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Abstract

Selenocysteine, the 21st genetically encoded amino acid, is the major form of the antioxidant trace 

element selenium in the human body. In eukaryotes and archaea its synthesis proceeds through a 

phosphorylated intermediate in a tRNA-dependent fashion. The final step of selenocysteine 

formation is catalyzed by (O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) that 

converts phosphoseryl-tRNASec to selenocysteinyl-tRNASec. The human SepSecS protein is also 

known as soluble liver antigen/liver pancreas (SLA/LP), which represents one of the antigens of 

autoimmune hepatitis. Here we review the discovery of human SepSecS and the current 

understanding of the immunogenicity of SLA/LP in autoimmune hepatitis.
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Introduction

Selenium is an essential antioxidant micronutrient for humans. The 21st genetically encoded 

amino acid, selenocysteine (Sec), is the principal metabolite of selenium in the human body 

and the means for exerting its various health benefits (Rayman, 2000). Although chemically 

similar to cysteine (Cys), Sec is significantly more nucleophilic at physiological pH. The 

lower pKa of the selenol group (approx. 5.2) ensures that the ionized selenolate form is 

dominant within the cell. This is in stark contrast to the predominantly reduced thiol group 

(pKa 8.5) in Cys (Ambrogelly et al., 2007). Similarly to the rest of the 20 canonical amino 

acids Sec is delivered to the ribosome for protein synthesis by its cognate transfer RNA 
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(tRNA) molecule, tRNASec. Knockout of tRNASec in the mouse is embryonic lethal, which 

underscores the importance of Sec-containing proteins (or selenoproteins) in mammalian 

development (Bösl et al., 1997). Mutations and polymorphisms in several of the currently 

known 25 human selenoproteins have been implicated in cancer and diseases of the 

muscular, nervous, immune and endocrine systems (reviewed in Bellinger et al., 2009). This 

is not surprising because most selenoenzymes (i.e., thioredoxin reductase, glutathione 

peroxidase, thioredoxin/gluta-thione reductase and methionine sulfoxide reductase) 

safeguard the cell from the detrimental effects of reactive oxygen species and regenerate 

important antioxidants such as vitamin C, vitamin E and coenzyme Q (Lu and Holmgren, 

2009). Sec is also the catalytic residue in iodothyronine deiodinases, the enzymes that enable 

circulating thyroid hormone to exert its pro-metabolic actions in peripheral tissues. The 

erroneous replacement of the active site Sec with the chemically similar serine (Ser) or Cys 

diminishes the activity of several selenoenzymes (Zhong and Holmgren, 2000; Kuiper et al., 

2003).

Selenocysteine, an eccentric amino acid

Sec is unique among amino acids in two respects. First, the codon that specifies Sec is one 

of the stop codons. In the late 1980s and early 1990s, Sec was established as the 21st 

genetically encoded amino acid specified by UGA that normally serves as a stop codon. 

Apart from its most common function to signal translational termination and its 

reassignment to Cys in Euplotes (Meyer et al., 1991) an in-frame UGA codon within the 

coding region of certain proteins also codes for selenocysteine in organisms from all three 

domains of life (reviewed in Ambrogelly et al., 2007). An elegant recoding mechanism 

allows the translation machinery to accurately discriminate between a Sec UGA and a Stop 

UGA codon. The presence of a stem-loop structure known as the selenocysteine insertion 

sequence (SECIS) element in the mRNA of selenoproteins signals the insertion of Sec to the 

translation apparatus. SECIS is present right after the UGA to be recoded in bacterial 

selenoprotein mRNAs, whereas it is mostly in the 3′ UTR in eukaryotic and archaeal 

mRNAs, which allows for the insertion of multiple Sec residues in a single eukaryotic 

polypeptide (Zinoni et al., 1990; Berry et al., 1991; Wilting et al., 1997).

