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Abstract

Phylogenetic trees are crucial to many aspects of taxonomic and comparative biology. Many researchers have 
adopted Bayesian methods to estimate their phylogenetic trees. In this family of methods, a model of mor-
phological evolution is assumed to have generated the data observed by the researcher. These models make a 
variety of assumptions about the evolution of morphological characters, and these assumptions are translated 
into mathematics as parameters. The incorporation of prior distributions further allows researchers to quan-
tify their prior beliefs about the value any one parameter can take. How to translate biological knowledge into 
mathematical language is difficult, and can be confusing to many biologists. This review aims to help system-
atics researchers understand the biological meaning of common models and assumptions. Using examples 
from the insect fossil record, I will demonstrate empirically what assumptions mean in concrete terms, and 
discuss how researchers can use and understand Bayesian methods for phylogenetic estimation.
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Phylogenetic trees are central to the study of evolutionary biology. 
They establish the historical relationships between lineages, enabling 
researchers to ask further questions about a wide range of evolu-
tionary dynamics. From trait evolution (Blanchard and Moreau 
2017), to species interactions (Majer et al. 2007), to biochemistry 
(Yek and Mueller 2010), phylogenetic trees are found in all cor-
ners of the literature. And yet, phylogenetics itself is an evolving 
science. Our understanding of how to estimate a tree is tightly 
coupled to statistical and mathematical advances, as well as to our 
ever-changing understanding of organismal biology. In this review, 
I will discuss Bayesian methods for modeling morphological data for 
phylogenetic inference.

The earliest phylogenetic trees were estimated from morpho-
logical characters (Hennig and Davis 1966, Farris et al. 1970). For 
many years, morphology was the only source of data from which 
to build a phylogeny, and when molecular data sources (such as 
allozymes) became popular, the two resources were often compared 
(Mickevich and Johnson 1976). Workers building these trees pre-
dominantly used the maximum parsimony optimality criterion. This 
criterion is an application of Occam’s Razor. Under maximum par-
simony, the tree that implies the fewest changes in the data used 
to estimate it should be preferred. In the eyes of many fossil re-
searchers, parsimony reflects the vagary of the fossil record: even 
though phenotypic change over time is commonplace, it may not be 
frequently observed due to preservation (Gould and Eldredge 1977). 

Due to its analytical simplicity, researchers working with extant taxa 
have also used the criterion widely.

As DNA sequence data became more accessible to researchers, 
method development began to cater more to the needs of molecular 
systematists, with the initial implementations of parametric models 
tested on DNA data (Felsenstein 1981). Attempts to model DNA 
and amino acid evolution first drove the development of mathem-
atical representations of evolutionary processes (Jukes and Cantor 
1969, Kimura 1980, Felsenstein 1981, Hasegawa et al. 1985, Tavaré 
1986). These methods became very common for analyzing DNA 
data because parsimony has been documented to provide positively 
misleading inferences in some cases (Felsenstein 1978). Under par-
simony, similarities are interpreted as evidence of common ancestry. 
In cases where changes are homoplasious or superimposed (i.e., mul-
tiple changes at the same character on a branch), parsimony can 
become inconsistent. In small state-space problems (such as nucleo-
tides, with only four possible character states), this inconsistency can 
cause what is known as long-branch attraction, in which taxa are 
grouped together by homoplasious similarity. Parametric methods, 
such as likelihood and Bayesian estimation, have the ability to 
account for parallel or convergent evolution.

However, molecular data exhibit properties and expect-
ations that are distinct from morphological datasets (Wright et al. 
2016, Goloboff et  al. 2019). In 2001, the first likelihood model 
for estimating phylogeny from discrete morphological data was 
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published (Lewis 2001). Called the Markov K-States (Mk) model, 
the model made the same assumptions as the simple Jukes-Cantor 
model for molecular sequence evolution (Jukes and Cantor 1969, see 
section ‘Bayesian modeling of morphology for phylogenetic estima-
tion’ for details of this model). In the time since the proposal of this 
model, the role of morphological data in phylogenetic estimation has 
changed greatly. While estimation of phylogeny from morphological 
data remained fairly common (see landmark studies using Bayesian 
methods, such as Nylander et al. 2004 and Clarke and Middleton 
2008), it also became common for fossils to be included without any 
morphological data coded and used as ‘calibration’ points to date 
phylogenetic trees (Marshall 2008). Even when molecular data are 
available, morphology and fossils are recognized for being key fac-
tors in modeling past evolutionary dynamics (e.g., Moreau and Bell 
2013), uncovering historical trends in trait evolution (e.g., Blanchard 
and Moreau 2017, Branstetter et al. 2017, Mueller et al. 2018), and 
in phylogeographic inference (e.g., Moreau et al. 2006, Barden et al. 
2017). Likewise, methods for time-scaling phylogenetic trees have 
more thoroughly embraced the use of morphological data, and 
models now allow for morphology to be modeled jointly with mo-
lecular data and stratigraphic data to estimate time since divergence 
(Heath et al. 2014, Gavryushkina et al. 2017).

There is a new world of methods for working with morpho-
logical data. This new world is rich in statistical and computational 
thinking. In this review, I  will discuss some of the fundamentals 
needed to understand how many of the newer methods and models 
work, their biological interpretation, and how they correspond to 
traditional methods, such as parsimony.

What is Bayesian Modeling?

Bayesian methods have become very commonplace in molecular 
systematics research. These methods seek to apply mathematical 
models to questions of phylogenetics, phylogeography, divergence 
time estimation, and comparative methods in order to estimate a 
distribution of plausible solutions to biological problems. Initially 
described in the 18th century, Bayesian methods are not unique to 
systematics, having been applied to nearly every field of study over 
the past century (McGrayne 2011). Fundamentally, and across all 
fields, a Bayesian model involves three pieces: a likelihood model 
describing the process that generated the data, statistical distribu-
tions representing prior beliefs about the process that generated the 
data, and the posterior distribution, representing the knowledge 
synthesized from the previous two parts. Methods to apply Bayesian 
analysis to phylogeny were proposed in the late 1990s (Rannala and 
Yang 1996, Mau and Newton 1997). Analytical software to make 
Bayesian methods available to systematic biologists became widely 
available around the turn of the century (Huelsenbeck and Ronquist 
2001). Since that time, many models have been implemented for the 
analysis of biological data in a Bayesian context.

What is a Model?
At the heart of the discussion of Bayesian methodology is a discus-
sion of models. A  model is a mathematical construct used to de-
scribe the process that generated a set of observed data. Models are 
defined by their assumptions. Assumptions are statements of what 
the researcher believes to be true about their data. For example, a 
common statistical assumption is that observations are independent 
and identically distributed. If this were true, this would mean that 
each data point is independent, or that it does not depend on any 
other data point in the data that have been collected. It would also 

mean that every data point in the data set is described by the same 
model. In model-based systematics, the given model makes assump-
tions about the process of evolution that generated the data that 
have been collected (also called the observed data). Because a model 
is a mathematical construct, the assumptions will then be translated 
into parameters, or quantities describing facets of the process which 
generated the data.

