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SUMMARY

SETTING—The impact of the genetic characteristics of Mycobacterium tuberculosis on the 

clustering of multi-drug-resistant tuberculosis (MDR-TB) has not been analyzed together with 

clinical and demographic characteristics.

OBJECTIVE—To determine factors associated with genotypic clustering of MDR-TB in a 

community-based study.

DESIGN—We measured the proportion of clustered cases among MDR-TB patients and 

determined the impact of clinical and demographic characteristics and that of three M. 
tuberculosis genetic characteristics: lineage, drug resistance-associated mutations, and rpoA and 

rpoC compensatory mutations.
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RESULTS—Of 174 patients from California and Texas included in the study, the number infected 

by East-Asian, Euro-American, Indo-Oceanic and East-African-Indian M. tuberculosis lineages 

were respectively 70 (40.2%), 69 (39.7%), 33 (19.0%) and 2 (1.1%). The most common mutations 

associated with isoniazid and rifampin resistance were respectively katG S315T and rpoB S531L. 

Potential compensatory mutations in rpoA and rpoC were found in 35 isolates (20.1%). Hispanic 

ethnicity (OR 26.50, 95%CI 3.73–386.80), infection with an East-Asian M. tuberculosis lineage 

(OR 30.00, 95%CI 4.20–462.40) and rpoB mutation S531L (OR 4.03, 95%CI 1.05–23.10) were 

independent factors associated with genotypic clustering.

CONCLUSION—Among the bacterial factors studied, East-Asian lineage and rpoB S531L 

mutation were independently associated with genotypic clustering, suggesting that bacterial 

factors have an impact on the ability of M. tuberculosis to cause secondary cases.
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Studies have shown that patients with tuberculosis (TB) are heterogeneous when 

transmitting Mycobacterium tuberculosis.1 Most of this variability has been attributed to 

features of the index patient, such as the number of organisms expelled on coughing.2 

However, some studies have suggested that bacterial characteristics have an impact on the 

transmission of M. tuberculosis and on its pathogenicity, i.e., its ability to cause secondary 

cases of TB. In one study, organisms of the East-Asian lineage, including the Beijing family, 

were five times more likely to cause secondary cases than patients with other M. 
tuberculosis lineages.3 In other studies, patients with drug-resistant M. tuberculosis were 

less likely to cause secondary cases than susceptible M. tuberculosis.4,5 Although some 

studies have shown no differences,6 other studies have suggested that isoniazid (INH) 

resistant M. tuberculosis with mutations in the inhA promoter or with S315T katG mutations 

were more likely to be transmitted than those without these mutations.7,8 Furthermore, in 

vitro fitness studies demonstrated that resistant M. tuberculosis strains with the most 

common rifampin (RMP) resistance-associated mutation, rpoB S531L, were more fit than 

strains with less frequent mutations, such as rpoB H526Y.9 Interestingly, mutations in rpoA 

and rpoC have been observed at high frequency in RMP-resistant M. tuberculosis, and are 

considered to be compensatory mutations for any fitness loss that could be caused by the 

RMP resistance-associated mutation.9 It should be noted that the frequency of strains with 

these compensatory mutations was high in regions with a high burden of multidrug-resistant 

TB (MDR-TB; i.e., TB resistant to at least INH and RMP),10 and more frequent among 

RMP-resistant M. tuberculosis isolates that caused secondary cases.11,12 However, these 

studies did not control for other factors known to be associated with transmission.

