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Abstract

Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Although 

outcomes have improved in recent decades, new treatments are still needed to improve survival 

and reduce treatment-related complications. The MB subtypes groups 3 and 4 represent a 

particular challenge due to their intragroup heterogeneity, which limits the options for “rational” 
targeted therapies. Here, we report a systems biology approach to drug repositioning that 

integrates a nonparametric, bootstrapping-based simulated annealing algorithm and a 3D drug 

functional network to characterize dysregulated driver signaling networks, thereby identifying 

potential drug candidates. From more than 1300 drug candidates studied, we identified five 

members of the cardiac glycoside family as potentially inhibiting the growth of groups 3 and 4 

MB and subsequently confirmed this in vitro. Systemic in vivo treatment of orthotopic patient-

derived xenograft (PDX) models of groups 3 and 4 MB with digoxin, a member of the cardiac 
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glycoside family approved for the treatment of heart failure, prolonged animal survival at plasma 

concentrations known to be tolerated in humans. These results demonstrate the power of a 

systematic drug repositioning method in identifying a potential treatment for MB. Our strategy 

could potentially be used to accelerate the repositioning of treatments for other human cancers that 

lack clearly defined rational targets.

INTRODUCTION

Medulloblastoma (MB) is the most common malignant brain tumor in children and accounts 

for 20 to 25% of all pediatric brain tumors (1). With the current standard therapy, which 

includes maximal safe resection, craniospinal radiation, and multiagent chemotherapy, the 

average 5-year overall survival for children with newly diagnosed MB is greater than 75% 

(2). The need for new MB treatments remains substantial, however, because survivors of this 

disease often face long-term treatment-related neurocognitive and endocrine sequelae. 

Furthermore, there are no curative second-line therapies currently available for those patients 

who fail to respond to upfront therapy or suffer a relapse of their disease.

MB is a heterogeneous group of tumors that can be divided into four subtypes based on 

distinct genomic signatures (3). Two of these subgroups are defined by single dysfunctional 

signaling pathways, Wingless/integrase-1 (WNT) and sonic hedgehog (SHH), which have 

raised the prospect of taking a rational target-based approach for the development of new 

therapies. Conversely, the other two subtypes, groups 3 and 4, which comprise 60 to 65% of 

all MB cases, contain complex genetic, epigenetic, and genomic abnormalities and display 

considerable intragroup heterogeneity, making them less amenable to rationally targeted 

therapies. Group 3 tumors, moreover, are associated with the worst prognosis of all the 

subgroups and are frequently metastatic at presentation (3), making the need for effective 

treatments for these tumors particularly acute.

The repositioning of known drugs for new medical indications is a promising strategy to 

accelerate the discovery of new treatments. Because of the readily available toxicity and 

pharmacokinetic information for drugs already in use (4, 5), compounds identified through 

repositioning have the potential for rapid clinical translation. There is also a wealth of 

publicly available data systematically exploring both the effects of drugs on intracellular 

signaling pathways and the relationship between genetic diversity and treatment efficacy. 

These resources include the Connectivity Map (CMAP) and Library of Integrated Network-

Based Cellular Signatures (LINCS) projects, which generated gene expression signatures in 

a large number of cell lines in response to different perturbations by small molecules (6); the 

Cancer Cell Line Encyclopedia (CCLE) project, which systemically generated genomic 

profiles, including gene expression, copy number changes, and sequencing profiles for a set 

of human cancer cell lines after treatment with various anti-cancer drugs (7); and the 

Catalogue of Somatic Mutations in Cancer (COSMIC), which focuses on the association 

between somatic mutations and drug sensitivity (8). To date, a number of computational 

methods have been proposed to make use of this wide array of available pharmacogenomics 

data for drug repositioning (4, 5, 9, 10). Although comprehensive transcriptomic data 

provide valuable information about drug responses, integration of other equally important 
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and relevant genomic and epigenetic data, such as DNA mutations, copy number changes, 

and methylation patterns, may help identify clinically meaningful new treatments, 

particularly when applied to heterogeneous and genomically complex cancers like groups 3 

and 4 MB.

With this in mind, we developed a systems biology approach for driver signaling network 

identification (DSNI)– and drug functional network (DFN)–based drug repositioning. This 

approach integrates multiple types of genomic profiles from patients with groups 3 and 4 

MB (whole-genome/exome sequencing, DNA copy number changes, DNA methylation, and 

mRNA expression) with data from human cancer signaling pathway resources and the gene 

expression profiles of 1309 drugs in CMAP (6). Using the DSNI-DFN method, we identified 

five members of the cardiac glycoside family, a group of Na+/K− pump inhibitors best 

known for their role in the treatment of heart failure as potential inhibitors of cancer driver 

signaling in groups 3 and 4 MB. We validated the therapeutic potential of these compounds 

in groups 3 and 4 MB in vitro in cell-based assays, and of one member of this family, 

digoxin, in vivo, in orthotopic patient-derived xenograft (PDX) models. Our findings show 

both a potential therapeutic strategy for groups 3 and 4 MB and a systematic drug 

repositioning approach that could potentially be applied to other genomically complex 

tumors.