Let us take a dataset from Barden and Grimaldi (2016). In this 
dataset, we have 13 ant taxa from the fossil record, five outgroups, 
and several extant ants. There are 42 characters, some binary (two 
states, usually 0 and 1) and some multistate (three or more states). 
One common model, equal-weights parsimony (Hennig and Davis 
1966), makes the assumption that any state at a character is equally 
likely to transition to any other character state, but that each of the 
42 characters in the character matrix can have their own length 
(number of changes) on a shared topology. Another common model, 
the Mk model (Lewis 2001), makes the same assumptions about 
character state transitions (called exchangeabilities) but assumes 
that the 42 characters share a common underlying tree and branch 
lengths. The difference between these two models may not sound 
large, but it has implications for the methods by which we infer the 
tree from the data, as we will discuss below.

In the case of the Mk model, the model parameters will be a 
tree, a set of branch lengths on that tree (i.e., the expected number 
of substitutions between a node and its descendants), and a rate of 
exchange between different states in the model. Using a model, we 
can evaluate the likelihood of each character in our dataset given 
the parameters in the model. These likelihood values are typically 
on a log scale to avoid problems storing them in the computer’s 
memory. The individual character likelihoods are summed to com-
pute the total likelihood of the dataset given the model. This is seen 
in Fig. 1. When we work with a mathematical model, we calculate 
how likely we are to observe our data, given the assumptions we are 
making about the underlying process of evolution. In the case of par-
simony, the model is similar, except every character can have its own 
number of steps (character transitions) on a unified tree, potentially 
expanding to 42 sets of unique branch lengths.

There are other models that make more complex assumptions, 
and make assumptions not solely about the exchangeabilities of 
characters, but about the distribution of speciation events on a 
tree, or about correlation between characters. We will discuss these 
methods more in the section ‘Bayesian modeling of morphology for 
phylogenetic estimation’. Regardless of what precise models are 
being discussed, the key point for systematists to understand is that 
every model makes assumptions, and it is crucial to think about 
how well-aligned a particular model and its assumptions are to the 
observed data.

Bayesian methods are not the only methods to use models. 
Parsimony can be considered a model. Maximum likelihood estima-
tion assumes a model of character evolution. Under maximum like-
lihood, combinations of parameters are scored for their likelihood 
until a combination of parameters is found that maximizes the like-
lihood of the data. The key difference between maximum likelihood 
and Bayesian modeling is described in the next section.

What is a Prior?
Crucial to the Bayesian methodology is the incorporation of uncer-
tainty. In the case of our 42 characters, we may be able to make 
some statements about that which we believe to be true about the 
underlying tree, branch lengths, and exchangeabilities. For example, 
the matrix was scored to uncover the relationship of Cretaceous 
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ants relative to modern lineages (Barden and Grimaldi 2016). Some 
of these stem ants retain some characteristics of the wasp outgroup 
(Wilson et al. 1967). Some of these features are subsequently lost in 
crown-group ants. In these characters, we might expect to see more 
transitions from a ‘presence’ character state to an ‘absence’ character 
state. But how strong should this bias be? Are these the only char-
acters in which we expect to see this bias? What do we expect the 
magnitude of the bias to be? Bayesian modeling enables us to use a 
prior distribution to describe our beliefs about parameters of our 
model. This can be seen in Fig. 2.

In Bayesian inference, the value a parameter can take may be 
fixed, meaning it is given to the analysis by the researcher, and not 
estimated from the data. Alternatively, the parameter value may be 
a random variable, meaning different values may be sampled for 
the parameter over the course of the analysis. The prior allows re-
searchers to place a probability distribution on a parameter, which 
specifies how likely the random variable is to take on a specific set 
of values. A probability distribution provides the probabilities of dif-
ferent outcomes or solutions in the estimation.

The type of prior a researcher places on a parameter will dictate 
the types of estimated values one is likely to see in the results of a 
Bayesian analysis. For example, using an exponential distribution 
with a rate of 10 on branch lengths is quite common. This distri-
bution can be seen in Fig. 3. The reason for this choice is that most 
branch lengths are observed to be fairly short. The exponential (10) 
distribution specifies this, while also allowing for some branches to 
be longer.

As we will discuss below, the prior is not absolute. A prior can be 
enforced with different weights, according to the researcher’s prior 
beliefs. For example, a lightly enforced prior can easily be overturned 

by the weight of evidence. Little evidence will be required to break 
free of its influence. However, a more strongly enforced prior will 
need stronger observed data to overturn it. In this case, the values 
evaluated during the analysis will almost all be drawn from the prior. 
In practice, it can be difficult to choose a logical prior, and many 
biologists choose vague and lightly enforced priors.

How do the Prior and the Posterior Fit 
Together?

Bayesian modeling differs from other types of model-based inference 
due to the incorporation of the prior. Bayes’ theorem is given in Fig. 
2. In Bayes’ theorem, the probability of the observed data (the likeli-
hood) given some hypothesis is multiplied by the prior probability of 
that hypothesis. This product is divided by the marginal probability 
of the observed data, meaning the probability of the data with the 
parameter values integrated out. The end result is the probability of 
the hypothesis given the observed data. This probability is called the 
posterior probability, and it is proportional to the product of the 
prior and the likelihood.

This is a challenging quantity to calculate—what is the mar-
ginal likelihood of the data? We evaluate combinations of values 
for our parameters using Markov Chain Monte Carlo, or MCMC, 
simulation (Metropolis et  al. 1953, Hastings 1970, Mau et  al. 
1999). MCMC allows new random values for each parameter to 
be proposed, so that the solutions can be evaluated. In the MCMC 
algorithm, an initial set of values for the model parameters is pro-
posed. These values are then changed, and new values obtained. 
This is the ‘Monte Carlo’ aspect of the name: we choose new values 
at random, though often within some constraining conditions. The 

Fig. 1. This figure displays a character matrix of three binary characters for four taxa. Equation (a) describes the likelihood of a single character. The expression 
can be read as a character likelihood being equal to the probability of the observed data given the tree, branch lengths, and assumptions (collectively called the 
model) about the evolutionary process that generated the observed data. Equation (b) demonstrates another way of expressing the same idea—in this case, 
that the model being represented by the value theta. Equation (c) demonstrates how character likelihoods are summed to give a total likelihood of the dataset.

Fig. 2. Bayes theorem. Panel ‘a’ shows all the terms of Bayes’ theorem. (a) is read ‘the probability of the model given the data’, and refers to the posterior 
probability. (b) is the likelihood, and is read ‘the probability of the data given the model’. (c) is the prior probability of the model. (d) is the marginal probability 
of the data. Panel ‘b’ shows the same equation, but with which terms are model assumptions and which terms are observed data annotated.
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act of changing the values for the parameters is often referred to as 
a ‘move’. These new parameters are then evaluated. The product of 
the likelihood and the prior is calculated, approximating the pos-
terior probability. Generally, if the posterior probability improves 
on the old values or is the same, the evaluated parameter values 
will be kept and used as the basis for the next set of moves. The 
MCMC algorithm is shown in Fig. 4.