In this report, we describe the demographic, clinical and bacterial factors associated with 

genotypic clustering in MDR-TB cases. Genotypic clustering has been used as an indicator 

of M. tuberculosis involved in chains of transmission. We include an analysis of three 

bacterial characteristics: M. tuberculosis lineage, drug resistance-associated mutations, and 

presence of compensatory mutations in rpoA and rpoC.
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STUDY POPULATION AND METHODS

Study population and data sources

We included all patients with pulmonary TB caused by MDR M. tuberculosis organisms 

(defined by phenotypic drug susceptibility testing) identified between January 2005 and 

December 2011 from eight health jurisdictions in California (Sacramento, San Mateo, 

Contra Costa, Alameda, San Diego, Santa Clara, San Francisco and Orange counties), and in 

five jurisdictions in Texas (Harris, Dallas, Tarrant, Hidalgo and Cameron counties). Some of 

these patients were enrolled in a parent study to investigate MDR-TB transmission in the 

United States.13 The Human Research Protection Program of the University of California, 

San Francisco (UCSF), CA, USA, of the Centers for Disease Control and Prevention (CDC) 

and of each participating institution approved the study protocol.

Data on demographic and clinical characteristics and the epidemiologic links between 

patients were collected as part of the standard of care and the MDR-TB transmission study.
13 Lineage of the M. tuberculosis isolates was described according to the phylogenetic 

characterization methodologies previously reported.14 INH resistance-associated mutations 

in katG, the inhA promoter and the RMP resistance-associated mutations in the RMP-

resistance determining region (RRDR) of rpoB were identified using pyrosequencing.15 

Only amino acid positions 1–191 of rpoA (Rv3457c) and positions 245–560 of rpoC 

(Rv0668) (hotspots for possible compensatory mutations10) were sequenced using rpoA, 

primers (F5 ′GGACGTCGAAAGGAAGAAGA3 ′ and 

R5′GTCTCCACGTCCAGGATCAG3′) and rpoC primers 

(F5′CGAAAACCTCTACCGCGAAC3′ and R5′GCGACAGGATGTTGTTGGAG3′), 

respectively.11 Polymerase chain reaction products were sequenced using an ABI377 

automatic DNA sequencer (Perkin Elmer, Applied Biosystems, Carlsbad, CA, USA) at the 

UCSF genomics core facility. Sequence polymorphisms were identified by comparing the 

consensus sequence of each isolate to the corresponding gene sequence of the H37Rv 

genome using the A Plasmid Editor, V2.0.46 (W Davis, University of Utah, Salt Lake City, 

UT, USA).

All isolates were genotyped using spoligotyping and 24-locus mycobacterial interspersed 

repetitive units (MIRU) typing, as part of the CDC National Tuberculosis Genotyping 

Service surveillance system,16 and with insertion sequence (IS) 6110 restriction fragment 

length polymorphism (RFLP) using standardized methods.17 Genotypic clustering was 

defined as two or more MDR-TB isolates from patients from the same state with identical 

spoligo-type, 24-MIRU type, IS6110-RFLP and known drug resistance-associated 

mutations. Compensatory mutations in rpoA and rpoC were not included for the definition 

of clustering. We assumed that patients with clustered MDR-TB isolates within each state 

had TB due to recent transmission and were part of a chain of transmission. Patients with 

unique genotypes were considered as having TB due to the reactivation of latent infection. 

We used the ‘n–1’ method to calculate the transmission index that measures the average 

number of subsequent cases produced by potential index cases.18
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Statistical analysis

We described the demographic, clinical and bacterial characteristics of M. tuberculosis 
isolates associated with M. tuberculosis genetic clustering (the outcome) using logistic 

regression and exact logistic regression where expected cell counts were <5. We performed 

full-fitted exact logistic regression models, first including variables with P < 0.25 in the 

unadjusted analysis, then including those with P < 0.20. Correlated variables were removed 

from the model to identify the most stable, parsimonious, and informative model possible. P 
< 0.05 was considered statistically significant. Statistical analysis was performed using 

SPSS (Statistical Package for the Social Sciences, version 18.0, IBM Corp, Armonk, NY, 

USA) and SAS (version 9.4, SAS Institute Inc., Cary, NC, USA).