RESULTS

Overview of systematic drug repositioning using DSNI-DFNs

The goal of the DSNI-DFN method is to identify existing drugs that can interfere with 

cancer-specific driver signaling networks. It is composed of two analytical components: 

identifying signaling networks that drive tumor progression or proliferation (Fig. 1A) and 

evaluating the effects of drugs on those networks using reconstructed DFNs (Fig. 1B). We 

used this method as follows. First, we identified potential driver genes for group 3 (or group 

4) MB from multiple omics datasets, including DNA sequencing, gene copy number, gene 

expression, and DNA methylation data. We then used these genes to derive driver gene 

signaling networks using a nonparametric, bootstrapping-based simulated annealing 

algorithm (NPBSA; Fig. 1A). NPBSA explores subnetworks from individual driver (seed) 

genes. It grows the subnetwork by adding genes neighboring the current network genes to 

increase a predefined network score representing differential gene expression, until an 

optimum score for the current subnetwork is achieved. By applying NPBSA to RNA 

sequencing (RNA-seq) (or methylation) data for patients with group 3 (or group 4) MB and 

to cancer pathway information, we generated transcriptome (or methylation-)– based driver 

net-works. We defined a network score for those driver networks and calculated a driver 

network score for each patient. We then clustered the patients with group 3 (or group 4) MB 

into different groups on the basis of these scores and tested whether these groups correlated 

with patient survival. We next reconstructed three drug-drug functional similarity networks 

by independently computing the two-dimensional chemical structure similarity, 

transcriptional response similarity, or in vitro drug test similarity between the 1309 drugs 

and then integrating them into one uniform network using a non-linear network fusion 

technique (11). We then clustered this integrated DFN into drug functional modules using a 
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Bayesian non-negative matrix factorization (NMF) with the β-divergence (BNMFβD) 

method and applied a network diffusion algorithm to each module to predict the off-target 

effects of each drug (12). Last, by evaluating drug-induced effects on the subtype-specific 

MB driver signaling networks, we prioritized the drugs for each siibtvpe of MB

Identification of dysregulated driver networks in groups 3 and 4 MB

Dysregulated driver networks that either drive tumor cell proliferation or unlock barriers 

against tumor progression represent a small fraction of the genomic alterations present in a 

tumor (13). Key driver events can be identified by their increased frequency in a given set of 

tumors. Most often, changes in driver genes lead to the activation of multiple tumorigenic 

signaling pathways. To identify driver alterations for groups 3 and 4 MB, we collected 

comprehensive data from 144 patients with group 3 MB and 326 patients with group 4 MB 

including DNA mutation (3), DNA methylation (14), DNA copy number, and gene 

expression data (table S1) (14). From these data, we identified 660 potential driver genes for 

group 3 MB and 635 potential driver genes for group 4 tumors. Specifically, we identified 

145 mutated genes in group 3 samples and 123 mutated genes in group 4 samples from DNA 

sequencing data. Using gene copy number data, we also identified 179 amplified genes and 

144 deleted genes in group 3 samples and 165 amplified genes and 108 deleted genes in 

group 4. Last, by comparing gene expression data from these patients to data from WNT (70 

patients) and SHH (223 patients) tumors, we identified subgroup-specific changes in gene 

expression with 194 and 239 differentially expressed genes for groups 3 and 4, respectively 

[|fold change| ≥ 2, P < 0.05, empirical Bayes test (15)].

We then applied the NPBSA algorithm to search for alternations in signaling networks due 

to changes in the activity of these potential driver genes. We separately combined mRNA 

expression profiling or methylation profiling data with our integrated human cancer 

signaling network to generate two sets of potential driver networks for each tumor type. 

Using this approach, 318 mRNA-based and 341 methylation-based signaling networks were 

identified as altered in group 3 tumors. From these networks, genes capable of forming a 

subnetwork were designated as final likely driver genes based on the rationale that genes 

involved in highly activated networks are the most likely genes to represent true drivers of 

oncogenesis. In this way, we identified 403 driver genes for group 3 tumors (table S2). We 

then applied the same approach to data from group 4, resulting in the identification of 331 

mRNA-based and 330 methylation-based driver signaling networks and 378 driver genes 

(table S3). Our approach successfully identified candidate driver genes that have been 

previously published for both group 3 (MYC, OTX2, NPR3, SMARCA4, GABRA5, and 

HLX) (16) and group 4 (CDK6, MYCN, SNCAIP, GRM1, GRM8, KCNA1, KCNA5, 
LMX1A, and KDM6A) MB (16).

