function of the number
of occurrences of the different first and second order groups,
denoted as i and j, respectively

∑ ∑δ = + +C NC M Dk k
i

i k
i

j
j k

j0

(2)

In eq 2, k = d, p, h, Ck
0 is an empirical constant, Ck

i and Dk
j are

the contributions of first and second order groups to δk.
Finally, Ni, and Mj are the occurrences of groups i and j in the
molecule. Another method introduced by Marrero and Gani
introduces third order groups l, with occurrences of Ol and
associated parameters Dk

l .46 This method was recently applied
to HSP prediction,35,37 according to

∑ ∑ ∑δ = + +NC M D O Ek
i

i k
i

j
j k

j

l
l k

l

(3)

Although they might yield better fits than eq 1 for the training
sets considered, eqs 2 and 3 are inconsistent with the definition
of the HSP components as size-intensive quantities. This
necessarily restricts their predictive value. In recent years, a
new approach called Y-MB arising from extensive work on
HSPs has been introduced in the HSPiP software.39,40

Unfortunately, the details of this model have not been
published. Although the scarcity of the data do not allow to
draw definite conclusions, results reported in the literature
suggest that HSP components obtained using either the SP or
Y-MB models exhibit a similar reliability.47

It must be emphasized that such models rely on extensive
parameterizations. Furthermore, for δp and δh, the SP model
relies on distinct parameter sets depending on whether their
actual value is smaller or larger than 3 MPa1/2. The need for

different parameter sets probably reflects an inadequacy of a
linear relationship such as eq 2. All in all, the SP scheme
requires 113 parameters to fit 344 δd values, and 156
parameters to fit either 350 δh values or 375 δp values.
Similarly, the model of Modarresi et al. was fitted against 1050
compounds using slightly less than 300 parameters. They
usually fit the training data very well, confirming that the
predictive value of such methods would require further
validation, at least through cross-validation, as most exper-
imental data at hand is used to fit many parameters involved
and it is difficult to find additional data to compile an external
test set.
Instead of increasing the number of groups, another

possibility to introduce additional flexibility is to consider
more general QSPR models like artificial neural networks
(ANNs) or other ML techniques. Interesting models are
commercially available from COSMOlogic GmbH, especially
an approach in which HSP values for any compound are
obtained from its simulated activity coefficients (using the
COSMO-RS model48) in a predefined set of 29 reference
solvents.49 Another attractive QSPR model for HSPs is an
ANN taking quantum chemical descriptors as input.38 This
method is very interesting as it successfully handles very
different compounds, including ionic liquids and organic salts.
However, it requires specialized software to compute the
descriptors and implement the ANN, in addition to significant
computing resources. Moreover, the purely empirical nature of
ANNs makes it difficult to derive systematic improvement.
Very recently, a systematic study provided deeper insight into
the potential of ML techniques for HSP prediction.42

However, in view of their empirical nature and reliance on
numerous parameters, GC and QSPR models may hardly be
used as a basis for further development.
Therefore, the present paper investigates simpler procedures

to estimate the HSP data, based on more straightforward
schemes to split molecules into additive fragments, and
extensively validated against external data. The following
section reports the general strategy adopted in this work and
results of a preliminary study aimed at identifying suitable
systematic fragmentation levels to represent molecules as
collections of additive fragments. The next ones describe more
successful models obtained on the basis of tailored
fragmentation schemes for the dispersion, polar, and hydrogen
bonding HSP components and report the corresponding
results. For convenience, units are not explicitly mentioned
throughout the sequel. Implicit units are MPa1/2 for HSP
components, kJ mol−1 for energy components, and cm3 mol−1

for molar volumes and refractivities.

2. PRESENT STRATEGY
2.1. Reference Data. 2.1.1. Source of Data. Like most

recent predictive schemes, the present methods are fitted and
validated using the HSP data compiled in the Hansen
handbook.2 However, it should be kept in mind that most
data reported in this compilation are estimated values. In this
work, the procedures introduced were fitted using only
experimentally confirmed data (reported in bold characters
in the handbook), including 90 entries obtained from the
literature in addition to the data gathered from industrial
experience.2,3,50,51 After removing mixtures and compounds for
which some data is lacking, a data set made of 174 compounds
is obtained. In addition, the present predictions are system-
atically compared to accepted reference estimates compiled in
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the Hansen handbook for 769 other compounds, hereafter
referred to as the test set.
2.1.2. Uncertainties on Reference Data. HSPs are primarily