A move may be large in scale, changing a particular parameter 
radically, or it may be small in scale, making only minor changes 
to a parameter. Moves also vary in how often they are performed. 
More important model parameters may be ‘moved’ more often in 
order to estimate good solutions for them. Previous states tested 
by the MCMC algorithm are not considered when making moves. 
That is why this process is a ‘Markov Chain’, or memoryless process. 

Previously visited solutions are not removed from the population 
of possible solutions; therefore, a truly good solution will be re-
visited many times during MCMC sampling. The goal of MCMC 
sampling is to visit solutions in proportion to their posterior prob-
ability. Regions of parameter space can be included or excluded from 
MCMC sampling through the use of priors. A well-specified model 
will eventually converge to the true distribution of each random 
variable. By sampling many possible combinations of parameters 
over the course of a phylogenetic estimation, we estimate the pos-
terior without having to explicitly calculate the marginal likelihood. 
This allows us to complete the equation shown in Fig. 2 in order to 
calculate the posterior probability.

While MCMC does not consider its previous steps in taking 
new ones, most phylogenetics software packages do write out the 
previous combinations of parameters. What is produced is often 
termed the posterior sample, a log of the trees, branch lengths, and 
model parameters that were examined during the phylogenetic ana-
lysis. Summary trees can then be built from this sample, and the 
degree of confidence in any particular bipartition on the tree as-
sessed. How often different solutions for any particular parameter 
were visited can also be assessed. The consideration of a posterior 
sample of phylogenetic trees is somewhat different than other ways 
of estimating trees and has implications for how researchers should 
consider broader macroevolutionary analyses.

What are Morphological Data?

In the section ‘What is a model?’, I outlined Lewis’ Mk model for 
estimating phylogeny from discrete morphological data. Before we 
think about coherent models of morphological evolution, we need to 
think about what morphological data are. What are the properties 
of morphological data, and how are morphological data collected? 
Broadly, morphological data often fall into two categories, discrete 
and continuous. These data types differ greatly, with implications for 
how they can be analyzed.
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Fig. 4. Flowchart of the MCMC algorithm. In the MCMC algorithm, initial conditions are proposed and evaluated for likelihood. Then, the tree and/or other model 
parameters are changed. The likelihood of these new values is then evaluated. If they represent an improvement over the old ones, they are used to seed the 
next MCMC step. If not, they are rejected.

Fig. 3. Schematic of an exponential (10) distribution. A  commonly used 
distribution in Bayesian phylogenetics, the exponential is often used to place 
a prior on branch lengths. Under the exponential (10), most branch lengths 
are expected to be fairly short (to the left-hand side of the distribution), 
though longer branches are allowed.
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Discrete Morphological Data
Discrete data can be found in many fields, not just phylogenetics. Any 
data that can be broken into distinct and nonoverlapping classes may 
be considered discrete. In Bayesian phylogenetics, much of the work 
on morphology has focused on discrete traits (Lewis 2001, Nylander 
et al. 2004, Ronquist et al. 2012, Heath et al. 2014, Wright and Hillis 
2014, Harrison and Larsson 2015, Wright et al. 2016), in part due 
to the availability of methods to work with molecular data, which is 
also discrete. In these cases, an individual character is broken down 
into states, each with diagnostic morphology. Our example matrix 
from Barden and Grimaldi (2016) is made up of discrete characters 
(see Supplemental Information to look at the matrix).

Discrete characters can be broken down into categories. Binary 
data are characters which have two states, typically 0 and 1. These 
states often correspond to presence (1) and absence (0). Alternatively, 
they may have more complex diagnoses, such as specific morpho-
logical features assigned to the 0 and 1 states. An example of this 
type of character from the Barden and Grimaldi matrix is ‘Anterior 
margin of clypeus with row of peg-like denticles’. This character refers 
to setae on the margin of the clypeus. In this case, we have a trait that 
is described qualitatively. This character is broken down into present 
(1) and absent (0). Multistate characters are those characters which 
are broken down into more than two character states. In these char-
acters, each state corresponds to a specific morphology, though 0 may 
still correspond to absent. An example of this character type from 
the Barden and Grimaldi dataset is the ‘Mandibular shape’, which is 
broken into six states, each with a clear definition of the morphology 
of each state. More examples of discrete traits can be seen in Fig. 5.

Characters may be coded with respect to what is called polarity 
(De Queiroz 1985, Stevens 1991). In these cases, the phylogeny has 
informed the way in which the character is coded. The result of this 
is that one character state is designated pleisiomorphic (ancestral), 
and one is denoted apomorphic (derived) a priori. This is often 
seen in the form of the 0 state representing the state possessed by 
outgroup, or the purported ancestral state (Watrous and Wheeler 
1981). Researchers may also choose to use ordering, in which they 
specify that changes must occur in a specific order. For example, if 
the character states are 0, 1, and 2, an ordered character may be spe-
cified such that the 0 → 2 transition is not allowed, but must instead 
be a 0 → 1 change followed by a 1 → 2 change.

The act of choosing which characters to use, and what the states 
should be is typically performed by an expert examining popula-
tions of samples, and deciding which facets of organismal form 
vary, and what variation is considered phylogenetically inform-
ative. Phylogenetically informative refers to whether or not a char-
acter can be used to favor one set of bipartitions on a tree over 
another under the parsimony criterion. For example, a character 
which does not vary in the set of taxa on the tree is not considered 
to be phylogenetically informative because it will have the same 
parsimony score on any set of bipartitions. These characters are 
called ‘invariant’. Invariant characters are common in molecular 
data, but are often not scored in morphological data. Likewise, 
a character for which every taxon has a different character state 
is not considered phylogenetically informative because it will also 
have the same parsimony score on any set of bipartitions. A char-
acter which varies among the set of taxa, but is shared by at least 
two tips on the tree is considered phylogenetically informative. 
A schematic of this concept is in Fig. 6.

All of the above concepts—character coding, polarity, phylogen-
etic informativeness—have implications for modeling the data, and 
will be discussed in the section ‘Bayesian modeling of morphology 
for phylogenetic estimation’.

Continuous Characters
Continuous characters are those characters that cannot be broken 
into discrete states as easily (Fig. 5). Examples of these types of char-
acters may include height, weight, or the length of a structure on the 
body. These traits can take on the value of any real number and may 
represent a specific morphometric observation from one individual, 
or another measurement, such as the mean of some trait in a popu-
lation of individuals. As such, continuous characters are often also 
referred to as quantitative characters, as they cannot be described 
qualitatively.

In the case of discrete data, there is typically an expert observer 
choosing which characters are worth collecting, as outlined in the 
previous section. Expert observers also play a role in the collection 
of continuous data. When a specific structure is being measured, this 
is typically chosen by an expert observer because it varies within the 
set of taxa that will be placed on the tree. Some researchers choose to 
then discretize the data into categories of variation (i.e., gap-coding, 
Mickevich and Johnson 1976, Thorpe 1982, Thiele 1993, Lawing 
et al. 2008, Randle and Sansom 2017).