We merged the methylation data-based signaling networks with those derived from mRNA 

expression data by selecting the genes with high joint confidence scores in both of them. We 

clustered the dysregulated driver networks using an affinity propagation (AP) algorithm 

(17), resulting in 48 dysregulated driver networks for group 3 MB and 45 dysregulated 

driver networks for group 4 MB (tables S4 and S5). As with driver genes, our approach 

identified previously validated driver signaling networks, specifically transforming growth 
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factor-β (TGFβ) (18) and MYC-p53 signaling in group 3 and the LMX1A regulatory 

network in group 4 (16). We computed a network score (see Materials and Methods) for 

each driver signaling network, which represented the differential gene expression activities 

of that network (termed network activity). Using these scores, we generated a specific 

network activity profile for each patient.

Driver network-derived clusters correlate with differences in patient outcomes

To compare the strength of our approach to analysis based on mRNA expression only, we 

performed NMF analysis (19) on both the driver network activity profiles and the driver 

gene profiles of patients with group 3 MB for whom survival data were available (114 

patients in total). Our unsupervised analysis of driver network activity profiles identified two 

distinct clusters representing patients with significant differences in overall survival (log-

rank test, P = 0.0232; Fig. 2A). Applying NMF clustering to driver network gene profiles 

also identified two clusters with differences in overall survival (log-rank test, P = 0.0349; 

Fig. 2B). Conversely, patient clusters identified using only genome-wide gene expression 

profiles did not demonstrate significant differences in outcomes (log-rank test, P = 0.290; 

Fig. 2C). Similarly, when clusters were generated for group 4 tumors (264 patients in total) 

in an analogous fashion, driver network activity and driver gene profiles demonstrated 

differences in patient outcomes (log-rank test, P = 0.00664 and P = 0.0077; Fig. 2, D and E, 

respectively), whereas clusters identified using gene expression profiles did not (log-rank 

test, P = 0.441; Fig. 2F). Because clusters based on driver network activities appeared to be 

associated with improved overall survival in patients with group 3 or 4 MB, we used driver 

networks as the basis for further analysis and identification of potential drugs.

DSNI-DFN-based drug repositioning accurately predicts in vitro drug effects

Using our DSNI-DFN method, we overlaid the DFNs onto the dysregulated driver networks 

and looked for clusters of compounds predicted to modulate pathways that were highly 

active in groups 3 and 4 MB. This allowed us to rank 1309 drugs based on their predicted 

ability to inhibit tumor growth.

We sought to compare the performance of our DSNI-DFN method with that of a previously 

reported CMAP-gene set enrichment analysis (GSEA)–based drug repositioning method (6). 

To this end, the 100 drugs predicted to be the most likely and the 100 drugs predicted to be 

the least likely to inhibit tumor growth were evaluated for their effect on MED8A cells, a 

MB cell line reported as belonging to group 3 (20). Cells were plated and incubated with 10 

μM of each drug, with viability assessed at 72 hours. Compared to only 3% of the top 100 

drugs (see table S6) identified using the CMAP-GSEA approach (Fig. 3A), about 12% of the 

top 100 drugs (see table S6) identified using the DSNI-DFN approach demonstrated >60% 

nonviable cells at 72 hours. In addition, 85% of the 100 lowest-ranked drugs predicted by 

DSNI-DFN had <20% cell death at 72 hours, whereas more than 10% of the 100 lowest-

ranked drugs identified using CMAP-GSEA had greater than 50% inhibition of cell viability. 

We have listed out the full ranking order of drugs in DSNI-DFN and CMAP-GSEA for 

group 3 MB in tables S7 and S8, respectively. These results indicate that the DSNI-DFN 

method improved both the reliability and sensitivity of identifying effective drugs.
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Cardiac glycosides are candidate drugs for groups 3 and 4 MB

Among the 100 drugs predicted to be the most effective by the DSNI-DFN method was a 

cluster of compounds present in both groups 3 and 4. This cluster contained both a number 

of known chemotherapeutic agents currently in clinical use (daunorubicin, mitoxantrone, 

and etoposide) (21) and five members of the cardiac glycoside family: the ionotropic drugs 

digoxin, proscillaridin A, and lanatoside C, known primarily for their use in the treatment of 

heart failure (22), and the related compounds digoxigenin and digitoxigenin (Fig. 3B). The 

cardiac glycosides ranked similarly in groups 3 and 4 MB. In contrast, only digoxin was 

predicted to show efficacy in SHH MB, with all the other glycosides bottom-ranked in both 

WNT and SHH MBs (Fig. 3C). For group 3, this prediction was based on the ability of these 

compounds to modulate the dysregulated driver networks associated with 22 genes (HIF1A, 
ABCG2, ABCB1, CYP3A4, ATP1A1, ATP1A3, NPPA, REN, FXYD2, RYR2, TOP2B, 
CACNA2D1, CALM1, DNAH8, TUBA4A, TUBA1A, ABCC1, TUBB, SDC1, TOP2A, 
KRIT1, and MAPK8), which are frequently altered in group 3 tumors. In addition, the first 

11 genes listed above are reported to be direct targets of digoxin in the STITCH database 

(Fig. 3D) (23). For group 4, the cardiac glycosides are predicted to exert an effect on 

networks associated with 14 genes (HIF1A, ATP1A1, ATP1A3, ABCB1, SDC1, PDE1B, 
CACNA1A, CALM1, CYP11A1, ABCC1, PRL, KCNA5, KRIT1, and CFD) frequently 

altered in this subgroup, with the first five genes listed above being reported as the direct 

targets of digoxin in STITCH database (23).