used to obtain qualitative conclusions regarding the compat-
ibility of various species or the ability of solvents to dissolve a
given material. It is important to keep in mind that quantitative
HSP values exhibit significant uncertainties, especially if the
estimated data are considered. For instance, among 1188
compounds for which the HSP data have been compiled on a
website,52 16 have multiple sets of components reported,
including water, carbon tetrachloride, trinitrotoluene, ethylene
glycol, or dimethyl ether. The differences between the maximal
and minimal values reported for any HSP component exhibit
root mean square values of 1.3, 4.5, and 7.8 for δd, δp, and δh,
respectively (or 1.1 and 4.6 for δd and δh if water is excluded).
The large uncertainties for δp arise mainly from symmetric
compounds, where the dipole moments associated with polar
groups mutually cancel, as for carbon tetrachloride (δp values
ranging from 0.0 to 8.3), trinitrotoluene (δp values ranging
from 3.5 to 10.0), or 1,4-dioxane. In each case, the value
derived from the dipole moment (e.g., using the Hansen−
Beerbower equation) is much smaller than an alternative value
derived from group contributions. Not surprisingly, the large
inconsistencies between δh values are observed for compounds
with strong hydrogen bonds, like urea (δh values ranging from
16 to 26.4) or methanol clusters (δh values ranging from 10 to
22.3). However, significantly different δh values are also
observed for other compounds. For instance, values ranging
from 0 to 6 are reported for bromotrichloromethane.
Valuable insight into uncertainties on experimental data may

be obtained from a comparison of HSP values derived using
either conventional methods or an equation of state model.53

Typical differences between experimental HSP values derived
using distinct procedures are 0.7−0.8 for δd and δp, and 0.16
for δh, suggesting that the hydrogen bonding component is
more accurately defined than the dispersion and polar
components.
2.1.3. Partition into Training and Test Sets. Each model

for a given HSP component k = d, p, h is actually fitted against
a subset of the 174 compounds for which an experimental
value of δk is available. Indeed, some compounds are excluded
as lying outside the applicability domain (AD) of the method,
owing to under-represented chemical moieties or types of
compounds. In practice, for the three HSP components, ionic
liquids, inorganic compounds (i.e., those with no C atom), and
molecules with less than two H atoms are assumed to lie
outside the applicability domain (AD) of the present models.
For δp, molecules with under-represented polar groups are also
assumed to lie outside the model, including compounds with
aromatic C−N, C−S, or C−O bonds, sulfones, isocyanates and
isothiocyanates, carbon dioxide, F-, I-, and B-containing
molecules, molecules with S−H or Si−H bonds. Finally,
although the model for δd appears to be especially general as it
does not rely on fragment contributions, especially under-
estimated values were obtained for the two only fluorinated
compounds in the training set, namely 1,1,1,3,3,3-hexafluoro-2-
propanol and 1,2,3,4,5,6-hexafluorohexan-1-ol, whereas the
results obtained for F-containing compounds from the test set
are in good agreement with previous estimates. Therefore,
these two compounds are assumed to lie outside the AD of the
model for δd. Finally, the exact partition of the data into
training set, test set, and outliers depends on the HSP
component and model under consideration. The partitions

associated with the models eventually retained may be
obtained from Table S1 in the Supporting Information (SI).

2.2. Modeling Methodology. In view of the tendency of
recent GC models for HSPs to rely on increasingly complex
fragmentation schemes, and of the current preference for linear
expressions for HSP components like

∑δ δ δ= + N G(0) ( )k k
G

kG
(4)

instead of the more theoretically appealing eq 1, we started this
work with a comparison of systematic fragmentation schemes
of increasing complexity, using both eqs 1 and 4. The exact
fragmentation algorithms and the corresponding results are
detailed in Section S1 (SI). For δd and δp, a performance
comparable to that of the SP model36 could only be obtained
using as many as 62 distinct atom types. However, the models
thus obtained are of limited practical interest as they are
applicable to only about 30% of the data set. Their applications
to the remaining of 70% would require additional parameters
that cannot be derived from the presently available data. The
use of the Hansen−Beerbower equation for δp was also
considered (Section S2). This approach proves to be of similar
accuracy to heavily parameterized additivity schemes. How-
ever, it is not practical in view of its dependence on the dipole
moment.
In view of the experimental uncertainties discussed in

