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ABSTRACT: Ab initio molecular orbital calculations were carried out to
examine the redox potentials of 149 electrolyte additives for lithium-ion
batteries. These potentials were employed to construct regression models
using a machine learning approach. We chose simple descriptors based on
the chemical structure of the additive molecules. The descriptors
predicted the redox potentials well, in particular, the oxidation potentials.
We found that the redox potentials can be explained by a small number of
features, which improve the interpretability of the results and seem to be
related to the amplitude of the eigenstate of the frontier orbitals.

■ INTRODUCTION

In the almost 30-year history of lithium-ion batteries (LIBs),
the cathode and anode active materials have captured the
spotlight in the development of LIBs because their
combination sets the upper limits of the voltage and capacity
of the cell.1−4 Electrolytes probably rank second in importance
to the cathode and anode active materials. It is worth noting
that, in recent years, ultrahigh salt concentration electrolytes5

and solid-state electrolytes6 have become hot topics in the
study of LIBs. In comparison with these major components,
the electrolyte additives have a modest supporting role.
However, after the significant development history of LIBs,
we are now reaching the performance limits of the leading
types of LIBs. Silicon anodes, high nickel cathodes, and
lithium-rich cathodes are considered to be promising next-
generation active materials because their theoretical capacities
are higher than those of currently used materials, and, thus,
they have been intensively studied.7−9 However, they still have
some unresolved issues such as poor cyclability and low-rate
performance. Therefore, it will take some time to put these
materials into practical use. It is expected that the use of
additives may change this situation without greatly changing
the cell design; thus, they have gradually attracted attention as
a low-cost way to improve cell performance.
In a recent review, Haregewoin et al. discussed in detail the

state-of-the-art research into electrolyte additives for LIBs,10

and that paper constitutes the most thorough report on the
current state of additive research in the field of LIBs. They
classified electrolyte additives into four categories: (i) anode
additives, (ii) cathode additives, (iii) redox shuttles that

prevent the cell from overcharging, and (iv) flame retardants;
they made a detailed exposition of these four categories. For
example, in the case of the cathode additives, various cathodes
such as lithium cobalt oxide (LiCoO2), lithium nickel
manganese cobalt oxide [LiNixMnyCozO2 (x + y + z = 1)],
Li-rich lithium manganite (Li2MnO3), manganese spinel
(LiMn2O4), and olivine (LiFePO4) were discussed. Some
figures in their paper show that the improvement in the
performance indicators, such as the Coulombic efficiency,
achieved by additives has stagnated for years. This fact suggests
the difficulty in designing suitable additives by conventional
chemical intuition and experimental trial-and-error approaches.
Thus, in addition to the steady efforts based on the existing
methods of materials science, an alternative approach is
required to accelerate the development of these additives.
Thus, it is interesting that the number of studies categorized
into materials informatics (MI) has increased.11−15 MI takes
advantage of the sophisticated machine learning techniques
developed in data science to reveal useful and sometimes
hidden relationships between various properties of materials.
MI is a data-driven approach to materials science, and it is
expected to become the fourth approach in material research
after experimentation, theory, and computer simulation.
We believe that it would be useful to identify the

relationships between the structures of the additives developed
so far and the properties that allow their use as additives.
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Among the various properties of additives, redox potentials are
suitable for such a purpose. The potential at which a molecule
is electrochemically decomposed in the positive or negative
electrode is one of the fundamental values in the design of
additives. This is because the mechanism by which additives
work is electrochemical decomposition, followed by the
formation of a film on the electrode surface. Besides the
practical importance of the redox potentials in designing
additives, they are computationally tractable and comparably
reliable, using current quantum chemistry methodologies.
In this study, ab initio molecular orbital methods were used

to calculate the redox potentials of additives discussed
elsewhere.10,16,17 The calculated potentials were used as the
explained variables of a regression model. We designed
features, that is, explanatory variables of the regression
model, on the basis of the chemical structures. In spite of
the simplicity of the designed features, they reproduced the
redox potentials considerably well, in particular, the oxidation
potentials. As will be explained later, the discrepancies in the
reduction potentials between the ab initio calculations and the
predictions by the regression models seem to be due to the
decomposition of the additives in the reduced state.