Cardiac glycosides inhibit MB cell growth in vitro

To further evaluate the predicted antitumor effects of the cardiac glycosides on MB, we 

performed in vitro cell viability assays using two established MB cell lines, MED8A and 

D283. The MED8A line has been reported to belong to group 3, whereas D283 cells have 

been described in the literature as belonging to both groups 3 and 4 (20). An adult brain 

tumor (glioblastoma) cell line, U87, and a triple-negative breast cancer cell line, MDA-

MB231-Br, were included in the assays as controls for nonspecific cytotoxicity. Cells were 

plated and incubated with five members of the cardiac glycoside family (proscillaridin A, 

digoxin, lanatoside C, digi-toxigenin, and digoxigenin) at escalating doses, and cell viability 

was assessed after 72 hours. Both MED8A and D283 showed substantial decreases in 

viability, with escalating doses of all cardiac glycoside family members resulting in IC50s 

(median inhibitory concentrations) ranging from the low nanomolar to low micromolar 

range depending on the compound (Fig. 4, A and B). By comparison, when these 

compounds were tested in U87 cells, proscillaridin A and digoxin showed IC50s >5 μM, 

whereas other cardiac glycosides tested failed to reach 50% decreases in cell viability 

despite drug concentrations up to 100 mM (Fig. 4A). Similarly, MDA-MB231-Br cells failed 

to show growth inhibition even at drug concentrations >100 μM (fig. S1). Our findings both 

demonstrate the in vitro antitumor activities of this class of drugs and highlight the 

selectivity of the cardiac glycosides for MB cells.

Digoxin treatment prolongs survival in orthotopic PDX models of groups 3 and 4 MB

Next, to evaluate whether the growth inhibition that we observed in vitro translated into a 

clinically relevant prolongation of survival in vivo, we turned to two patient-derived 
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orthotopic PDX models, ICb-2555MB and ICb-1078MB, representing groups 3 and 4 

disease, respectively. Orthotopic PDX models have a number of advantages in survival 

studies in that they replicate the location of the patient’s original disease and also preserve 

both inter- and intratumoral heterogeneity, thereby more closely mirroring patient tumors 

(24,25). Digoxin was selected for our survival studies because of its long history of clinical 

use and known toxicity profile.

ICb-1078MB, as we have previously reported (24), belongs to group 4 MB and harbors an 

N-MYC amplification. After tumor cell implantation, we allowed 24 days for tumor growth 

before starting treatment. The treatment group subsequently received two cycles of digoxin 

[2 mg/kg ip (intraperitoneally) daily (26) for 14 days] 3 weeks apart (Fig. 4C). Digoxin-

treated and untreated control mice were monitored for signs of tumor progression, and 

brains were evaluated after euthanasia for the presence of a tumor.

There were no long-surviving control mice, and all died with grossly visible tumors (Fig. 

4D). Digoxin treatment significantly prolonged survival, in ICb-1078MB showing a median 

survival of 113 days (n = 7) compared to 92 days (n = 6) for untreated controls (P = 0.001; 

Fig. 4E). Furthermore, the digoxin-treated group included two long-surviving mice that still 

appeared well at twice the median survival age of the control group. These mice were 

euthanized on postimplantation day 219 while asymptomatic. One long-surviving mouse had 

a cerebellar tumor histologically consistent with MB, whereas the other showed no evidence 

of disease (Fig. 4E).

To evaluate the efficacy of digoxin treatment in group 3 disease, we treated a newly 

established orthotopic PDX model of group 3 MB (ICb-2555MB) as described above (Fig. 

4D). ICb-2555MB was initially derived from a tumor harboring a C-MYC amplification, 

which is associated with aggressive disease and poor patient outcomes (3). ICb-2555MB 

was validated as a model through multiple in vivo passages (fig. S2A) and was identified as 

belonging to group 3 via quantitative polymerase chain reaction (fig. S2B).

Digoxin treatment also significantly prolonged survival in mice implanted with 

ICb-2555MB. Digoxin-treated mice (n = 10) displayed a median survival of 180 days 

compared to 102 days for untreated controls (n = 8) (P < 0.001; Fig. 4F). Furthermore, 

whereas all control mice had grossly visible tumors, the final three mice in the digoxin 

treatment group showed no evidence of intracranial tumors at the time of euthanasia, and 

only a small tumor was detectable after microscopic evaluation (Fig. 4F and fig. S3). This 

suggests that these mice may have been cured of their tumors, and instead, the physical 

decline that led to their being euthanized was related to other etiologies that occurred as they 

approached the end of their life span. Together, our data suggest that digoxin has an 

antitumor effect in vivo against preformed orthotopic PDX tumors from both groups 3 and 4 

MB.