Section 2.1.2, there is no point in striving to match the
reference data through extensive parameterization. Therefore,
this work focuses on simple and practical models whose
performance arise from stronger physical grounds compared to
the available additivity methods. In particular, a feature shared
by all recent HSP prediction methods is the fact that they do
not explicitly involve the molar volume Vm. Actually, there
appears to be no reason to not take advantage of this property
as it is available for most synthesized compounds on the
market and may otherwise be easily evaluated to within a few
percents from experiment.54−56 On the other hand, additive
contributions to Ep/Eh are introduced only for groups with
heteroatoms/proton acceptors or donors. For the dispersion
component Ed, all atoms must in principle be considered. As a
result, Ed scales roughly linearly with Vm and it proves quite
challenging to quantitatively predict the difference in δd values
within a set of compounds. Therefore, instead of a fragment-
based approach for δd, we start from the London equation for
the dispersion interaction between two atoms A and B

α α
∝E

R
(A, B)d

A B
6 (5)

where αA and αB are the atom polarizabilities and R the
interatomic distance.57 By analogy, the dispersion interaction
between two molecules within a pure phase may be assumed to
be given by the product of their polarizabilities (or
equivalently, of their molar refractivities) divided by an
effective intermolecular distance Re

∝E
R
Rd

D
2

e
6

(6)

where RD is the molar refractivity of the molecule derived from
a simple additivity model.58 However, determining a suitable
value for Re is difficult for two reasons. First, the interatomic
distance between nonspherical molecules is ill-defined.
Secondly, Re in eq 6 actually reflects an average distance
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arising from all surrounding molecules interacting with the
central one. Dimensional analysis suggests either

∝E
R
Vd

D
2

m
2

(7)

if the molecules are viewed as spherical, or

∝E Rd D
2

(8)

if Ed is assumed to be determined by close contact interactions
between neighboring atoms, with an interatomic distance that
does not depend on the overall molecular volume, but rather
on the van der Waals radii of the atoms. To accommodate both
eqs 7 and 8, the following expression was first assumed

= + +E c
c

V
c

V
Rd 0

1

m

2

m
2 D

2i
k
jjjjj

y
{
zzzzz (9)

This simple three-parameter model already yields fair perform-
ance. However, the fit and cross-validation score turned out to
be both further improved by assuming the first term to be
independent on RD and to scale linearly with Vm, leading to the
following expression for the dispersion HSP component

δ = + +c c
R
V

c
V

R
Vd

2
0 1

D

m

2
2

m

D

m

2i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz (10)

2.3. Fragmentation Algorithms. The fragmentation
scheme is critical to the success of any additivity method. A
too crude distinction, e.g., using atomic contributions that do
not depend on the atomic environment, is clearly unlikely to
provide accurate results. On the other hand, overly cautious
distinctions lead to an excessive number of possibly ill-defined
parameters. Group contribution methods reported previously
use similar sets of standard groups (such as UNIFAC groups)
for all three HSP components. This approach is probably not
optimal since these components arise from different inter-
actions. For instance, although dispersion forces involve all
atoms, Coulomb interactions are insignificant in the lack of
heteroatoms, whereas hydrogen bonding requires the presence
of labile protons. Therefore, δd, δp, and δh probably require
distinct fragmentation schemes. Since eq 10 proves satisfactory
for δd, fragmentation schemes are required only for δp and δh.
2.3.1. Contributing Fragments for the Polar Component.

Instead of systematically assigning a fixed Ep contribution to
every fragment in a molecule, the observation that δp = 0 for
alkanes suggests that hydrogen atoms and saturated carbon
atoms do not contribute to Ep. Non-zero values for δp require
strong Coulomb interactions associated with the presence of
heteroatoms and/or polarization interactions that are espe-
cially significant for compounds with multiple (polarizable)
bonds. Therefore, the present additive contributions are
associated with such structural features of the molecules.
In the first step, only saturated heteroatoms are considered.

Their contribution to Ep is assumed to depend primarily on
their number of hydrogen neighbors. Thus, the contribution of
a saturated heteroatom with symbol X and bonded to nH
hydrogen atoms is simply denoted as X(HnH).
In the second step, unsaturated functional groups are

considered. Specific Ep contributions are introduced for
isolated multiple bonds (CO, CN, and PO) and for
clusters of the adjacent multiple bonds (i.e., the nitro group).
According to this procedure, specific parameters would be
needed for other groups with adjacent multiple bonds, like

sulfone or azide. However, they are not introduced in this
study due to the lack of experimental data to safely determine
their values.
Finally, additional parameters are introduced for specific

moieties, i.e., amide groups, whose polarity is enhanced by the
electron transfer between the nitrogen and oxygen atoms,
carboxylic acids, in which the overall polarity of the group is
decreased due to dipoles along O−H directions opposing the
C−O dipoles, and ester and carbonate groups which are well-
known components of polar solvents for electrolytes.