Secondly, Sec is the universal exception to Crick’s paradigm that there should be one 

aminoacyl-tRNA synthetase (AARS) for each genetically encoded amino acid. AARSs are 

the enzymes that ‘read’ the genetic code by selecting the right amino acid and pairing it with 

its cognate tRNA. A prerequisite for this process is the presence of a cellular pool of free 

amino acids synthesized before this step. Indeed, biochemical experimental efforts of the last 

century have identified biosynthetic pathways for all 20 canonical amino acids. Sec is the 

only exception; there is no biosynthetic pathway for free Sec formation within the cell and a 

selenocysteinyl-tRNA synthetase does not exist. Instead, Sec synthesis occurs on its cognate 

tRNA in a route that is based on misacylation by seryl-tRNA synthetase (SerRS) and 

subsequent tRNA-dependent amino acid transformation.
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The route to Sec synthesis

Sec synthesis is interwoven with Sec-tRNA formation in all Sec-encoding bacterial, archaeal 

and eukaryal organisms. It begins with the misacylation of tRNASec with Ser by SerRS 

(Figure 1). The structural homology of tRNASer and tRNASec enables SerRS to form Ser-

tRNASec, although with only 1% of the efficiency with which it serylates the five tRNASer 

isoacceptors (Baron et al., 1990). The promiscuity displayed by SerRS is absent from all 

other Sec-synthetic enzymes. In fact, it is replaced by stringent specificity in which several 

enzymes recognize only an appropriate ligand that is covalently attached to tRNASec. In 

bacteria, Ser-tRNASec is directly converted to Sec-tRNASec via the action of the pyridoxal 

phosphate (PLP)-dependent enzyme selenocysteine synthase (SelA). Selenophosphate made 

by selenophosphate synthetase (SelD) acts as the selenium donor (reviewed in Böck et al., 

2005).

In archaea and eukarya, Sec-tRNA synthesis involves an additional phosphorylated 

intermediate. O-phosphoseryl-tRNA kinase (PSTK) phosphorylates Ser-tRNASec to form 

Sep-tRNASec in the presence of ATP and magnesium (Figure 1). PSTK exhibits a 

remarkable specificity for Ser-tRNASec. It does not phosphorylate free Ser or Ser attached to 

its cognate tRNASer. It is thus thought that only the unusual structure of tRNASec can 

appropriately position Ser in the active site of PSTK for phosphorylation to occur (Carlson 

et al., 2004). Moreover, in contrast to most AARSs that bind their cognate tRNAs with 

micromolar affinities, PSTK binds both unacylated and serylated tRNASec with nanomolar 

affinity (Sherrer et al., 2008). Such tight binding of tRNASec to PSTK might compensate for 

the significantly lower abundance of tRNASec than tRNASer even in Sec-rich tissues such as 

liver, kidney and testis (Diamond et al., 1993).

While the discovery of PSTK lent credence to the old finding of Sep-tRNASec in mammalian 

cell extracts (Mäenpää and Bernfield, 1970), the concomitant discovery of Sep-tRNA:Cys-

tRNA synthase (SepCysS) in some methanogenic archaea paved the way for the elucidation 

of the route to Sec synthesis from Sep-tRNA in archaea and eukarya (Sauerwald et al., 

2005). SepCysS uses PLP as a cofactor and a sulfur donor to convert Sep attached to 

tRNACys to Cys. Given the similar chemistries of Cys and Sec, the presence of Sep-tRNACys 

as an intermediate of Cys biosynthesis in certain methanogenic archaea suggested Sep-

tRNASec as an intermediate in the anabolic cycle of Sec and further supported the quest for 

an archaeal and eukaryal enzyme that would perform the Sep to Sec conversion (Yuan et al., 

2006; Abe et al., 2007; Xu et al., 2007).

Human SepSecS or SLA/LP

The most promising candidate to exhibit such an activity was the human protein Soluble 

Liver Antigen/Liver Pancreas (SLA/LP). This protein was first identified in the early 1990s 

as it co-precipitated with tRNASec when mammalian cell extracts were treated with serum 

from patients with autoimmune hepatitis (Gelpi et al., 1992). Through a computational 

approach SLA/LP was classified as a PLP-dependent serine hydroxymethyltransferase 

(Kernebeck et al., 2001) and its archaeal orthologs were only found in known Sec-containing 

archaea (Yuan et al., 2006). Interestingly, other known tRNA-dependent enzymes that carry 
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out Ser or Sep conversions also require PLP for activity (Leinfelder et al., 1989; Sauerwald 

et al., 2005). In vivo complementation assays in a heterologous system and in vitro activity 

assays established the human SLA/LP and its archaeal orthologs as the Sep-tRNA:Sec-tRNA 

synthase (SepSecS). SepSecS performs the ultimate step in the route to Sec synthesis, the 

conversion of Sep-tRNASec to Sec-tRNASec (Yuan et al., 2006; Abe et al., 2007; Xu et al., 