Digoxin-mediated prolongation of survival occurs at clinically relevant plasma levels

Our results, combined with the fact that digoxin is known to cross the blood-brain barrier in 

humans (27), suggested that digoxin may be a potential treatment for patients with groups 3 

and 4 MB. The known narrow therapeutic window of digoxin, however, is a major concern 
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in translating these findings to a clinical setting. Safe therapeutic concentrations are well 

established in humans (22), and plasma trough concentrations of digoxin can be used in 

patients to monitor dosing and predict potential toxicities.

To examine whether our dosing schedule resulted in clinically tolerable plasma troughs, we 

treated six mice implanted with ICb-1078MB with digoxin (2 mg/kg ip daily for 16 days; 

fig. S4A). Twenty-four hours after the final digoxin dose (a standard time point in clinical 

drug dose monitoring), the mice were euthanized, and plasma digoxin concentrations were 

analyzed (table S9). Average plasma trough concentrations in digoxin-treated mice were 2.4 

± 0.2 ng/ml (fig. S4B), which was only slightly above the recommended goal troughs of 0.8 

to 2 ng/ml targeted in human patients and well below the concentrations of >10 ng/ml 

described as being “highly toxic” (22). These data suggest that clinical benefits for human 

patients may be achievable at safe digoxin dosing concentrations.

Comparison of single-agent digoxin therapy relative to and in combination with ionizing 
radiation

Because radiation therapy is a key component of the standard therapy for MB (2), we sought 

to compare the efficacy of single-agent digoxin treatment with that of radiation and to 

evaluate the therapeutic efficacy of the two as a combination therapy. Mice were implanted 

with ICb-2555MB, and radiation treatments were initiated 17 days after implantation. The 

radiation treatment schedule was based on current clinical protocols in which patients 

receive cranio-spinal irradiation followed by additional boost to the tumor bed. Mice in the 

radiation and combination therapy groups received 2 gray (Gy) daily to the craniospinal axis 

for 5 days, followed by 2 Gy daily for 5 days to the region of tumor implantation (Fig. 5, A 

and B). In mice receiving combination therapy, digoxin was initiated on day 24 (Fig. 5B).

Mice that received radiation therapy alone (n = 10) had a median survival of 167 days versus 

102 days for untreated controls (n = 8) and 180 days for single-agent digoxin therapy (n = 

10). These results demonstrate that in this model, single-agent digoxin has efficacy 

comparable to 20 Gy of radiation (Fig. 5C). Furthermore, when the digoxin treatment 

regimen was modified to prolonged continuous treatment of 60 days (n = 10), the observed 

survival benefit was superior to that of radiation, with a median survival of 235 days (P < 

0.01; fig. S5, A to C). The treatment of mice with a combination of radiation therapy and 

digoxin (n = 10) resulted in a median survival of 219 days (Fig. 5B). This represents a 

statistically significant improvement in survival over the radiation-only group (P = 0.04; Fig. 

5D) but did not meet statistical significance when compared to single-agent digoxin therapy 

(219 days versus 180 days, P = 0.33; fig. S6). These results highlight both the potency of 

digoxin antitumor activity in vivo and the need for further study regarding digoxin’s 

interaction with radiation to determine the optimal approach to integrating it into future 

clinical contexts.
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Digoxin treatment leads to increased apoptosis and changes in gene expression 
consistent with modulation of ERK/AKT signaling and induction of mitochondrial 
dysfunction

To gain insight into the mechanisms by which digoxin inhibited tumor growth and prolonged 

survival, we evaluated changes in cell morphology and gene expression after digoxin 

treatment. Tumor cells harvested from mice undergoing digoxin treatment showed an 

increase in apoptosis compared to untreated tumors or those that progressed after completion 

of treatment (Fig. 6A). We subsequently performed deep RNA-seq (GSE115542) on group 3 

(ICb-2555MB) and group 4 (ICb-1078MB) tumors harvested before and immediately after 

completion of digoxin treatment to evaluate changes in gene expression (Fig. 6 and tables 

S10 and S11). Lists of genes showing the largest changes in expression were then subjected 

to Ingenuity Pathway Analysis (IPA) (28) to identify the signaling pathways most altered in 

response to digoxin treatment. Consistent with the observed increase in apoptosis (Fig. 6, A 

and B), the most enriched pathways in both group 3 [sirtuin signaling pathway, nuclear 

factor, erythroid 2-like 2 (NFE2L2)-mediated oxidative stress response, regulation of eIF4, 

and p70S6K signaling; table S12] and group 4 (oxidative phosphorylation, mitochondrial 

dysfunction, and sirtuin signaling pathway; table S13) were associated with apoptosis and 

cellular stress responses. Group 3 (ICb-2555MB) tumors, in particular, showed changes in 

mitochondrially encoded genes, consistent with previous studies in melanoma that found 

that cardiac glycosides impaired cellular function, in part, by altering mitochondrial function 

(29).