In the case of landmark-based morphometrics, the data are the 
coordinates of the location of distinct anatomical features on the or-
ganism. The landmarks are typically decided upon by an expert and 
are homologous across the sample of organisms. This may be done in 
2-D, such as from an image, or in 3-D, such as from a computer-based 
anatomical scan. While an expert has traditionally been required for 
this type of analysis, recent work has explored crowd-sourcing this 
type of data collection (Chang and Alfaro 2016). Landmarks can 
also be defined automatically, without the use of an expert (Aneja 
et  al. 2015, Li et  al. 2017). Automated landmarking typically re-
quires a high-quality 3-D scan of the specimen to be quantified, and 
some way to normalize the size and view of the scan (Chollet et al. 
2014). These methods are promising because they allow the collec-
tion of larger datasets with less time investment, but also they avoid 
observer bias about which facets of the individual are important, 
and have error sources that are easier to detect and correct (Li et al. 
2017).

Lesser-used forms of continuous data may include sonic informa-
tion (May-Collado et al. 2007, Escalona Sulbarán et al. 2019), and 
behavioral information (Blomberg et  al. 2003, C. R. Turner et  al. 
2007). Traits of this nature are typically not used in cladistic model-
based phylogenetic estimation, but rather for the inference of macro-
evolutionary patterns.

Bayesian Modeling of Morphology for 
Phylogenetic Estimation

Discrete Morphological Data
The manner in which discrete morphological data are collected 
introduces potential biases into phylogenetic estimation. Since many 
of the modern methods for handling phylogenetic data were de-
scribed to handle molecular data, it is instructive to contrast mo-
lecular and morphological data. Molecular sequence data has a 
defined number of states (four for nucleotides, 20 for amino acids), 
and it is generally assumed that an instance of one particular mol-
ecule will have the same properties across the sequence. These as-
sumptions do not hold for morphological data. A change between 
one state and another (say between 0 and 1) at one character might 
require only a small underlying genetic change. That same change 
at another character may involve wholly different underlying mo-
lecular machinery, and be of a much larger magnitude. For example, 
Fig. 5 shows two different discrete morphological characters. In 
panel A, we have the metapleural gland opening. The metapleural 
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gland has chemosensory and communication function. A  slit-like 
metapleural opening can be used in a brush-like manner, implying 
a role in signaling, and perhaps correlation with behavioral traits 

(Yek and Meuller 2010). In panel B, we have the number of antennae 
segments. To change states in this character means to lose or gain a 
repeat of an already-repetitive structure. To specify one model that 
adequately describes the probabilities of observing changes in both 
these characters may not be possible. The lack of ability to specify a 
single mechanism across the whole dataset has long limited the types 
of models that can be considered for morphology.

Due to these difficulties, discrete morphology has been analyzed 
under a very simple model. This model is often referred to as the Mk 
model of morphological evolution (Lewis 2001). This is a general-
ization of the Jukes-Cantor model for molecular sequence evolution 
(Jukes and Cantor 1969). As such, it makes the same set of assump-
tions. We will now discuss what these assumptions are, what they 
mean for character evolution, and how priors on these assumptions 
can be used to enable more flexible models of evolution.

Exchangeabilities define the rate at which we expect a given 
change between two character states. In the Jukes-Cantor model, 
the exchangeabilities between any state and any other state are held 
to be equal. A Q-matrix, the matrix specifying the likelihood of dif-
ferent transitions at a given instant in evolutionary time can be seen 
in the equation on Fig. 7a. In the case of morphological data, this 
means that the probability of transitioning between one character 
state and any other are equal. If we have binary, presence-absence 
data, these data would be equally likely to show gains as losses. 
However, in molecular phylogenetics, the probability of observing 

Fig. 5. A drawing showing different types of characters. In the center is Sphecomyrma freyi Wilson 1967 (Hymenoptera: Formicidae), a Cretaceous ant (Wilson 
1967). Ant silhouette via T. Michael Keesey. (A) shows a binary discrete trait, fusion of the petiole. This trait has two possible states—fused and unfused. The 
distribution beside it shows how common each of the two character states are in the Barden and Grimaldi (2016) dataset. (B) shows a discrete, multistate trait. 
The number of antennal segments can take on multiple possible values, though only three are observed in the dataset. (C) shows a hypothetical continuous 
trait, tarsus length. Continuous traits can take on any real number, not only discrete values.

Fig. 6. The parsimony length of three characters on a single tree. Each 
character has been scored for how many changes it exhibits on the displayed 
tree. Character one is not considered parsimony informative, as every tip on 
the tree has a different state, and therefore, it cannot be used to discriminate 
among trees. Character three is non-informative because it has no variation. 
Character two is considered informative because it favors trees containing 
one grouping over another. Under parsimony, characters one and three 
would not be collected. Under a Bayesian model, not observing invariant 
characters must be corrected for in order to avoid overestimating the true 
rate of evolutionary change (Lewis 2001).
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a change depends on two quantities: the exchangeability, and the 
equilibrium frequency of the starting state. The Jukes-Cantor model 
assumes the character states have equal equilibrium frequency. This 
can be seen in Fig. 7c stationary state frequencies define how many 
of each state we would expect to see if the process of evolution were 
allowed to continue infinitely long (allowed to equilibrate). Even if 
the exchangeability between two states is high, if the starting state 
is rare, we will observe that change rarely (Felsenstein 1981). The 
default assumption of the Mk and Jukes-Cantor models is that equi-
librium character frequencies are equal. Taken with the assumption 
of equal exchangeabilities, this disallows differential rates of change 
between character states.

This assumption likely strikes many readers as unrealistic. 
Bayesian methods provide us a solution to escape this problem-
atic assumption. In a Bayesian context, assumptions are translated 
into mathematics as model parameters. The value of a parameter 
is usually treated as a random variable, and we can use priors to 
create distributions of values that the random variable is likely to 
take. Under parsimony, individual characters having differential 
probabilities on state transitions is often handled by specifying a 
transition matrix with the desired weights on different changes. 
For example, if it is considered more likely to lose a character state 
(transition from a 1 state to a 0 state) than to gain another state 
(transition from a 0 state to a 1 state), a step matrix can be speci-
fied for that character that penalizes 0 to 1 transitions. This can be 
seen in Fig. 7d. This is, functionally, an extremely strong prior on 
certain types of changes. The correspondence between parsimony 
and Bayesian methods is discussed in ‘Interpretation of Bayesian 
and parsimony analyses’.

In the example of differential rates of character state changes, in 
a Bayesian framework, one can place a prior on the state frequencies, 
biasing the parameter towards taking on values in a specified distri-
bution. In the case of state frequencies, one approach to allow vari-
ation has been to use a Beta prior for binary data, or a Dirichlet prior 
for multistate data (Nylander et al. 2004, Wright et al. 2016). When 
values are sampled for the parameter, the posterior is proportional 
to the model likelihood times prior on the parameter. In the case of 
data that are strongly informative, the prior could be overwhelmed 
by the data. If the data are weakly informative, the prior will likely 
dominate the posterior distribution. In practice, this allows us to 
sample different character state frequencies. If the frequency of a 
character state is very high, we will observe more transitions from 
that character state to other character states. Practically, this allows 
for different rates of change between states to be sampled in the ana-
lysis, informed by the data, as opposed to being fixed as they would 
in a parsimony analysis.