■ RESULTS AND DISCUSSION
Redox Potentials of the Additives. First, we examined

the redox potentials of 149 electrolyte additives for LIBs. The
calculated results are shown in Figure 1 and are classified into

four groups according to their intended use: anode additives,
cathode additives, redox shuttles, and flame retardants. Note
that the molecular formula, chemical structure, CAS registry
number, CAS name, oxidation potential, and reduction
potential of all additives calculated in this paper are listed in
spreadsheet S1, which is attached as the Supporting
Information. The sources of these additives are refs10,16 and
17. The classification of Figure 1 conforms mainly to ref 10.
Note that this classification is somewhat expedient because the
additives are not uniquely classified into the four types. In fact,
some molecules, such as those containing sulfur, work as
additives for both the cathode and the anode because the
reduction potential of sulfur-containing additives is usually
high, and they are easily decomposed on the anode surface,

whereas a part of the decomposition product reaches the
cathode to form a film on its surface.
We found that there was no clear relationship between the

oxidation and reduction potentials. However, the anode
additives seem to be divided into two groups by taking 1 V
(vs Li/Li+) as a threshold: 49% of the total anode additives
have reduction potentials of 1 V (vs Li/Li+) or less, whereas
51% of the anode additives have reduction potentials of more
than 1 V (vs Li/Li+). Anode additives that have a high
reduction potential of 1.5 V (vs Li/Li+) or more are more
easily reduced than carbonate solvent molecules. Conversely,
there are quite a few anode additives for which reduction is
difficult because of their low reduction potential of around 0 V
(vs Li/Li+). In addition, most anode additives (94%) have
oxidation potentials of 5 V (vs Li/Li+) or more, and their
oxidation at the cathode is challenging.
Figure 1 also shows that a large number of cathode additives

(61%) have oxidation potentials of 5 V (vs Li/Li+) or less.
They are easily oxidized at the cathode, but their reduction at
the anode is difficult because of their low reduction potential.
We also found a group of cathode additives that are not easily
oxidized at the cathode because of their very high oxidation
potential of 7 V (vs Li/Li+) or more. It is noteworthy that the
oxidation potentials of the redox shuttles are concentrated
around 4 V (vs Li/Li+) and are close to the operating potential
of the cathodes. This is consistent with one of the design
requirements for redox shuttles and represents an indirect
confirmation of the calculation accuracy. The redox potentials
of flame retardant additives are scattered in Figure 1. The
presence of phosphorus, which is usually present in these
additives, does not seem to provide a clear relationship
between the oxidation and reduction potentials.

Feature Design of the Additives. To establish a
regression model between the structures of the additives and
their redox potentials, it is necessary to determine the features
that correctly describe the structures of the additives. Although
molecular fingerprints such as MACCS and FP4 are standard
methods for describing the partial structures of molecules in
the fields of cheminformatics and bioinformatics,18 such a
general-purpose method requires a large data set to obtain the
regression model; therefore, it may not be suitable for a
relatively small-scale study such as ours. Thus, we determined
features to describe the structure of the additives simply, as
described in the following paragraph.
(i) For each element, other than hydrogen, in an additive

molecule, we counted the number of atoms having the same
coordination number. For example, in the case of the left-hand
molecule in Figure 2, there are two bidentate oxygen atoms,
one monodentate oxygen atom, and three tricoordinate carbon
atoms and are counted as O2 → 2, O1 → 1, and C3 → 3,
respectively. Similarly, in the case of the right-hand molecule in
Figure 2, there are two tetracoordinate carbon atoms, two

Figure 1. Calculated results of the oxidation vs reduction potential of
149 additives (electronvolts). Blue, yellow, purple, and red circles
represent the potentials of the anode additives, cathode additives,
redox shuttles, and flame retardants, respectively.

Figure 2. Examples of designed molecular features: 1,3-dioxol-2-one
(left) and 1,5,2,4-dioxadithiane 2,2,4,4-tetraoxide (right).
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bidentate oxygen atoms, four monodentate oxygen atoms, and
two tetracoordinate sulfur atoms and are counted as C4 → 2,
O2 → 2, O1 → 4, and S4 → 2, respectively.
(ii) Count the number of five-membered (R5) and six-

membered rings (R6) included in the additive. They are R5 →
1 and R6→ 1 in the left- and right-hand molecules in Figure 2,
respectively.
(iii) If the neutral state is a radical, set a flag such as rad → 1

and rad → 0 for radical and nonradical, respectively.
In this way, the structure of the additive molecule is

distinguished by a total of 22 features. We are aware that the
above feature design has some limitations, for example,
geometric isomers cannot be distinguished (e.g., Id [3−5] in
spreadsheet S1, Supporting Information). Nonetheless, as will
be seen later, the difference in the molecular structures and the
nature of redox potentials are fairly well-captured by these
features. These features and the redox potentials correspond to
the explanatory and explained variables of a regression model,
respectively. These values are listed in spreadsheet S1,
Supporting Information, together with the total energy of the
additives and the total energy of their oxidized and reduced
states.
Prediction of Redox Potentials by Machine Learning