Because genes that have been less extensively characterized or demonstrate tissue-restricted 

expression are less likely to be represented in pathways identified by IPA, we also 

individually examined the 15 most up-regulated and 15 most down-regulated genes in each 

model (Fig. 6, C and D, and tables S10 and S11). We found that many of these genes have 

been reported to either play a role in or be a target of extracellular signal–regulated kinase 

(ERK) or AKT signaling. Specifically, in group 3 tumors (ICb-2555MB) treated with 

digoxin, 7 of the 15 most down-regulated genes (ADCYAP1, DPYSL3, STBD1, CXCR4, 
NDUFB9, STMN2, and CYP19A1) (30–32) and 5 of the 15 most up-regulated genes 

(NQO2, SLC81A, RPTOR, ST3GAL6, and CRYAB) (33–35) have been linked to these 

pathways. In the group 4 model (ICb-1078MB), 6 of the 15 most down-regulated genes 

(KCNA5, FOXD2, HK2, BACH1, ST8SIA2, and ZNF446) (36–38) and 1 of the 15 most up-

regulated genes (FABP7) (39) have been associated with AKT or ERK signaling. These 

findings are consistent with a report that the cardiac glycoside, ouabain, is capable of 

inhibiting epidermal growth factor receptor (EGFR)–mediated activation of ERK and AKT 

(40). Furthermore, mitochondrial AKT signaling has recently been reported to play a key 

role in altering cellular metabolism to inhibit apoptosis in tumor cells undergoing metabolic 

stress (41). Together, therefore, these findings suggest a potential model in which digoxin 

modulation of AKT and ERK signaling sensitizes MB cells to metabolic stress resulting in 

widespread cell death in these aggressive and rapidly dividing tumors.
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DISCUSSION

Our informatics-driven drug repositioning strategy identified consistent (robust) 

dysfunctional signaling networks with high statistical confidence by jointly analyzing 

multigenomics profiling data of group-specific MB patients, thereby overcoming the 

deficiencies associated with analyzing data from only a specific genomic space. Further-

more, because MB is a pediatric brain tumor with low incidence rate, this bootstrapping 

strategy provided an added advantage by estimating the robustness of the identified driver 

networks given the limited sample size. Unlike “on-target repositioning,” which applies a 

drug’s known pharmacologic mechanism for a different therapeutic indication, our approach 

used a DFN to incorporate predicted off-target effects, an important element given that the 

antitumor mechanism of many compounds is likely multifactorial. This approach allowed us 

to identify a potential treatment for two difficult-to-target subgroups of MB, which, if borne 

out in future clinical studies, has the potential to both improve patient survival and reduce 

treatment-related complications by allowing for de-escalation of other treatment modalities.

Although in these studies our systems biology-driven predictions were validated by the 

experimental results from the orthotopic PDX models, our ability to generalize this approach 

remains limited by the available data. Specifically, the cellular responses to perturbation 

reported in the CMAP database were derived from a specific set of cancer cell lines (breast 

and prostate), and it remains to be seen how consistently the effects observed can be 

extrapolated to other tumors. In addition, this database represents a limited number of 

compounds (1309), limiting the pool of potential agents for repurposing. Moving forward, 

the ability to gather additional drug-related information will be an important step to 

maximizing the impact of this approach, thereby allowing for the construction of large-scale 

DFNs and enabling large-scale drug repositioning.

In addition, we used subtype-specific genomics data from MB patients to identify drug 

candidates. However, cellular heterogeneity exists even within a given tumor, resulting in 

different drug responses and the potential for the development of drug-resistant 

subpopulations of cells. The increasing availability of single-cell RNA-seq data raises the 

potential for applying the DSNI-DFN approach data from individual tumors to discover 

personalized driver signaling mechanisms, thereby deriving personalized treatment plans for 

individual cancer patients that could further demonstrate the power of integrative 

pharmacogenomics.

We believe that the activity of cardiac glycosides against groups 3 and 4 MBs is not an off-

target effect because otherwise it would be hard to explain why all five members of this class 

of drugs are ranked highly in our systems approach analysis. In recent years, cardiac 

glycosides have been found to have antitumor effects in multiple types of cancers (42), with 

increasing amount of evidence suggesting the signal transduction activity of Na+- and K+-

dependent adenosine triphosphatases (ATPases) as a possible mechanism in addition to its 

more conventional role as a sodium pump. Most notable is the observation that inhibition of 

Na+,K+-ATPases by ouabain induces both apoptosis and necrosis and can enhance the 

cytotoxicity of chemotherapy in human cancer cells that have up-regulated Na+,K+-ATPases, 

such as glioblastoma cells (43). Other mechanisms that have been suggested for the effects 
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of cardiac glycosides on various classes of tumor cells include the inhibition of hypoxia 

signaling (26, 44), global suppression of protein synthesis (45), modulation of 

EGFR/ERK/AKT signaling (40), and disruption of mitochondrial function via calcium-

based signaling (29, 46). Although the results presented here are very encouraging, we 

acknowledge that our studies do not provide a definitive mechanism for the marked effect 

that digoxin exerts on groups 3 and 4 tumors and would need further experiments to fully 

characterize the nature of cell death and delineate the detail dose-response relationship 

between the inhibition of Na+,K+-ATPases and other potential downstream effects. However, 

these data do suggest a potential model that can serve as the basis of future studies, one in 

which digoxin inhibition of AKT-mediated signaling sensitizes MB cells to metabolic stress. 