Bayesian methods open the door to using mixture models. 
Mixture models treat the total dataset as an aggregate of smaller 
populations, which may have different parameter values. A common 
example of this is the use of among-character rate variation (ACRV) 
(Yang 1994). One long-acknowledged issue in phylogenetics is that 
not all sites in a molecular alignment or characters in a data matrix 
will evolve at the same rate (Fitch and Margoliash 1967, Yang 1996). 
Declining to model this variation can lead to incorrect inferences 
(i.e., Sullivan et  al. 1996, Buckley et  al. 2001; see also discussion 
in Sullivan and Joyce 2005). Under this model, the rate of evolu-
tion at any one character is assumed to be drawn from a Gamma 
distribution. Because approximating a continuous Gamma distri-
bution would be too computationally intensive, a discrete Gamma 
distribution with a user-specified number of categories is used. Four 
categories have been supported in some empirical studies and is a 
common default value in phylogenetics software. When this value is 

chosen, there are four rate categories used to describe the data (i.e., 
for subpopulations in the mixture model).

This same framework can be applied to other parameters. 
Relaxing character change symmetry has been accomplished using 
similar principles (Nylander et al. 2004, Wright et al. 2016). When 
we place a prior on character frequencies, this is typically done as 
a mixture model. In this case, the Beta distribution (binary data) 
or Dirichlet distribution (multistate data) is typically discretized 
into several categories. The likelihood is then computed according 
to each category and summed to generate a character likelihood. 
Treating character rates, or character change asymmetry, as a mix-
ture model allows the dataset to potentially have multiple classes of 
transition rate symmetry for a given dataset. Each class specifies the 
same model parameters but allows those parameters to take on dif-
ferent values. In this way, there can be multiple rates of evolution, or 
multiple 0 to 1 transition rates, in the dataset.

In Bayesian analysis, it can be confusing for researchers to under-
stand what is the model, what is the prior, and how each part affects 
the analysis. Parameters define what a researcher believes are the 
key facets of the process by which the data were generated. A prior 
specifies a range of values for that parameter that the researchers 
consider reasonable.

Continuous Data
Continuous data have been less commonly used for phylogenetic in-
ference. As discussed in the section ‘What are morphological data?’, 
continuous data are often discretized before being used in phylo-
genetic analysis. This, however, introduces an element of user in-
terpretation to the data that does not otherwise need to exist, and 
is not modeled explicitly when analyzing the data (Wiens 2001). 
Continuous data have often been used for what is termed com-
parative phylogenetic analysis or macroevolutionary analysis (see 
examples and discussions in Felsenstein 1988, Maddison 1991, 

Fig. 7. A schematic showing common assumptions about character evolution. 
(a) shows the Q-matrix under the Mk model for binary data. This corresponds 
to the assumptions on the right-hand side of the figure, that a character is 
equally likely to change from a 0 state to a 1 state as the reverse. (b) shows 
the same assumptions, expanded to a multistate character. (c) shows a 
Q-matrix with each character state allowed to have a different stationary 
character frequency, enabling different 0 → 1 and 1 → 0 rates. (d) displays 
a parsimony step matrix that penalizes 0  → 1 transitions. In (d), the rows 
represent the starting state, and the columns represent the state to which the 
character is changing.
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O’Meara et al. 2006, Felsenstein 2011, Beaulieu et al. 2012, Landis 
et al. 2013, Cooper et al. 2016). Despite their relatively rare use for 
Bayesian inference, these data have a longer history of use in par-
simony (Goloboff et  al. 2006) and been demonstrated to contain 
phylogenetic signal (Smith and Hendricks 2013).

The rich history of using continuous characters for comparative 
analysis enables those same models to be used for phylogenetic es-
timation. Brownian motion has been used to model trait data for 
phylogenetic estimation (Parins-Fukuchi 2017). Brownian motion 
is used to model the value of continuously varying data over time 
(Butler and King 2004, O’Meara et al. 2006). This model is often 
referred to as the ‘random walk’, due to the fact that in any time 
interval, the value of a trait can change randomly in both direc-
tion (positive or negative) and magnitude (small or large changes). 
Brownian motion was originally used to describe the movement of 
particles suspended in fluids. In biology, Brownian motion may be 
compatible with a number (or combination) of evolutionary forces 
(see discussion in Harmon 2018 for more context).

In a Brownian motion model, evolution is typically described by 
two parameters: the mean trait value, X, at the start of a particular 
time interval, and the evolutionary rate parameter, σ. X will be the 
value with which the trait can ‘walk’ during the time interval. σ will de-
termine the magnitude with the trait will step away from X. Changes 
are expected to be distributed according to a normal distribution with 
mean 0 and variance proportional to the rate and duration of the time 
interval. At very short time intervals, we expect to see little change. 
For long intervals, we expect the normal to become wider and wider, 
indicating that the amount of change has the potential to be larger.

Brownian motion has been used to model the evolution of traits 
on a tree. Recently, it has been implemented for phylogenetic esti-
mation in both dated and undated trees. Simulation research indi-
cates that estimating phylogenetic trees from continuous characters 
simulated under Brownian motion can lead to lower topological 
error than discrete morphological traits (Parins-Fukuchi 2017). In 
particular, this is true in datasets with multiple rates of evolution. 
Wright and Hillis (2014) demonstrated that in discrete morpho-
logical traits, phylogenetic error is very high for characters with 
low rates of evolutionary change (due to low signal), and characters 
with very high rates of evolution (due to homoplasy of changes). 
Continuous characters do not display this relationship as strongly 
due to their large state space, though more research is needed to 
demonstrate this effect empirically.

Use of continuous characters is promising because the Brownian 
motion model is fairly lightweight, relative to some Bayesian 
methods for discrete characters. This allows for each character to 
have its own σ, enabling multiple mechanisms in a dataset without 
having to calculate a character likelihood according to multiple Beta 
categories (Parins-Fukuchi 2018). Expectations about the evolution 
of continuous characters are complex, but Brownian motion can be 
expanded to accommodate them. For example, characters are ex-
pected to covary in a Brownian motion framework. This character 
correlation can be accounted for by estimating a correlation matrix 
from individuals in a lineage (Álvarez-Carretero et  al. 2019). If 
within-lineage correlation is not accounted for, morphological evo-
lution rates will be overestimated, possibly leading to branch length 
and topology error. The correlation matrix can be used to correct 
within-lineage character correlation. Because the lineages are all con-
nected by an underlying phylogeny, character correlation may also 
occur among lineages. The correlation matrix can then be used to 
establish a correlation matrix among lineages, as well.

The use of continuous characters in morphological phylogenetics 
is an exciting prospect along several lines. Firstly, Brownian motion 

is one of many comparative models of evolution (for a review of 
many different models, see Harmon 2018). Others could be substi-
tuted, or multiple models used among characters. Even in the case 
that other models are not explored, the Brownian motion can cor-
respond to different biological interpretations. Brownian motion is 
typically interpreted to be analogous to traits evolving under drift, 
having no selective optima. Prior work demonstrates that several 
models incorporating selection still appear indistinguishable from 
Brownian motion (Martins and Hansen 1996). In sum, there are a 
variety of mechanisms that could be described by Brownian motion, 
such that the researcher does not have to explicitly choose a model 
corresponding to a given mechanism.