RESULTS

Patient characteristics

During the study period, 169 patients from California and 38 from Texas had pulmonary TB 

caused by MDR organisms, including four with XDR-TB (i.e., MDR-TB with additional 

resistance to fluoroquinolones and second-line injectable drugs) and 29 pre-XDR-TB 

(MDR-TB with resistance to either fluoroquinolones or second-line injectable drugs). After 

excluding cases without M. tuberculosis DNA or clinical data, 140 patients (83%) from 

California and 34 (89%) from Texas were included in the analysis. The characteristics of 

included vs. excluded patients are shown in Table 1. The mean age of the 174 patients 

included was 39.1 (±16) years, 80 (46%) were female and most were Asian (n= 104, 59.8%) 

or White (n = 63, 36.2%) (Table 2).

Genetic characteristics of M. tuberculosis

Of the 174 patients, the number infected by East-Asian, Euro-American, Indo-Oceanic and 

East-African-Indian lineages were respectively 70 (40.2%), 69 (39.7%), 33 (19%) and 2 

(1.1%) (Table 2). The INH resistance-associated mutation, katG S315T, and mutations in the 

inhA promoter were observed in respectively 124 (71.3%) and 40 (23%) of the isolates. The 

remaining 10 isolates did not have mutations in these genes, and none had mutations in both 

genes. The RMP resistance-associated mutation rpoB S531L (n = 105, 60.3%) (Table 2) was 

the most frequent mutation, followed by H526D (n = 18, 10.3%) and H526Y (n = 12, 6.9%). 

Five patients had isolates with two mutations each in rpoB (Table 2 footnote). M. 
tuberculosis from six patients did not have a mutation in rpoB RRDR.

We identified four unique single nucleotide polymorphisms (SNPs) in rpoA and 17 unique 

SNPs in rpoC, of which we excluded two from the analysis: A542A (1626 C→G), 

associated with Euro-American lineage but not with resistance,10,11 and the synonymous 

mutation R480R (1440 C→T). These SNPs were observed in respectively 23 and 2 patients. 

The 19 non-synonymous potentially compensatory mutations were found in 35 M. 
tuberculosis isolates (35/174, 20.1%) (Table 3). Five isolates had two mutations each in the 

rpoC gene. Twelve unique isolates had rpoC mutations in codon 483 (V483G, n = 9 and 

V483A, n = 3) and six had the A466V mutation. The mutation P434V in rpoC was 

associated with two haplotypes (1300 C→G and 1301 C→T), and occurred in the same 

isolate (Table 3). The A466V and D271G mutations have not been reported previously. 
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There were four different rpoA mutations in four isolates (4/174, 2.3%), two of which had 

not been reported before (G115A, T127A) (Table 3).

The frequency of M. tuberculosis isolates with rpoA or rpoC mutations varied depending on 

the rpoB mutation: they were more frequent in isolates with the S531L mutation (82.9% vs. 

17.2%, odds ratio [OR] 4.01, 95% confidence interval [CI] 1.56–10.03) (Table 2). The 

proportion of M. tuberculosis isolates with rpoA and rpoC mutations was different among 

the different lineages, although this difference was not statistically significant (Table 2).

Genotypic clustering

Of the 174 M. tuberculosis isolates, 23 (13.2%) were placed in eight genotypic clusters 

(Table 4). Five clusters were composed of East-Asian lineage isolates and three of Euro-

American lineage isolates. The transmission indices in East-Asian and Euro-American 

lineage were respectively 0.143 and 0.072. Isolates in two clusters had different rpoC 

mutations. In cluster 1, the patient with the F452L mutation was the earliest case in the 

cluster (December 2005) based on the date of diagnosis. The remaining two patients were 

diagnosed in December 2007 (G332T mutation) and August 2008 (F452L mutation). In 

cluster 7, the patient with the double mutation was reported in January 2007 and the patient 

with the wild-type rpoA and rpoC in May 2009. Patients in cluster 7 reported knowing each 

other. The only other epidemiologic link reported was among two of the four patients in 

cluster 3.