Approaches. By using the above defined structural features
and combining the Gaussian kernel ridge regression (GKRR)
and gradient boosting regression (GBR) methods, we
predicted the oxidation and reduction potentials of the
additives. First, an explanation of the detailed settings of the
GKRR method is given. The data (features and redox
potentials) were standardized because, if the variance of a
certain feature is significantly larger than that of the other
features, there is a possibility of it dominating the objective
function; in addition, it is possible that the estimator might not
correctly learn from other features as expected. Note that
although the standardization of data is not necessary for the
GBR method because of its scale-invariance character, we also
standardized its data to facilitate comparison with the results of
the GKRR method. A total of 149 data were randomly divided
into two: three-quarters of the data were grouped as the
training data and the remaining one-quarter as the test data.
This division was also applied to the GBR model. We used k-
fold cross-validation, where the training data set is divided into
k-subsets, and the holdout method is repeated k times. In each
case, one of the k-subsets is used as the test set and the other
(k − 1)-subsets are grouped together to form the training set.
The mean score over k trials is then calculated. We set k = 5
and used the coefficient of determination, R2, to score the
model fitness. Two hyperparameters (α and γ) in GKRR were
optimized in exponential grids of 50 points between 10−2 and 1
and 50 points between 10−3 and 10−1, for α and γ, respectively.
We now discuss the detailed settings of the GBR method.

We used the least-squares regression as the loss function (loss
= “ls”). The learning rate at which the contribution of each
decision tree shrinks and the number of boosting stages to
perform were set in a very conservative way to avoid overfitting
(learning rate = 0.0001 and n_estimators = 100 000). In
addition, the maximum depth, minimum sample split, and
maximum feature parameters of the scikit-learn gradient-
boosting regression module (ensemble.GradientBoostingRe-
gressor) were set as 6, 3, and 2, respectively.
Figure 3 shows the results of the learning and prediction of

the oxidation potentials by the GKRR and GBR methods. As a
visual aid, we also show the 45° line that represents the perfect

fitting of the regression model. We found that although both
methods fit fairly well with the training data (the R2 scores for
GKRR and GBR are 0.868 and 0.992, respectively), the
predictions with respect to the test data by GKRR are
somewhat scattered, and the fitness is not as high as that
observed in the GBR model. This can also be recognized from
the fact that the R2 score of GBR with respect to the test data is
0.851, whereas that of GKRR is 0.801.
Figure 4 shows the results of the learning and prediction of

the reduction potentials by the GKRR and GBR methods. We
found that GKRR is not so well-adapted, even to the training
data. The R2 score of GBR is 0.985, whereas that of GKRR is
0.804. Moreover, in comparison with the oxidation potentials,
both GKRR and GBR models predict the reduction potentials
poorly with respect to the test data. This is indicated by the R2

scores of 0.512 and 0.643 for GKRR and GBR, respectively. In
fact, it seems that the two outliers designated by arrows 1 and
2 in Figure 4 reduce the accuracy of the predictions with
respect to the test data in the GBR method.
We then examined the two outliers in detail. The top part of

Figure 5 shows the optimized geometries of the neutral and
reduced states of carbonic acid, methyl-2-propen-1-yl ester (Id
[19] in spreadsheet S1, Supporting Information) and the
bottom part shows those of 2(3H)-furanone, 3-bromodihydro-
(Id [41]). The former and the latter correspond to arrows 1
and 2 in Figure 4, respectively. It is noteworthy that one
chemical bond is broken in the reduced state of both
molecules. The reduced state of Id [19] contains the allyl

Figure 3. Machine learning and prediction of oxidation potentials by
two regression models with standardized data: GKRR with optimized
hyperparameters, α = 0.0954 and γ = 0.0222 (top), and GBR
(bottom). Blue and red circles correspond to the training data and
test data, respectively. Note that the axes are standardized.
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radical and the methyl carbonate anion. They are significantly
stabilized through resonance, as shown by the contributing
structures of these species in the figure. In addition, the

reduced state of Id [41] shows that the C−Br bond is broken
and a bromide ion is formed in solution. The structures of
these reduced states are not consistent with the original feature
design based on coordination numbers; this inconsistency
resulted in relatively poor prediction of reduction potentials.
Note that, in general, chemical bonds are more easily broken in
the reduced state than in the oxidized state because, in the
reduced state, an excess electron is present in an antibonding
orbital, which causes the bond to be elongated or cleaved to
mitigate the enhanced electron repulsion arising from the
excess electrons. In addition, the aprotic polar solvents used in
LIBs sometimes make the formation of anion species
energetically favorable by suitable bond cleavage.
Thus, in the present calculations, it is somewhat difficult to