Secondly, these implementations are exciting because they en-
able the use of a third independent data source (continuous char-
acter data), modeled under different assumptions. Modeling traits 
according to Brownian motion to estimate a phylogeny from con-
tinuous trait data allows researchers to work in the same MCMC 
framework for continuous, discrete, and discrete molecular data. 
Using all available data will enable researchers to validate the tree 
among sources, and formulate testable hypotheses of how model as-
sumptions may impact the tree estimated. This also opens the path 
to perform joint estimation across multiple types of data. Indeed, 
fossil datasets are often limited in size (Wright et al. 2016). Opening 
up new paths to collect data, particularly if automation of data col-
lection becomes commonplace, will allow researchers to make com-
plete use of specimens.

How Does Bayesian Modeling Differ From 
Parsimony?

I have said very little thus far in this review about parsimony. My 
main purpose has been to lay out how Bayesian modeling of morph-
ology works in a phylogenetic context. Parsimony is still a dominant 
optimality criterion in morphological phylogenetics. It is informative 
to look at how the assumptions, mechanisms, and interpretation of 
Bayesian and parsimony methods are similar, and how they are dif-
ferent. There are two main comparisons I would like to make be-
tween the two criteria: assumptions made about the evolutionary 
process, interpretation of parsimony and Bayesian analysis.

Assumptions About the Evolutionary Process
Parsimony can come in several variations, just as we can relax 
various assumptions of the Mk model. The most common variation 
is equal-weight parsimony. This typically refers to an application of 
parsimony in which it is held that any change between any two char-
acter states is weighted equally, and all characters contribute equally 
to the tree search. In this case, a change from 0 to a 1 state is as 
likely as a reversal between the two. Superficially, this is quite similar 
to one of the chief assumptions of the Mk model—that character 
changes are symmetrical.

However, there are core differences between parsimony and 
Bayesian approaches which change the results and interpretation of 
these two ways of estimating trees. In a Bayesian analysis, values are 
sampled for each of the parameters in the model, including branch 
lengths. Branch lengths are typically sampled as number of expected 
character changes per character. In a parsimony analysis, the tree 
that is favored is the one that minimizes the number of changes in 
the dataset across that tree. Each character may have its own number 
of steps on the tree. The final branch lengths represent the number of 
changes in the dataset along each branch, as a whole number, rather 
than a rate. This has desirable properties—in a maximum parsimony 
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analysis, character changes can be mapped to specific branches. In 
Bayesian estimation, either more complex models or post-hoc ana-
lyses (Pagel 1999, Nielsen 2002, Bollback 2006, Maddison et  al. 
2007, FitzJohn et al. 2009, FitzJohn 2012, Revell 2012) are required 
to do this.

Advocates for parsimony often point to the aforementioned 
as a positive. Parsimony is often referred to as a ‘No Common 
Mechanisms model’ (NCM), which allows every character in the 
character matrix to have its own number of steps on a common tree 
(Tuffley and Steel 1997). This is intuitively appealing—it is unlikely 
that every character in a matrix evolves at the same rate. Allowing 
each character to have its own rate of evolution means that no 
matter how different the rates actually are, they can be accommo-
dated. However, this same assumption makes it impossible to choose 
a likelihood implementation of the NCM model via even liberal in-
formation criteria due to its parameter richness (Holder et al. 2010). 
The number of parameters to be estimated grows extremely rapidly 
as more taxa and characters included in the analysis. Model selec-
tion techniques typically attempt to balance parameter richness with 
how much the fit of the model to the data improves with those add-
itional parameters. Statistical model selection procedures indicate 
that the NCM model is so complex as to never be statistically justi-
fied, meaning that the increase in explanatory power of the model is 
never justified given the number of parameters added. What a model 
selection technique cannot tell you is if the added parameters add 
biological realism. There may very well be reasons why, even in the 
absence of statistical evidence, researchers consider the assumptions 
of parsimony to make more sense for their data. The purpose of this 
review is not to argue for one method over another, but to lay the 
groundwork for researchers to understand the underlying assump-
tions of these two different types of phylogenetic estimation.

Bayesian estimation can enable researchers to relax the assump-
tions of the Mk model (Nylander et al. 2004, Wright et al. 2016). 
Parsimony also allows users to specify alternatives to equal-weight 
parsimony. A parsimony step matrix can be specified, which allows 
researchers to place different weights on various character state tran-
sitions. For example, if a researcher believed it would be easy to lose 
a trait, but hard to regain it, they could weight the loss lightly, and 
the gain heavily (Hennig and Davis 1966, Moss and Hendrickson 
1973, Farris 1977, Ree and Donoghue 1998). Then, when the par-
simony tree is estimated, trees that contain gains of the trait will 
have to compensate by minimizing parsimony steps in other parts 
of the dataset. This penalizes trees containing the penalized gain. 
Researchers can specify custom step matrices for every character in 
the matrix, if desired. This flexibility enables researchers to, in effect, 
completely control the tree estimated through a priori specifications 
of the types of changes that can be seen. Specifying a step matrix 
can be thought of as a type of very strong prior. However, where 
Bayesian estimation has a variety of well-characterized model selec-
tion tools to evaluate the statistical appropriateness of a particular 
prior, there is a little statistical framework for evaluating the effect 
and appropriateness of assumptions made in a parsimony context.

There is another type of weighting that has become popular. 
This type is referred to as character weighting (Farris 1969). In a 
dataset with character weighting applied, changes in certain charac-
ters are held to count more towards the parsimony score than others. 
This often takes the form of downweighting characters thought to 
be highly homoplasious (Goloboff 1993, Turner and Zandee 1995, 
Wiens 1998). This is similar to allowing ACRV: if a character is not 
penalized for changing frequently, more frequent changes will be ob-
served in that character. When a researcher does this, they specify that 
certain characters are less reliable indicators of the true phylogeny 

than others. This may be done by hand, with the researcher speci-
fying that a change in one character (the character thought to hold 
the least homoplastic signal) must be balanced by multiple (two or 
more) changes in others. This can also be automated, a process often 
referred to as implied weighting. Under this approach, the first time 
a character changes state on a tree, the change is given the weight 
of one. Subsequent changes are given smaller weights. In effect, this 
means that the more a character changes, the less it is allowed to in-
fluence the estimated tree. First implemented in 1993 by Goloboff, 
the implied weighting approach allows for the process of weighting 
to be more reproducible, and less dependent on observer bias about 
which characters to weight.

Interpretation of Bayesian and Parsimony Analyses
Parsimony aims to estimate the most parsimonious tree, i.e., the tree 
that minimizes the number of changes in the dataset along that tree. 
This is fairly straightforward to understand. Multiple ‘most’ parsi-
monious trees may be estimated from the same dataset if multiple 
sets of relationships or branch length distributions are equally parsi-
monious. We can think of parsimony methods as aiming to estimate 
one tree. This may not be possible due to lack of information content 
or conflicting signals in a given dataset.