2007; see Figure 1). However, earlier RNA interference results in mammalian cells could not 

exclude the existence of an alternative SepSecS-independent pathway of Sec-tRNASec (Xu 

et al., 2005). Genetic knockouts and in vivo selenoprotein analysis in the parasitic protozoon 

Trypanosoma brucei showed that the PSTK/SepSecS sequence is the sole route to Sec in T. 
brucei, and thus possibly in all eukaryotes (Aeby et al., 2009).

Crystal structures of the archaeal (Araiso et al., 2008) and murine apo-SepSecS (Ganichkin 

et al., 2008) and the most recent of the human SepSecS-tRNASec complex (Palioura et al., 

2009) revealed the basis of substrate specificity and the catalytic mechanism of SepSecS. Its 

homotetrameric structure is distinct from its closest homologue, the dimeric SepCysS, and 

places SepSecS in its own branch in the family of fold type I PLP-dependent enzymes that 

stems from the last universal common ancestor (Araiso et al., 2008). Biochemical assays and 

molecular genetics established a reaction mechanism that proceeds through an external 

aldimine formed between the bound PLP cofactor and the incoming Sep that is attached to 

tRNASec (Palioura et al., 2009). SepSecS, like PSTK, exhibits remarkable substrate 

specificity. The enzyme acts only on Sep-tRNASec and not on free Sep, free Ser or Ser 

attached to tRNASer (Yuan et al., 2006; Abe et al., 2007; Xu et al., 2007). Structural studies 

on the human SepSecS-tRNASec complex suggested that tRNASec plays a crucial role in 

positioning Sep in the active site of SepSecS for catalysis to occur (Palioura et al., 2009).

tRNASec, an unusual tRNA

Comprised of 90 nucleotides, human tRNASec is among the largest eukaryotic tRNAs, the 

structure of which was recently determined (Itoh et al., 2009; Palioura et al., 2009). Its 

acceptor-TΨC ‘helix’ contains an additional base pair resulting in a 9/4 fold, in contrast to 

the 7/5 fold adopted by all known canonical tRNAs (Sturchler et al., 1993). Except for 

tRNASec, all tRNAs are transferred to the ribosome bound to either EF-Tu in bacteria or 

eEFlA in eukaryotes. The atypical 9/4 fold of tRNASec accounts for the evolution of a 

specialized elongation factor, known as SelB in bacteria (Forchhammer et al., 1989) and 

EFSec in eukaryotes (Fagegaltier et al., 2000; Tujebajeva et al., 2000), which binds only 

Sec-tRNASec and not other aminoacyl-tRNAs. Both the variable and D arms of tRNASec are 

longer than the corresponding elements in canonical tRNAs (Palioura et al., 2009; Itoh et al., 

2009), whereas the eighth position in tRNASec is occupied by adenine instead of the highly 

conserved uridine which is found in all canonical tRNAs. In a striking contrast to U8, the 

base of A8 does not form any tertiary interactions with the D- and TΨC arms leaving a hole 

in the core of the tRNA molecule (Yuan et al., 2010). All these features result in a distinct 

three-dimensional structure of tRNASec, which is likely to be recognized by all Sec-specific 

enzymes.

Whereas SerRS recognizes common structural features of tRNASer and tRNASec, it is 

thought that PSTK, SepSecS and EFSec recognize the distinct structural elements of 
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tRNASec instead (Yuan et al., 2010). The human SepSecS-tRNASec complex structure 

revealed that SepSecS does exactly that. It binds the longer acceptor-TΨC ‘helix’, the long 

variable arm, the 5′ phosphate and the acceptor-TΨC-variable elbow. Practically, SepSecS 

measures the length of the acceptor- TΨC ‘helix’ as the distance between the variable arm 

and the acceptor tip of tRNASec. Modeling of canonical tRNAs onto the human SepSecS 

showed that the length of their acceptor-TΨC ‘helix’ is too short to reach the active site of 

the enzyme. Even if productive interaction between the tip of the acceptor arm and the 

enzyme were forced to form, multiple steric clashes would prevent binding of the canonical 

tRNA to SepSecS (Palioura et al., 2009).