2.3.2. Contributing Fragments for the Hydrogen Bonding
Component. Taking advantage of established knowledge
about the hydrogen bonding donor and acceptor moieties, it
proves especially straightforward to obtain a satisfactory model
for δh. Within the present data set, hydrogen atoms are bound
either to C, O, or N, and labeled accordingly as HC, HO, and
HN. In fact, special contributions denoted as HN(amide),
H2N and HO(COOH) are introduced for hydrogens in
amides, primary amines, and carboxylic acids, respectively.
This yields a total of six descriptors for H-bond donors. On the
other hand, the data set exhibits mainly three potential proton
acceptors: nitrogen (except if in nitro group), oxygen, and
halogen atoms, denoted as N, O, and X, respectively.

2.4. Validation Procedures. The validation of GC
methods and other additivity schemes typically relies on
their ability to fit large datasets using a relatively small number
of empirical parameters. However, since experimental HSP
data are available for only a relatively small number of
compounds, it is desirable to use a more stringent validation
procedure. In this work, the predictive value of the models is
estimated from a leave-one-out (LOO) cross-validation, as
done recently for ML models.42

In addition, in the lack of an extensive set of experimentally
confirmed HSP data, predictions are made using the present
models for the external test set and compared to previous
estimates reported in ref 2. Although the latter are deemed to
be less reliable than genuine experimental values, it must be
stressed that even the latter may exhibit significant
uncertainties. For instance, two conflicting values of
respectively 0 and 8.3 MPa1/2 are reported for the polar
component of tetrachloromethane CCl4, depending on
whether this value was estimated from the dipole moment of
the molecule (i.e., 0 D) or from group contributions. Despite
the even larger uncertainties to be expected for the test set, a
comparison between the present and earlier estimates is
meaningful as the latter values have been used successfully to
draw qualitative conclusions about practical solubility prob-
lems.
The present predictions are compared with the results

obtained using the state-of-the-art procedures, including a
reparametrization of the GC methods of ref 36 against the
present training set (the corresponding procedure is hereafter
referred to as the GC method) and very recent ML models
which were training against a slightly larger trained set of 193
solvents.42

The relative performances of various procedures are
compared using the average absolute deviation (AAD) from
reference values and the determination coefficient (R2). These
statistical indicators are calculated either for the training set
(reflecting the quality of fit), for the outcome of a cross-
validation against the training set or for the test set (thus
reflecting the predictive value of the method).
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3. RESULTS
3.1. Dispersion Component. For δd, the fitting

parameters involved in eq 10 are reported in Table 1. They

prove to be statistically well-defined. Results obtained using
this equation are shown in Figure 1. As expected, larger

deviations from reference values tend to be observed for
compounds lying outside the AD (i.e., those represented using
white squares). Propylene carbonate, dimethyl sulfone, and
formic acid are the only two compounds from the training set
for which significant deviations from experiment are observed.
Interestingly, the largest discrepancies between the present and
previous estimates tend to arise for compounds with S, Br, and
I atoms.
All in all, the results are remarkably good considering the

simplicity of the model. With an AAD of 0.68 derived from the
LOO, they are on par with gpHSP, the recent ML model based
on Gaussian processes put forward by Sanchez-Lengeling et al.
and better than any alternative state-of-the-art ML model
considered by these authors.42

In view of their typical magnitude close to 0.8 (Section
2.1.2), the experimental uncertainties on reference δd data
might appear as the limiting factor restricting the accuracy of
the present and gpHSP predictive models. However, even
better results are obtained using the GC method (AAD = 0.49
from LOO). This excellent performance might be a matter of

chance. Anyway, according to the literature results, these three
procedures are more reliable than any alternative approach,
including molecular simulations (AAD = 0.98)28 or the ANN/
QSPR model based on quantum calculations (AAD = 1.37),38

although present comparisons with the models reported in refs
28 and 38 must be considered with caution as the latter were
respectively applied to polymers and to a significant fraction of
compounds beyond the scope of the present model.
Finally, it is encouraging to observe that the AAD between

earlier (reported in the Hansen handbook) and present δd
estimates for the test set is 0.75, i.e., only slightly larger than
the value of 0.68 obtained for the training set on the basis of
genuine experimental data.