In the unadjusted analysis (Table 5), Hispanics (OR 2.72, 95%CI 1.11–6.62), patients with 

excessive alcohol consumption (OR 6.61, 95%CI 2.11–20.50), and those infected with an 

East-Asian lineage (OR 3.27, 95%CI 1.30–8.21) were more likely to be in genotypic 

clusters. The adjusted analysis using all values with P < 0.25 was unstable due to the small 

number of outcomes (cluster). The more parsimonious model using values with P < 0.20 was 

unstable due to interactions between excessive alcohol use, Asian race, and East-Asian 

lineage. Alcohol was reported in one Asian patient, and Asian race was correlated with East-

Asian lineage; we therefore removed alcohol and race from the adjusted model. The most 

stable and parsimonious model showed that Hispanic ethnicity (OR 26.5, 95%CI 3.73–

386.80), infection with an East-Asian M. tuberculosis lineage (OR 30.0, 95%CI 4.20–

462.40) and the presence of an rpoB S531L mutation (OR 4.03, 95%CI 1.05–23.10) were 

independently associated with genotypic clustering (Table 5). To explore the role of 

excessive alcohol use, we performed a similar analysis, stratified by race, and found that 

among non-Asians, excessive alcohol was associated with genotypic clustering (Table 6).

DISCUSSION

In this study of the clustering of patients with TB caused by MDR M. tuberculosis, we found 

that Hispanic ethnicity, being infected with an M. tuberculosis strain from the East-Asian 

lineage and with an rpoB S531L mutation were independent risk factors for genotypic 

clustering of TB cases. Compensatory mutations in rpoA and rpoC were not associated with 

clustering. To our knowledge, this is the first study to include a systematic analysis of 

clinical and epidemiologic data together with drug resistance-associated mutations, 
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compensatory mutations and M. tuberculosis lineage on transmission and pathogenesis 

(measured by clustering) of MDR-TB.

The distribution of the mutations causing INH and RMP resistance was similar to that noted 

in previous reports.23,24 The frequency of potential compensatory mutations in rpoA and 

rpoC mutations was also similar to that in other reports.10–12,22 In all studies, rpoC 

mutations were more frequent than rpoA mutations. Although most of the rpoA and rpoC 

mutations have been reported previously,10–12,19–22 we identified four new mutations 

(G115A and T127A in rpoA and D271G and A466V in rpoC) in the hotspot area that 

potentially affect the interaction between the rpoA, rpoB and rpoC subunits of the RNA 

polymerase, and which have not been previously reported.10

The cluster rate in our study population was 13.8%, and was independently associated with 

being infected with M. tuberculosis strains from the East-Asian lineage. The East-Asian M. 
tuberculosis lineage has been associated with clustering in many molecular epidemiologic 

studies in East Asia;25 however, its impact in areas outside Asia is more controversial.26 In 

vitro and animal model studies have suggested that the East-Asian lineage is more 

pathogenic and virulent compared with other strains,27 and the production of phenolic 

glycolipid has been proposed as a possible mechanism.28 Despite the uncertain 

pathogenesis, our findings suggest a unique role of the East-Asian lineage in MDR-TB 

transmission. We also found that rpoB S531L was associated with genetic clustering, which 

supports the findings that this mutation has no fitness cost in in vitro studies,9 causing 40–

73% of the M. tuberculosis RMP resistance,24,29,30 and is associated with compensatory 

mutations in rpoA and rpoC genes.11,22,31

Contrary to recent reports, we did not find any association between rpoA and rpoC 

mutations and clustering. de Vos and Li analyzed convenience samples from South Africa 

and China, respectively, and found that mutations in rpoC were significantly associated with 

clustering of RMP-resistant M. tuberculosis;11,12 however, they did not consider other 

factors known to be associated with genotypic clustering. We did not include the rpoA and 

rpoC genotype in the definition of clustering, as the implication for their phenotype and 

microevolution of M. tuberculosis has not been defined for most of the mutations.