SLA/LP in autoimmune hepatitis

Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with 

autoantibodies and liver-infiltrating lymphocytes (Krawitt, 2006; Bogdanos et al., 2009). 

The pathogenesis of AIH is not understood, but it is assumed that the disease is driven by an 

inappropriate immune response against self antigens. Indeed, the majority of the patients 

present with autoantibodies that most commonly recognize nuclear antigens (ANA), 

filamentous actin (SMA), perinuclear antigen of neutrophils (atypical p-ANCA), the 

SepSecS molecule (SLA/LP), or cytochrome P450 2D6 (LKM-1) (Krawitt, 2006). SLA/LP 

auto antibodies are present in approximately 20% of the patients (Manns et al., 1987; Wies 

et al., 2000; Baeres et al., 2002) In contrast to all other autoantibodies detectable in immune-

mediated liver diseases, SLA/LP autoantibodies are highly specific for autoimmune hepatitis 

(Baeres et al., 2002). SLA/LP auto antibodies seem to react specifically with an 

immunodominant region of the SLA/LP molecule located near the carboxy-terminus 

between amino acids 450 and 490 (FINRLDRCLKAVR-

KERSKESDDNYDKTEDVDIEEMALKLDN), as identified by analysis of carboxy-

terminally truncated proteins (Wies et al., 2000). By analyzing a set of overlapping linear 

peptides covering this region, the dominant epitope recognized by SLA/LP autoantibodies 

could be confirmed and further restricted to a linear epitope sequence of 30 amino acids 

(residues 459–490: KAVRKERSKESDDNYDKTEDVDIE-EMALKLDN) (Herkel et al., 

2002). Interestingly, two immunodominant CD4 T cell epitopes have been identified, of 

which one is situated within the immunodominant region recognized by autoantibodies 

(residues 452–465: NRLDR-CLKAVRKER) (Mix et al., 2008).

In the structure of the human SepSecS-tRNASec binary complex the first 14 residues of the 

antigenic region (residues 450–463: FIKRLDRCLKAVRK) form the C-terminal helix α15 

(Palioura et al., 2009). Interestingly, helix α15 is spatially located near the entrance to the 

active-site cleft and it is proximal to helix α14 (Figure 2A). Both α14 and α15 interact with 

distinct parts of the acceptor arm (Figure 2A). The side chains of Thr397 and Arg398 from 

helix α14 interact with the discriminator base G73 and, thus, establish the identity of the 

bound tRNA molecule (Figure 2B). The importance of Thr397 and Arg398 for tRNASec 

binding has been confirmed by in vivo studies (Palioura et al., 2009). By contrast, the 

residues Arg453, Arg456 and Lys463 in α15 form the 5′-phosphate binding groove and they 

interact with the tRNA backbone atoms (Figure 2B). Since autoantibodies from patients with 

autoimmune hepatitis can precipitate the ribonucleoprotein SepSecS-tRNASec complex, we 

have proposed that such autoantibodies bind to an interface that lies between the α14 and 
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α15 helices of SepSecS and the tip of the acceptor arm of tRNASec (Figure 2B). The 

remaining residues of the antigenic region (residues 463–501) form the extreme C-terminal 

tail of SepSecS and have been disordered in all crystal structures of the enzyme determined 

to date (Araiso et al., 2008; Ganichkin et al., 2008; Palioura et al., 2009). This more flexible 

region of the enzyme would be more amenable to the proteolytic cleavage steps required for 

presentation to the immune system.

The remarkable uniformity in epitope recognition among the patients suggests that 

autoimmunity to SLA/LP is antigen-driven and induced by a common mechanism (Herkel et 

al., 2002). Most probably, autoimmunity to SepSecS is driven by the human SepSecS 

antigen itself and not by molecular mimicry (Wang et al., 2006). Thus, it is likely that 

SLA/LP autoimmunity is related to the pathogenesis of autoimmune hepatitis, at least in the 

subgroup of patients who display anti-SLA/LP reactivity. However, it is currently not clear 

how the biosynthesis of selenocysteine could be related to autoimmune hepatitis. 