3.2. Polar Component. The parameters of the model for
δp are compiled in Table 2. HSP data estimated on this basis

are compared to reference values in Figure 2. Despite the very
small number of parameters, some values appear to be
statistically ill-defined, especially N(H1) for N atoms with
one H atom attached.
Similar to δd, the AAD derived from the LOO against the

training set (2.00) is consistent with the corresponding value
for the test set (2.08), which suggests that it correctly reflects
the predictive value of the model. Accordingly, the present
additivity scheme for δp is slightly less accurate than most
alternatives (GC: 1.75, ANN/QSPR: 1.85, gpHSP: 1.93)
except molecular simulations, which led to a value of 3.84 for
the AAD.28

The present model for δp is clearly hampered by the lack of
data to assign all parameters that would be needed for every
specific polar group that may be encountered. The value of δp
is especially seriously overestimated for picric acid, as the
calculated value of 20.3 is dramatically larger than the reference
value of 7. A similar overestimation is observed for
trinitrotoluene (18.5 instead of 10). Such deviations clearly
arise because the contributions of the nitro groups to the
overall dipole moment of the molecule cancel each other, a
cancellation that is not taken into account by any additivity
scheme.
Another interesting case is hexamethylene tetramine, a cage

molecule for which the dipole moment is expected to be zero
for symmetry reasons, leading to a null value of δp according to
the Hansen−Beerbower equation.29 In the present model, the

Table 1. Parameters Required to Estimate δd via equation
10 and the Corresponding Standard Deviations (Dev.)

value dev.

c0 93.8 13
c1 2016 184
c2 75 044 11 350

Figure 1. Presently calculated δd components versus reference
(experimental or previously calculated) data for compounds in the
training set (dark circles), test set (light circles), and out of the AD
(white squares). Main deviations from reference values are for (A)
propylene carbonate, (B) dimethyl sulfone, (C) formic acid, (D)
tetrathiafulvalene, (E) thiourea, (F) diiodomethane, (G) resorcinol,
(H) 1,1-dibromoethene, (J) 1,1,2,2-tetrabromoethane, and (K)
tetraiodothiophene.

Table 2. Parameters Required to Estimate δp via equation 1
(J mol−1)

value dev. no.

Saturated Heteroatoms
N(H1) 2783 2275 5
N(H2) 8235 1044 6
O(H0) 1603 663 95
O(H1) 4125 518 49
Cl(H0) 1637 793 10

Unsaturated Polar Moieties
CO 7492 1322 17
COOH −5494 1827 5
CO (amide) 15 972 2799 3
carbonate 19 019 3330 2
ester 3653 1643 37
CN 16 056 1451 5
nitro 13 276 2215 4
PO 20 310 4506 5
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contribution of any tertiary amine to Ep is zero within statistical
uncertainty. Therefore, the predicted value of δp is zero as well.
However, the reference value reported in the Hansen
handbook for this molecule is as high as 11.6.
In fact, taking advantage of quantum chemically derived

electrostatic descriptors is an alternative that appears especially
attractive for the polar HSP component, as it is in principle
fully determined by the charge distribution. The significance of
such descriptors for this specific component was empirically
confirmed by Sanchez-Lengeling et al.42

3.3. Hydrogen Bonding Component. The parameters of
the present model for δh based on eq 1 are compiled in Table
3. As expected, the contribution of protons bonded to O atoms
is especially large, whereas it is very small for hydrogen atoms
bonded to carbon. The latter parameter is in fact ill-defined.
However, setting its value to zero would significantly affect the
performance of the model in view of the large number of
hydrogens bonded to C atoms in organic compounds.

The performance of the resulting model is illustrated in
Figure 3. Not surprisingly, the fit is not as good as for more

extensively parametrized models. However, the AAD values of
1.55 and 1.67 derived, respectively, from the LOO against the
training set and from the application of the model to the test
set are quite satisfactory compared to alternative methods
(gpHSP: 1.57, GC: 1.95, ANN/QSPR: 2.58, molecular
simulations: 5.96). Specially large errors are observed for
small hydrogen bonded compounds clearly outside the AD of
the model, like hydrazine (H2N−NH2) or phosphoric acid
(H3PO4).