Bayesian methods, however, provide a distribution of trees and 
parameter values sampled during the tree search. These are the 
values and trees proposed and evaluated by the MCMC algorithm 
during estimation. This posterior distribution can be used to test if 
the estimation has converged, or drawn enough independent sam-
ples that the true posterior has been approximated. A Bayesian esti-
mation is not expected to provide one evolutionary history, and set 
of parameters. Rather, visualizing this uncertainty is considered by 
many to be integral to Bayesian estimation. For example, in a dated 
phylogeny node ages are typically shown as distributions of possible 
ages, rather than point estimates. The shape and spread of the dis-
tribution itself is important information—a very wide distribution 
might indicate little precision in the value, while very peaked distri-
butions indicate very attenuated levels of uncertainty around specific 
values. For a very useful review on the posterior sample, and its rela-
tionship to other distributions of trees, see Alfaro and Holder 2006.

Both parsimony and Bayesian methods often rely on building 
a consensus tree. There are many ways to estimate a consensus 
tree (for a review see, O’Reilly and Donoghue 2017), but funda-
mentally, a consensus tree summarizes the bipartitions on the tree, 
and turns a sample of trees into a single tree object. In a Bayesian 
analysis, those trees are normally labeled with the posterior prob-
ability of the bifurcations on the tree. In parsimony analyses, fur-
ther estimations such as bootstrap, must be performed in order to 
quantify uncertainty in a particular bipartition (Felsenstein 1985). 
These approaches subsample columns of data in a phylogenetic 
matrix and re-estimate trees from the generated samples. Whereas 
Bayesian posterior probability can be thought of as the probability 
of the phylogenetic hypothesis given the data, the bootstrap can be 
thought of as a measure of repeatability of the hypothesis given the 
data (Felsenstein and Kishino 1993, Hillis and Bull 1993). For ex-
ample, if 1,000 subsampled replicate datasets are used to estimate 
trees, and 999 of them support the same tree, this is the evidence that 
the collected data strongly support the estimated topology. However, 
collection of additional data could change the bootstrap values. For 
a comparison of the Bayesian posterior with other methods of as-
sessing confidence in a split, see Huelsenbeck and Rannala (2004).

These two approaches have implications for how model fit and 
adequacy can be addressed. As discussed above, both Bayesian 
methods and parsimony make assumptions about the data. In a 
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Bayesian method, the fit of the model to the data can be described by 
calculating the marginal likelihood of the data, the probability of the 
data with model parameters integrated out. The calculation of this 
quantity can be complex, and beyond the scope of this paper, but for 
further theoretical reading see Lartillot and Philippe 2006, Xie et al. 
2011, Hug et al. 2015. This quantity allows for the comparison of 
models using the Bayes Factor, a standardized statistical framework 
for comparing the weight of evidence for different models (Kass and 
Raftery 1995, Suchard et al. 2005, Brown and Lemmon 2007). In 
this way, assumptions about the data either via the model or the 
prior can be tested. An equivalent framework does not exist for par-
simony. Under the maximum parsimony criterion, if a shorter tree is 
returned, that is considered to be the better tree.

New Worlds of Data-Intensive Morphology

As we’ve seen in the previous sections, estimating phylogenetic trees 
from morphological information is an evolving science. Between par-
simony estimation and Bayesian methods, many combinations of as-
sumptions can be made to suit a given dataset. Researchers have a 
greater range of choices than at any point in the past to try, and create, 
new models for understanding the evolution of taxa and traits. Below, 
I will highlight two advances that are particularly interesting.

Modularity of the Prior and the Model
Historically, many Bayesian estimation software suites have allowed 
only limited choices of priors on any model parameter, and limited 
control over the shapes that the prior distribution can take. More 
modern software allows researchers to experiment more broadly 
with novel combinations of parameters and priors.

In the section ‘Bayesian modeling of morphological data’, we 
discuss placing priors on ACRV and character state frequencies. In 
the previous generation of phylogenetics software (i.e., MrBayes, 
Huelsenbeck and Ronquist 2001), priors of this nature had to be 
coded into the software by the developers (see Table 1 for an over-
view of phylogenetic software). If a user wanted to use a certain 
prior distribution with a new data type, they may have needed to 
program it into the actual software. Current generation software 
(BEAST2, Bouckaert et  al. 2014; RevBayes, Höhna et  al. 2016, 
Höhna et al. 2017) allows users to generate new combinations of 
parameters and priors, and to contribute the scripts to do so back 
so other users may find them via contributions to their open-access 
software repositories.

This philosophy of flexibility is important to progress in this field. 
Firstly, many of the models we use to estimate phylogenies were not 
generated with morphology in mind (Jukes and Cantor 1969). For 
example, prior work indicates that using the Gamma distribution to 
model ACRV may not be optimal for morphological data (Wagner 

2011, Harrison and Larsson 2015). On its face, this makes a great 
deal of sense: traditionally, invariant characters have not been col-
lected by researchers. Nor have characters that change only once 
on a tree. This means that we typically must correct for this omis-
sion, often referred to as correcting for ascertainment bias. But when 
we use Gamma-distributed rate variation, we assume that there are 
some extreme low-rate characters in the dataset. For morphology, 
this is unlikely to be true. A modular framework allows a user to 
simply substitute a more appropriate prior distribution.

An implicit benefit to this is that researchers can realize models 
that they believe will fit their data without needing to involve a de-
veloper of the software. In previous software generations, when a 
researcher needed a new model, they would contact the developer, 
and let them know what they needed. Depending on how much time 
the developer had to handle user requests, perhaps they would im-
plement it. Modular software allows researchers to be the developer 
of the model. This enables the expert on the data to create models 
to describe those data, without having to wait on a software ex-
pert. Likewise, the software expert is also freed from needing to con-
stantly balance user requests with their own work. Embracing open 
source contribution also allows users to contribute back their scripts 
for analyses, such that other users can find and use them. Modularity 
and openness enable faster scientific progress as researchers can im-
plement new models quickly, and disseminate those results with an 
interested community of scientific practice.

Ontogeny-Aware Phylogenetic Models
Dependence between characters has long been an elusive phenom-
enon in morphological phylogenetics. Gene regulatory networks and 
developmental cascades deeply impact the morphological characters 
we collect. And yet, we are unable to observe these dynamics in pale-
ontological data and not every morphologist is an experimental de-
velopmental biologist with the training to gather data on underlying 
regulatory networks. Even in the absence of these data, the effect of 
these processes can be modeled.