How exactly digoxin influences AKT-mediated signaling, and whether this represents the 

primary or one of several ways in which digoxin induces apoptosis, remain to be elucidated. 

However, our results suggest an exciting potential role for the use of digoxin in the treatment 

of these devastating tumors.

MATERIALS AND METHODS

Study design

To identify repurposable drugs for the treatment of MB, we developed a systems biology 

approach, which identifies candidate drugs targeting driver signaling networks of groups 3 

and 4. It consists of two components: identification of the driver signaling networks using 

DNA sequencing, gene copy number, DNA methylation, and RNA-seq data of patients with 

groups 3 and 4 MB. These driver signaling networks were used to evaluate the targeting 

effects of drugs or bioactive compounds. We hypothesized that drugs that can target and 

reverse the gene expression pattern of driver signaling networks might be useful 

therapeutics. In vitro and in vivo experiments were designed to validate the antitumor 

activity of the cardiac glycosides against groups 3 and 4 MB predicted by the systems 

biology model. In vitro assays were conducted using a single–time point assay (72 hours of 

drug exposure) with escalating doses of five cardiac glycosides, with the end point being the 

cell viability in two MB-derived cell lines (MED8A and D283) as well as two control cell 

lines to control for nonspecific cytotoxicity. In vivo survival studies were carried out in 

NOD.129S7 (B6)-Rag1tm1Mom/J severe combined immunodeficient (SCID) mice (the 

Jackson Laboratory) because of their ability to tolerate radiation compared to other strains of 

SCID mice. To detect the difference in means of 0.01 or greater at the SD of 0.06, the power 

of detection at 0.90, and α (the risk of a false positive conclusion) at 0.05000, we chose 10 

mice per group (digoxin-treated and controls). Treatment start times after implantation with 

tumor cells were determined on the basis of prior experience with serial sectioning of mouse 

brains to target tumors of about 2 to 3 mm in size when treatment was initiated. Fractionated 

radiation was administered at 2 Gy/day via with an RS-2000 Biological irradiator (Rad 

Source Technologies), and digoxin was given 2 mg/kg ip daily. Start times between digoxin 

(21 days) and radiation (17 days) were staggered to limit any potential acute toxicity in the 

mice receiving combination therapy. End points were evidence of neurologic compromise, 

loss of >20% of body weight, substantially diminished physical activity, or respiratory 

distress. Mice were screened for evidence of B and T cell populations, and evidence of 

reversion to immunocompetence was an exclusion criterion.
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Statistical analysis

The Kaplan-Meier estimator was used to estimate the survival curve from lifetime data of 

patients with MB as well as the mice survival times for the in vivo study. The log-rank test 

was used to estimate the P values for the survival analysis. Differential expression analysis 

for comparing the digoxin-treated gene expression data with the untreated control was based 

on the read counts using DESeq2 (47). In DESeq2, we modeled the raw read counts data to 

follow a negative binomial distribution. A generalized linear model was used to fit the raw 

read counts data of each gene. A Wald test was applied on the fitting coefficients for 

differential expression. The Benjamin and Hochberg procedure was used for multiple testing 

on P values from the Wald test to estimate the false discovery rate (FDR). Differentially 

expressed genes were selected by two concurrent criteria, absolute fold change (digoxin-

treated versus controls) larger than 2 and adjusted P values (FDR) less than 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Workflow of the systems biology–driven drug repositioning strategy.
The systematic drug repositioning strategy included two major components: (A) uncovering 

driver signaling networks by integrating multiple genomic profiles through a NPBSA 

algorithm and (B) an integrative analysis of DFNs and driver signaling networks for 

systematic drug repositioning. DNA-seq, DNA sequencing; KEGG, Kyoto Encyclopedia of 

Genes and Genomes; CNV, copy number variation; NCI-PID, NCI Pathway Interaction 

Database.
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Fig. 2. Correlation of driver network activity with patient with groups 3 and 4 MB overall 
survival.
(A) Driver network activity– and (B) driver network gene–based clusters for group 3 MB 

correlated with differences in patient survival (P = 0.0232 and P = 0.0349, respectively). (C) 

Genome-wide mRNA expression–based clusters for group 3 MB were not associated with 

significant differences in patient survival (P = 0.290). (D) Driver network activity– and (E) 

driver network gene–based clusters for group 4 MB correlated with differences in patient 

survival (P = 0.00664 and P = 0.0077, respectively). (F) Genome-wide gene expression–

based clusters for group 4 MB were not associated with significant differences in survival (P 
= 0.441).
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Fig. 3. Cardiac glycosides as candidate drugs for groups 3 and 4 MB.
(A) Comparison of in vitro inhibition of cell viability predicted by DSNI-DFN versus 