Hispanic patients were more likely to be in a genotypic cluster. This result is similar to the 

cross-sectional study that evaluated the transmission of MDR-TB in the United States.13 

Excessive alcohol use was found to be an independent risk factor associated with genotypic 

clustering in non-Asian patients. As it was only reported in one Asian patient, we could not 

evaluate the impact of alcohol consumption in this population. Based on the latest results 

from the 2010 National Survey on Drug Use and Health, excessive alcohol use is rare among 

Asian populations.32 Patients with chronic use of alcohol are known to be lymphopenic, 

with a reduced response to mitogen stimulation and impaired delayed-type hypersensitivity 

responses.33 Excessive use of alcohol, usually in conjunction with homelessness, injection 

drug use, and smoking, has been widely reported as an important risk factor for TB 

transmission in molecular epidemiologic studies, especially in low TB incidence areas.34
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The present study had several limitations. First, our sample size was small and, as not all 

MDR-TB isolates from the study period were included, it is likely that we underestimated 

the number of genotypic clustered cases. Second, as both Indo-Oceanic and East-African-

Indian lineages were underrepresented among the isolates studied, no conclusions can be 

drawn about their potential for clustering. Third, some factors that have been shown to be 

associated with transmission, such as the presence of live M. tuberculosis in cough droplets,2 

delay in treatment initiation, socio-economic status, or place of exposure, were not measured 

in our study. Fourth, only partial regions of rpoA and rpoC were sequenced for mutation 

detection. However, the sequenced area includes the rpoA–rpoC interaction region of the 

rpoC gene, which has the potential to ameliorate the fitness cost of rpoB resistance 

mutations.10 Moreover, most of the mutations found outside of the rpoA–rpoC interaction 

region have not shown convergent evolution as has been observed for drug resistance 

mutations35 and for compensatory mutations,10 and the likelihood that they are 

compensatory mutations is therefore lower. Finally, we were not able to perform whole 

genome sequencing, which has been shown to better delineate the transmission links.

CONCLUSIONS

This community-based study presents a systematic analysis of clinical, epidemiologic and 

bacterial genetic factors associated with clustering of MDR-TB in two US states. We found 

that M. tuberculosis from the East-Asian lineage and isolates with the rpoB S531L mutation 

are bacterial factors independently associated with genetic clustering, suggesting that 

bacterial factors may have an impact on the ability of M. tuberculosis to cause secondary 

cases. In addition, we found that Hispanic patients were more likely to be part of a genetic 

cluster, as were non-Asian patients with excessive use of alcohol.
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Table 1

Clinical characteristics of included and excluded patients

Included (n = 174 Excluded (n = 33)

n (%) n (%) P value

Age, years, mean ± SD 39.1 ± 16 37.7 ± 16.6 0.646

Female sex 80 (46) 16 (48.5) 0.881

Race* 0.497

 Asian 104 (59.8) 20 (60.6)

 White 63 (36.2) 11 (33.3)

 African American 4 (2.3) 2 (6.1)

 Unknown 3 (1.7) 0

Hispanic 55 (31.6) 7 (21.2) 0.225

Prior anti-tuberculosis treatment 46 (26.4) 12 (36.4) 0.325

HIV infection* 5 (2.9) 0 0.380

Diabetes mellitus* 7 (4) 1 (3) 0.786

BCG vaccination 33 (19) 5 (15.2) 0.604

Homeless in last 12 months* 7 (4) 0 0.602

Correctional facility at time of diagnosis* 5 (2.9) 3 (9.1) 0.113

Long-term facility at time of diagnosis* 2 (1.1) 1 (3) 0.392

Injecting drug user in last 12 months* 2 (1.1) 0 1.000

Excessive alcohol use in last 12 months* 22 (12.6) 4 (12.1) 1.000

*
As expected cell counts were <5, P value was calculated using Fisher’s exact test.

SD = standard deviation; HIV = human immunodeficiency virus; BCG = bacille Calmette-Guérin.
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