3.4. Discussion. Although the present models might
appear to lack reliability considering all presently obtained
results, the most significant errors may be anticipated on the
basis of simple physical or statistical considerations. Focusing
on standard organic compounds that may be described as
functionalized hydrocarbon backbones, and excluding other
compounds (with no/few H, C atoms, or unusual polar
groups), an accuracy on par with the state-of-the-art
techniques is obtained on the basis of only a handful of
adjustable parameters.
An obvious drawback of the present models, especially for δp

and δh, is the fact that they are restricted to the most common
functional groups. However, similar restrictions apply to any
fragment-based model. The apparent reliability of sophisticated
GC methods probably arises to some extent as a consequence
of the numerous parameters involved, and their predictive
value would probably prove lower than suggested by the good
fit reported in the literature, although the present investigation
confirms the superiority of the GC model of Stefanis and
Panayiotou for the polar component.36

Figure 2. Calculated δp components versus reference (experimental or
previously calculated) data for compounds in the training set (dark
circles), test set (light circles), and out of the AD (white squares).
Main deviations from reference values are for formamide (A),
butyrolactone (B), picric acid (C), 4-nitrophenol (D), (Z)-1,2,3-
trichloro-1-propene (E), butadiene diepoxide (F), triethanolamine
(G), phthalic anhydride (H), 2(5H)-furanone (J), succinic anhydride
(K), biuret (L), fumaronitrile (M), 2-chloroacetamide and acrylamide
(N), TNT and propionamide (O), N-acetylcaprolactam (P), diacetyl
(Q), and hexamethylene tetramine (R).

Table 3. Parameters Required to Estimate δh via equation 1
(J mol−1)

value dev. no.

HC 24.5 63 152
HN −1576 2118 4
HN (amide) 5060 3140 1
H2N 5484 547 6
HO 16 945 482 48
HO (COOH) 7094 1132 5
N 3252 813 24
O 1980 337 125
X 412 410 13

Figure 3. Calculated δh components versus reference (experimental or
previously calculated) data for compounds in the training set (dark
circles), test set (light circles), and out of the AD (white squares).
Main deviations from reference values are for 2-butanone oxime (A),
1-phenyl-2-methylamino-1-propanol (B), succinic anhydride (C), N-
methylformamide (D), formaldehyde (E), picric acid (F), thiourea
(G), tetrahydrothiophene, methyl mercaptan, and tetrathiafulvalene
(H), methyl peroxide (J), DL-lactic acid (K), hydroquinone (L),
acetylene and vinyl acetylene (M), thiophenol (N), and N-
methylaniline (O).
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4. CONCLUSIONS
The present work reports extremely simple and widely
applicable procedures allowing pencil and paper estimation
of the dispersion, polar, and hydrogen bonding components of
the Hansen solubility parameters, using only 3, 13, and 9 fitting
parameters, respectively. The simplicity of the model for the
dispersion component, taking advantage of molar refractivity
and volume, is especially remarkable.
A close examination of the results shows that the

applicability domain of these procedures is fairly broad and
well-defined in terms of molecular structural features. With the
exception of the polar component for which a previously
established group contribution method should prove more
reliable in view of its extensive parameterization, other HSP
components are predicted with about state-of-the art-reliability
from the present models. Reliable results may also be obtained
for the dispersion component for standard organic compounds
not belonging to the categories presently identified as lying
beyond the applicability domain of the method. These results
are encouraging in view of future development.
In contrast to previously available additivity methods for

HSPs, the present models are based on tailored and physically
motivated procedures to split molecules into fragments, fitted
against a comprehensive set of experimental data and validated
against an extensive test set of previously estimated values. In
contrast, other recent models, like SP or Y-MB, involve many
empirical parameters whose determination requires that the
whole database compiled in the Hansen handbook2 be used.
This has two disadvantages. First, most values included in this
large training set are estimated rather than measured, which
can lead to significant uncertainties in their values. Secondly, as
most published HSP data are included in this training set, this
only allows the model to be validated on a very limited external
test set.
The fact that introducing the molar refractivity leads to

better models for the dispersion component demonstrates that
the relative scarcity of data for HSP components can be
circumvented by the use of related ancillary properties easier to
estimate, as a result of greater simplicity or more extensive data
at hand. For instance, the fact that Hansen’s original
derivations were based around total cohesive energy density
(which may be obtained for much larger datasets than available
for HSP data), as follows naturally from their founding theory,
suggests that it might prove fruitful for improved hand-based
methods to take advantage of the database values.
Regarding the polar component, the inability of the present

model to provide data consistent with previously established
values for compounds with a low polarity arising from polar
groups pointing to opposite directions is a limitation inherent
to additivity schemes. Using three-dimensional models for
every rigid substructure encountered and/or considering
explicit charge distributions might provide a road to better
predictions.
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