CMAP-GSEA. MED8A cells were incubated for 72 hours at 10 μM with predicted drugs, 

after which cell viability was assessed. (B) Details of a drug cluster predicted to strongly 

inhibit cell viability in groups 3 and 4 MB. This cluster contains known anticancer 

compounds and multiple members of the cardiac glycoside family. (C) Ranked order of 

cardiac glycosides predicted by DSNI-DFN in groups 3 and 4 SHH and WNT MB. FDA, 

U.S. Food and Drug Administration. (D) Schematic of drug-drug (red) and drug-target (dark 

blue) interactions for the cardiac glycoside digoxin derived from the STITCH database.
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Fig. 4. Cardiac glycosides inhibit MB cell growth in vitro and prolong survival in vivo.
(A) Dose-response curve for the cardiac glycosides (proscillaridin A, digoxin, lanatoside C, 

digitoxigenin, and digoxigenin) on MB-derived cell lines (MED8A and D283) and the 

control glioblastoma line (U87). Cell viability was assessed at 72 hours. (B) IC50 values for 

the dose titration experiment. (C) Schematic of orthotopic PDX model treatment with 

digoxin. Twenty-four days after tumor cell implantation, mice received digoxin (2 mg/kg ip 

daily) for 14 days, followed by 21 days without treatment, and followed by another 14 days 

of treatment. (D) Hematoxylin and eosin (H&E) staining examples of untreated tumors from 
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orthotopic PDX models of group 3 (ICb-2555MB) and group 4 (ICb-1078MB) MB. (E and 

F) Kaplan-Meier curves showing digoxin-treated mice compared to untreated controls. (E) 

Digoxin treatment prolonged survival in an orthotopic PDX model of group 4 MB 

(ICb-1078MB) to 113 days (n = 7) versus 92 days (n = 6) for untreated controls (log-rank 

test, P = 0.001). Two long-surviving mice were euthanized at 219 days while asymptomatic. 

Gross-scale image of one long-surviving mouse with large tumor and H&E staining 

demonstrating no evidence of tumor in the two long-surviving mice, one with a tumor and 

one without is shown. (F) Digoxin treatment prolonged survival in an orthotopic PDX model 

of group 3 MB (ICb-2555MB) to 180 days (n = 10) versus 102 days (n = 8) for untreated 

controls (log-rank test, P < 0.001). H&E comparison of two long-term surviving mice, one 

with a microscopic tumor and one without is shown. Scale bars, 1 mm (black) and 0.1 mm 

(white).

Huang et al. Page 21

Sci Transl Med. Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Comparison of the effects of digoxin and ionizing radiation alone and in combination on 
survival in an orthotopic PDX model of group 3 MB.
(A) Treatment schematic for radiation alone. Seventeen days after implantation, mice 

received fractionated radiation to the craniospinal axis (2 Gy/day) for 5 days, followed by 2 

days of recovery, and then 5 days focal radiation to the cerebellum (2 Gy/day). CSI, 

craniospinal irradiation. (B) Treatment schematic of combination therapy. Radiation therapy 

(XRT) was initiated on day 17 described in (A), with initiation of digoxin treatments 24 days 

after implantation, mice received digoxin (2 mg/kg ip daily) for 14 days, followed by 21 

days with no treatment, and then an additional 14 days of treatment. (C) Kaplan-Meier curve 

comparing the median survival of ICb-2555MB tumor-bearing mice: untreated (n = 8, 102 

days), digoxin-treated (n = 10, 180 days), and radiation alone (n = 10, 167 days). Both 

digoxin single-agent therapy (log-rank test, P = 0.007) and radiation alone (log-rank test, P < 

0.001) showed significant prolongation of survival relative untreated controls but were 

comparable when compared to one another (log-rank test, P = 0.91) (D) Kaplan-Meier curve 

comparing the median survival of untreated (n = 8, 102 days), radiation only (n = 10, 167 

days), and combination therapy-treated (n = 10, 219 days) mice. Combination therapy 

showed a significant prolongation of survival compared to both radiation alone (log-rank 

test, P = 0.04) and untreated controls (log-rank test, P < 0.001).
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Fig. 6. Cellular responses to digoxin in orthotopic PDX models of MB.
(A) TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate 

nick end labeling) staining of tumors from group 3 (ICb-2555MB) and group 4 

(ICb-1078MB) models before digoxin treatment, during treatment, or at time of recurrence. 

Scale bar, 25 mM. (B and C) Quantitation of TUNEL staining from group 3 (ICb-2555MB) 

(B) and group 4 (ICb-1078MB) (C). hpf, high-power field. (D and E) Heatmaps depicting 

changes gene expression in group 3 tumor (D) (ICb-2555 MB) and group 4 (E) 

(ICb-1078MB) tumors before and after digoxin treatment. Red text denotes genes that are 
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differentially expressed in both groups 3 and 4 MB. For the heatmap, red indicates up-

regulation, and green indicates down-regulation.
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