interpret the results of the reduction potential because there
are cases where a chemical bond is spontaneously broken in
the reduced state, as shown in Figure 5. When the bond is
cleaved, the polarization of the molecular system increases. In a
polar solvent, this leads to a stabilization of the reduced state,
which in turn leads to an increase in the reduction potential. It
seems that there are additive molecules that are thermody-
namically more stable in the cleaved state, even if their bonds
are not spontaneously broken in the present calculation. For
this reason, there is a possibility that the computationally
predicted reduction potentials shown in Figure 1 are lower
than those in the real systems.
Another cause for the underestimation of the reduction

potentials is that there is some ambiguity regarding the value of
Vabs employed to scale the redox potentials. Although we used
the International Union of Pure and Applied Chemistry
(IUPAC) recommended value of 4.44 V, a somewhat smaller
value (4.28 V) has been reported.19 The adoption of the latter
increases the reduction potentials by 0.16 V.

Importance of Features in Potential Prediction. The
number of features in a regression model is sometimes reduced
to improve its fitting accuracy as well as to facilitate the
interpretation of the results. Although the least absolute
shrinkage and selection operator (LASSO) is often used for
that purpose in a linear regression model, LASSO cannot be

Figure 4. Machine learning and prediction of reduction potentials by
two regression models with standardized data: GKRR with optimized
hyperparameters, α = 0.0868 and γ = 0.0152 (top), and GBR with two
outliers, designated by arrows (bottom). Blue and red circles
correspond to the training data and test data, respectively. Note
that the axes are standardized.

Figure 5. Ball-and-stick models of spontaneous bond breaking caused by reduction corresponding to the two outliers designated by arrows in
Figure 4: carbonic acid, methyl-2-propen-1-yl ester (top) and 2(3H)-furanone, 3-bromodihydro (bottom). White, gray, red, and dark red balls
represent H, C, O, and Br, respectively.
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used for nonlinear regression models, such as the GKRR,
because it results in data selection instead of feature selection.
By contrast, it is possible to calculate the importance of each
feature in the GBR method. Figure 6 shows the relative feature

importance in the prediction of oxidation and reduction
potentials by the GBR method. We found that features C3, C4,
O1, O2, and R6 rank high in both potentials. In addition to
these features, the features related to halogens (F1 and Cl1)
are also important in the reduction potential, whereas
miscellaneous features (F1, N3, and Si4) are important in
the oxidation potential.
We next examined how well the feature selection predicts

both potentials. As an example, we used the top eight or nine
features that have over 30% relative importance in Figure 6.
Figure 7 shows that the degree of fitness to training data is not
reduced by the selection. In addition, the R2 scores for both
potentials did not change much, as shown in Table 1. By

contrast, the fitness to the test data by the trimmed model is
somewhat worse than that resulting from the full-feature model
(Table 1). However, by comparing Figures 3, 4, and 7, we
found that the essential behavior of the prediction versus the
density functional theory (DFT) calculations can still be
reproduced by the trimmed model.
Finally, we considered the reasons why the trimmed model

predicted the redox potentials reasonably well, and to a similar
extent, to that of the full-feature model. In the oxidized state,
an electron is extracted from the highest occupied molecular
orbital (HOMO), whereas in the reduced state, it is added to
the lowest unoccupied molecular orbital (LUMO). Therefore,
these frontier orbitals should be investigated. We focused on
N,N-diphenyl-benzenamine (Id [82] in the Supporting
Information). This molecule has a three-coordinate nitrogen
atom in the center. According to Figure 6, N3 is more
important for the oxidation potential than for the reduction

Figure 6. Relative feature importance in GBR models. Oxidation
potential (top) and reduction potential (bottom). Dotted vertical
lines represent a relative importance of 30%.

Figure 7. GBR models with a reduced number of features: oxidation
potential using eight key features in Figure 6 (top) and reduction
potential using nine key features in Figure 6 (bottom). Blue and red
circles correspond to the training data and test data, respectively.
Note that the axes are standardized.

Table 1. R2 Scores of the GBR Method with Full and
Reduced Features

full-feature reduced featuresa

oxidation potential training 0.992 0.982
test 0.851 0.830

reduction potential training 0.985 0.982
test 0.643 0.603

aThe top eight and nine features were used for the oxidation and
reduction potentials, respectively.
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potential. This is consistent with the fact that the amplitude of
the eigenstate function is observed on nitrogen in the HOMO
but not in the LUMO, as shown in Figure 8. Quantitatively,
the orbital-by-orbital population analysis shows that the
contributions of N3 to the HOMO and LUMO are 0.2778
and 0.0797, respectively. Thus, a correlation was found
between the results of machine learning and the electronic
structure calculations. Moreover, these results support the
exclusion of hydrogen atoms from the feature design because
they form σ bonds, whose energy levels are significantly far
from those of the frontier orbitals (HOMO and LUMO).