Sewell Wright (1934) proposed a model for discrete characters 
called the threshold model. Under this model, which character state 
an organism has at a character is determined by a hidden, underlying 
character called ‘liability’. Liability is continuous, but when it crosses 
some threshold in trait space, the discrete character changes states. 
This trait is a stand-in—there is no explicit mechanism being mod-
eled. Liability could be some unobservable, but real, aspect of the 
phenotype. One such example could be a simple factor, such as circu-
lating hormone concentrations causing a trait change. It could also be 
a more complex factor, such as a gene regulatory network. Felsenstein 
applied this model for inferring correlations between characters 
(Felsenstein 2005, Felsenstein 2011), and the model has subsequently 
been applied to ancestral state estimation (Revell 2014). To date, it 

Table 1. A brief overview of software that can analyze morphological data

Software Optimality criterion Modular Allows relaxation of Mk assumptions

PAUP (Swofford 2003) Parsimony and Likelihood No No
TNT (Goloboff et al. 2008) Parsimony No No*
RAxML (Stamatakis 2014) Likelihood No No
Mr. Bayes (Huelsenbeck and Ronquist 2001) Bayesian No Yes
RevBayes (Höhna et al. 2016, Höhna et al. 2017) Bayesian Yes Yes*
BEAST2 (Bouckaert et al. 2014) Bayesian Yes Yes
MCMCTree (Yang 2007, Álvarez-Carretero et al. 2019) Bayesian No Yes*

The modularity column assesses if the software is modular per the section ‘Modularity of the prior and the model’. The final column specifies if researchers can 
relax any assumptions of the Mk model in the software. An asterisk indicates that continuous characters and models can be used in the software.
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has not been used to infer phylogenetic trees, though flexibility in new 
phylogenetics software may allow this, as discussed above.

New methods for modeling similar dynamics for inference of 
phylogeny rely on Hidden Markov Models (HMM) and Structured 
Markov Models (SMM) (Tarasov 2019). HMMs make a similar as-
sumption to liability—that there are some underlying variables af-
fecting the observable discrete states. In an HMM, the transitions 
between states are occurring between the hidden states, as opposed 
to the observed states, as in a regular Markov Model. Each observed 
state is typically affected by multiple hidden states. If this is not true, 
the model collapses to a regular Markov Model. SMMs allow for 
among-character dependencies, such as if an organism must have 
antennae in order to have antennae segments. This combination of 
models allows for phylogenetic inference that integrates underlying 
genetic and developmental process information.

Integrating hidden state information into phylogenetic analysis 
is an exciting new direction. It’s also very challenging: in subse-
quent work, use of ontologies is proposed to assist in annotating 
characters (Tarasov et  al. 2019). Ontologies establish a shared, 
machine-readable syntax for discussing characters and representing 
relationships among characters. In approaches that incorporate 
information about hierarchical relationships among characters, 
ontologies are used to connect characters to the ontology. This en-
ables higher relationships between characters and suites of charac-
ters to be accounted for in estimation. However, this also means an 
ontology must be assembled, requiring in-depth morphological work 
with specimens by an expert observer. Due to many homoplasious 
changes in large, speciose groups, invertebrate systematics has been 
a leader in adopting the ontology framework, making this particular 
field well-situated to explore these new methods.

Concluding Remarks

Morphological data have been crucial in phylogenetic estimation 
from the very first forays into the estimation of evolutionary his-
tory from observed data. This scope of this review was to look at 
models for inferring phylogeny from morphological data. I  have 
covered many exciting advances in how researchers can codify their 
knowledge of the evolutionary processes that lead to their observed 
morphological matrices. What is beyond the scope of this review is 
a discussion of comparative methods, for inferring the evolutionary 
history of traits on a tree. We have also not discussed divergence time 
estimation models, such as the fossilized birth-death model, which 
allow for modeling a discontinuous fossil record to infer divergence 
times and also further dynamics, such as speciation, extinction, and 
turnover. The methods allow researchers to fully integrate molecular 
and morphological data to estimate time-scaled phylogenetic trees.

Morphological systematists are taking advantage of the full rich-
ness of statistical methods, such as Bayesian inference, and more 
classical methods, such as parsimony variations including implied 
weights. New methods for integrating hierarchical character infor-
mation promises to help unlock the full richness of systematist’s 
knowledge. Closer relationships between software, developers, and 
empiricists facilitated by open science are enabling researchers to 
participate more fully in the process of model generation and testing. 
In short, morphology is experiencing a new golden age, facilitated by 
cross-disciplinary communication and sharing of knowledge.

Supplementary Data

Supplementary data are available at Insect Systematics and Diversity 
online.

Glossary
Model: A representation of a process, rendered in mathematics. In Bayesian 
systematics, a model typically describes the process of evolution leading to 
the data.

Assumptions: Factors about the model that are assumed to be true. For 
example, an equal-weight parsimony analysis assumes changes between two 
character states are equally likely. In a Bayesian model, assumptions are writ-
ten down into parameters, or mathematical facets of the model.

Observed Data: The data that have been collected by the researcher and 
will be used to infer the phylogeny. In the case of morphological data, these 
will be the morphological characters collected, whether from extinct or extant 
organisms.

Discrete data: Data that can be broken into distinct and non-overlapping 
classes. A common example of these data type is presence/absence data. Data 
with two classes are referred to as binary; data with more classes are referred 
to as multistate.

Random variable: A variable whose value is the result of a random draw. 
In most Bayesian models, the value of a given parameter is a random variable. 
For example, the value of a particular branch length on a phylogeny is a ran-
dom variable, which may be drawn from a distribution.

Continuous data: Data which cannot be broken into distinct and non-
overlapping classes, and may take the value of any real number. Examples 
include geometric morphometric measurements, weights, and lengths.

Exchangeabilities: The rate at which one character state is expected to 
transition to another. The exchangeabilities may be represented by one model 
parameter (in the case of the Mk model) or more (in the case of other, more 
complex phylogenetic models).

Prior distribution: A statistical distribution that describes the researcher’s 
prior beliefs or other outside information about the distribution of a model 
parameter. This allows the researcher to specify reasonable values for a param-
eter to take. A weak prior can be easily overcome by the data. A strong prior 
will require stronger signal in the data to be overcome.

Equilibrium character state frequencies: The frequencies of the character 
states in the dataset if the evolutionary process is allowed to run infinitely 
long. In practice, the expected rate of a particular change between two char-
acter states is the product of the equilibrium character frequency and the ex-
changeability.

Q-matrix: A  matrix defining the exchangeabilities and equilibrium char-
acter frequencies for a model at a given instant in evolutionary time. The 
Q-Matrix will have a number of rows and columns equal to the number of 
character states of the data.

Posterior distribution: The posterior distribution is a distribution of plaus-
ible values for a parameter or set of parameters given the data and the prior 
distribution. The posterior distribution is proportional to the model likelihood 
times the prior distribution.

Markov Chain Monte Carlo: An algorithm by which new values are pro-
posed for model parameters, and evaluated. In this procedure, initial values are 
scored under a model, then changed. If the changed parameter values improve 
on the old ones, they are used to seed the next step of estimation.

Brownian motion: A model of morphological change in which the value 
of a continuous character, X, is expected to change in proportion to an evo-
lutionary rate, σ. σ is expected to be normally distributed, with a variance 
that increases with time, such that more evolutionary change may be expected 
with time.

Model selection: A  set of statistical approaches designed to determine 
whether an increase in the number of parameters of a model is justified given 
its increased ability to model variation in the data. The addition of a parameter 
that does not increase the explanatory power of the model will not be sup-
ported by model selection. The exact degree of increase in explanatory power 
required to add a parameter will vary by model selection criteria.
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