Skip to main content
. 2018 Dec 27;3(12):18489–18498. doi: 10.1021/acsomega.8b02763

Table 1. Properties of the Pure and Dyed PS Films Studied Herein.

      temperature at which
    exposure threshold per pulse
film starting solutiona (wt % PS) film thicknessb (nm) hole expandscT1 (°C) film disappears T2 (°C) transmittance 532 nm T absorbance 532 nm A = 1 – T – R single pulse (mJ/cm2) 0.5 s of pulsesd (mJ/cm2)
(a) Exposure: Pulsed Laser; Film: Spun on, Dyed; MW PS: 400 000 (Films 1–4), 45000 (Film 5)
1 0.25 85 (20) 55 (100) 65 (110) 0.44 0.45 10.5 3.3
2 0.75 105 (30) 65 (100) 75 (110) 0.36 0.55 28.1 7.4
3 1.25 125 (55) 95 (110) 105 (120) 0.27 0.66 66.7 15.5
4 1.75 200 110 120 0.18 0.77    
5 0.75 100 45 50 0.37 0.55 11.6 9.7/5.6
(b) Exposure: CW Laser; Film: Doctor Blade, Gradient Thickness, Dyed; MW PS: 400 000
6 1.25 80 120 125 0.52 0.37 2.6 × 106  
    120     0.49 0.40    
    170     0.40 0.50    
(c) calculatede optical properties for pure PS
    thickness (nm)     transmittance 193 nm absorbance 193 nm    
    30     0.16 0.63    
    55     0.04 0.82    
    80     0.01 0.84    
    >120     <10–3 0.846    
a

For dyed films 1–6, the starting solutions all have 1.25 wt % SR7B.

b

Values in parentheses (in this column and the following two) are for spin-coated films made without dye.

c

For dyed films, the temperature at which holes first begin to expand. For films without dye, the temperature at which holes first become visible.

d

For films 1–4, the pulse rate is 6 kHz. For film 5, the two listed thresholds are for 6 and 55 kHz, respectively.

e

Using Fresnel equations24 at normal incidence with a complex dielectric constant22 of 1.752 – i3.504 at 193 nm.