■ CONCLUSIONS

We performed ab initio molecular orbital calculations to
examine the redox potentials of 149 representative molecules
used as additives for the electrolytes of LIBs. We observed that
most of the anode additives have oxidation potentials of 5 V
(vs Li/Li+) or more, whereas the majority of the cathode
additives have oxidation potentials of 5 V (vs Li/Li+) or less.
We constructed features of the additive molecules based on
their constituent elements and their coordination numbers to
predict the redox potentials by two regression methods, GKRR
and GBR. Although both methods predicted the oxidation
potentials fairly well, GBR was somewhat superior to GKRR in
the prediction of the reduction potentials. We also found that
the essential character of the redox potentials can be described
by a smaller number of features derived from the analysis of
the important features in GBR. The importance of these
features seems to be related to the amplitude of the eigenstate
of the frontier orbitals.

■ COMPUTATIONAL DETAILS

All ab initio molecular orbital calculations reported in this
paper were carried out with the Gaussian 16 Revision A.03
program.20 Hybrid DFT calculations were carried out using the
B3LYP hybrid exchange−correlation functional, which com-
prises Becke’s three-parameter exchange functional and Lee−
Yang−Parr correlation functional.21−23 The 6-31++G(d,p)
split-valence double-zeta basis set augmented with polarization
and diffuse functions was used in this study. For all charge
states, the molecular/ionic geometries were fully optimized
until the magnitude of the residual forces became less than 4.5
× 10−4 hartree/bohr. Solvent effects were treated by using the
integral equation formalism (IEF)-polarizable continuum
model (PCM), which performs a reaction field calculation
using the IEF model.24 Dimethyl sulfoxide (DMSO, ε =
46.826) was used as a continuum dielectric material in the IEF-
PCM calculations with a default cavity. Note that a mixed
solvent composed of carbonates with high and low dielectric
constants is commonly used as an electrolyte solvent in LIBs.
For example, the dielectric constant of a 1:1 mixed solvent of

ethylene carbonate (ε = 90) and diethyl carbonate (ε = 2.8)
will be ε = 46, assuming additivity for the dielectric constant
with respect to volume. This value is close to the dielectric
constant of DMSO. We expect that using DMSO as the solvent
will not cause a large error because most of the solvent effect is
determined by the dielectric constant, although the solvent
effect calculated by PCM includes nonelectrostatic inter-
actions, which reflect the shape of the solvent molecule.
The oxidation (Vox) and reduction (Vred) potentials of

additive A on a voltage (vs Li/Li+) scale were calculated as
follows

= { − } −+V E E e V(A ) (A) /ox tot tot shift

= { − } −−V E E e V(A) (A ) /red tot tot shift

where Etot(A) is a total energy of A in electronvolts. Etot(A
+)

and Etot(A
−) are the total energies of the oxidized and reduced

states of A, respectively. Vshift corresponds to the difference
between the absolute potential (Vabs) and the magnitude of the
redox potential of the Li metal (|VLi|). The values of Vabs and |
VLi| are 4.4425 and 3.04 V,26 respectively. The value used for
Vabs is that estimated by Trasatti and recommended by the
IUPAC The use of these values results in a Vshift of 1.4 V. Note
that the total energy output from the self-consistent reaction
field calculation in Gaussian 16 includes all computed
corrections in solution, unlike the Gaussian 03 output.
To find the relationship between the structure of the

additives and their redox potentials, we considered two
regression models: GKRR and GBR. GKRR is a combination
of the Gaussian kernel method and ridge regression with L2-
norm regularization term. Because of the flexibility afforded by
the nonlinear character of the Gaussian kernel and the
ingenious kernel trick, GKRR efficiently finds relationships
that ordinary linear regression fails to find.15 GKRR contains
two hyperparameters (σ and λ), which were optimized by
using grid search. GBR produces a regression model in the
form of ensemble decision trees.27 It evolves the model in a
stepwise manner by optimizing the loss function via its
gradient. All machine learning calculations in this study were
based on the scikit-learn package, which is a collection of APIs
for machine learning in Python.28
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Figure 8. HOMO and LUMO eigenstates of N,N-diphenyl-benzenamine.
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