Selenoproteins are synthesized in various organs, but nutritional selenium is mainly 

metabolized in the liver, from where selenium is distributed to other organs in the form of 

selenoprotein P (Gromer et al., 2005). One could thus speculate that nutritional selenium 

compounds or their metabolites or, alternatively, selenium deficiency might alter hepatic 

SepSecS in such ways that it becomes an immunogenic neoantigen. Such alterations could 

include dysfunction of the SepSecS enzyme, aberrant sub-cellular localization of SepSecS 

molecules in hepatocytes, or the formation of immunogenic molecular complexes of 

SepSecS with other proteins or non-protein molecules.

However, it is conceivable that modifications of SepSecS molecules by metabolites in the 

liver may initiate an immune response to SepSecS. A similar scenario has been suggested to 

initiate autoimmunity to the pyruvate dehydrogenase complex in primary biliary cirrhosis, 

which seems to be related to lipoic acid and neoantigenic xenobiotic lipoic acid analogs 

(Bruggraber et al., 2003; Walden et al., 2008). Of note, the catalytic domain of pyruvate 

dehydrogenase seems to carry a dominant target epitope of antimitochondrial antibodies in 

primary biliary cirrhosis patients (Braun et al., 2010). Moreover, such antibodies to pyruvate 

dehydrogenase have been reported to inhibit its enzymatic activity (Van de Water et al., 

1988; Teoh et al., 1994). Given that autoantibodies to the SepSecS molecule also seem to 

target the catalytic domain, it is thus possible that SLA/LP autoantibodies could inhibit the 

enzymatic function of SepSecS and thereby contribute to the pathogenesis of autoimmune 

hepatitis.
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Figure 1. 
A schematic diagram of the synthetic cycle of selenocysteine in eukaryotes.

The process begins with serylation of tRNASec (red) by SerRS (light and dark blue). PSTK 

(light and dark grey) then phosphorylates Ser-tRNASec and releases Sep-tRNASec and ADP. 

A SepSecS tetramer (gold and olive) subsequently binds Sep-tRNASec and catalyzes a two-

step transformation of Sep into Sec using selenophosphate as the selenium donor. The final 

product, Sec-tRNASec, is delivered to the 80S ribosome (orange and beige) by the 

specialized elongation factor EFSec (green). Once the Sec residue is inserted into the 

nascent polypeptide chain, free tRNASec is released for another round of Sec synthesis. All 

molecules are shown in surface representation, whereas Ser-tRNASec, Sep-tRNASec and Sec-

tRNASec are shown as ribbon diagrams. Crystal structures of the bacterial SerRS (Biou et 

al., 1994), the archaeal PSTK (Araiso et al., 2009), the human SepSecS-tRNASec complex 

(Palioura et al., 2009), the human tRNASec (Itoh et al., 2009), the archaeal SelB (Leibundgut 

et al., 2005) and that of the bacterial 70S ribosome in complex with EF-Tu (Schmeing et al., 

2009) were used for modeling. Except for the SepSecS-tRNASec complex, all other 

complexes are proposed models and not true structures.
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Figure 2. 
The proposed antigenic region in SepSecS or SLA/LP.

(A) The putative antigenic region of SepSecS is located near the active site of the enzyme 

(arrow). This region interacts with the tip of the acceptor arm of tRNASec and is crucial for 

tRNA recognition. The catalytic dimer of SepSecS is in shades of blue, the non-catalytic 

dimer is colored in shades of pink, two molecules of tRNASec are green, and the antigenic 

region is orange and demarcated with a box. (B) A close-up view of the interactions at the 

enzyme-tRNA interface. Residues from helices α14 and α15 interact with the tip of 

tRNASec. The helix α14 residues interact with the discriminator base G73: Arg398 forms 

hydrogen bonds with the Hoogsteen face of G73, whereas Thr397 stabilizes this interaction. 

The C-terminal helix α15 interacts with the tRNA backbone and with the 5′ phosphate. 

Arg453 and Arg456 are within hydrogen bonding distance from the 5′ phosphate, whereas 

Lys463 interacts with the non-bridging oxygens of C69 and G70.
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